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for estimating confidence intervals 
for predicted‑to‑expected ratios for hospital 
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Abstract 

Background:  Healthcare provider profiling involves the comparison of outcomes between patients cared for by 
different healthcare providers. An important component of provider profiling is risk-adjustment so that providers 
that care for sicker patients are not unfairly penalized. One method for provider profiling entails using random effects 
logistic regression models to compute provider-specific predicted-to-expected ratios. These ratios compare the pre-
dicted number of deaths at a given provider given the case-mix of its patients with the expected number of deaths 
had those patients been treated at an average provider. Despite the utility of this metric in provider profiling, methods 
have not been described to estimate confidence intervals for these ratios. The objective of the current study was to 
evaluate the performance of four bootstrap procedures for estimating 95% confidence intervals for predicted-to-
expected ratios.

Methods:  We used Monte Carlo simulations to evaluate four bootstrap procedures: the naïve bootstrap, a within 
cluster-bootstrap, the parametric multilevel bootstrap, and a novel cluster-specific parametric bootstrap. The param-
eters of the data-generating process were informed by empirical analyses of patients hospitalized with acute myocar-
dial infarction. Three factors were varied in the simulations: the number of subjects per cluster, the intraclass correla-
tion coefficient for the binary outcome, and the prevalence of the outcome. We examined coverage rates of both 
normal-theory bootstrap confidence intervals and bootstrap percentile intervals.

Results:  In general, all four bootstrap procedures resulted in inaccurate estimates of the standard error of cluster-spe-
cific predicted-to-expected ratios. Similarly, all four bootstrap procedures resulted in 95% confidence intervals whose 
empirical coverage rates were different from the advertised rate. In many scenarios the empirical coverage rates were 
substantially lower than the advertised rate.

Conclusion:  Existing bootstrap procedures should not be used to compute confidence intervals for predicted-to-
expected ratios when conducting provider profiling.
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Background
Provider profiling involves the comparison of outcomes 
between healthcare providers [1]. Examples of provider 
profiling include comparisons of outcomes between 
hospitals following coronary artery bypass graft 
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(CABG) surgery and following hospitalization for acute 
myocardial infarction (AMI) [2–8]. An important com-
ponent of provider profiling is risk-adjustment, so that 
providers that care for sicker patients are not unfairly 
penalized [1].

Historically, the most common approach to risk-
adjustment was to compute provider-specific 
observed-to-expected ratios, comparing the observed 
mortality at each provider to the mortality that would 
be expected given the case-mix of its patients. An 
observed-to-expected ratio can be computed by using 
a conventional logistic regression to regress the binary 
outcome (e.g., death within 30 days of the CABG sur-
gery or of hospital admission for AMI). Using the fit-
ted model, the predicted probability of the outcome, 
conditional on their baseline covariates, is determined 
for each patient. These probabilities are summed up 
within each provider to generate the expected num-
ber of deaths at each provider given the case-mix of 
its patients. Then the observed number of deaths is 
divided by the expected number of deaths, to produce 
the provider’s observed-to-expected ratio (this ratio 
can be multiplied by the overall sample-wide event 

rate to produce a risk-adjusted mortality rate). Pro-
viders whose ratio is greater than one have observed 
mortality that exceeds the mortality that would be 
expected given the case-mix of its patients. Provid-
ers whose ratio is less than one have observed mor-
tality that is less than the mortality that would be 
expected given the case-mix of its patients. Hosmer 
and Lemeshow provided a closed-form expression 
for the standard error of the observed-to-expected 
ratio, allowing for estimation of confidence intervals 
around the ratio [9]. Providers whose estimated con-
fidence interval excludes the null value of one can be 
classified as having outcomes that are significantly 
different from expected. In addition to providing a 
closed-form expression for the standard error of the 
observed-to-expected ratio, Hosmer and Lemeshow 
suggested that the bootstrap could be used to con-
struct confidence intervals for the provider-specific 
observed-to-expected ratios. While an empirical com-
parison of bootstrap confidence intervals with those 
derived using asymptotic methods was conducted in a 
single dataset, the performance of these intervals was 
not evaluated using simulations. Indeed, the authors 

Fig. 1  Ratio of mean estimated standard error to standard deviation of sampling distribution (naive bootstrap)



Page 3 of 18Austin ﻿BMC Medical Research Methodology          (2022) 22:271 	

suggested that “a detailed simulation study is needed 
before we can recommend a definitive choice between 
methods”.

Krumholz and colleagues suggested a modification of 
the observed-to-expected ratio [10]. Rather than use a 
conventional logistic regression model, the binary out-
come is regressed on baseline characteristics using a 
random effects logistic regression model that incorpo-
rates provider-specific random effects:

where pij denotes the probability of death for the ith 
patient at the jth provider (Yij = 1 dead/Yij = 0 alive) and 
where β0j ∼ N (0, τ 2) are the provider-specific random 
effects. The observed-to-expected ratio is modified by 
replacing the observed number of deaths by the pre-
dicted number of deaths given the case-mix of the pro-
vider’s patients. For each patient, the probability of death 
is exp(β̂0+β̂0j+β̂X ij)

1+exp(β̂0+β̂0j+β̂X ij)
 . These probabilities are summed up 

within each provider to obtain the predicted number of 
deaths for that provider given the case-mix of its patients. 

(1)logit(pij = Pr(Yij = 1)) = β0 + β0j + βX ij

For each patient, the probability of death if he or she were 
treated at an average provider is exp(β̂0+β̂X ij)

1+exp(β̂0+β̂X ij)
 (note that 

this differs from the previous expression only in the 
removal of the predicted cluster-specific random effect 
β̂0j ). These probabilities are summed up within each pro-
vider to obtain the expected number of deaths had those 
patients been treated at an average provider. The ratio of 
these two quantities is the predicted-to-expected ratio 
and is used as a measure of provider performance. It has 
an interpretation similar to that of the observed-to-
expected ratio. Krumholz and colleagues argue that an 
advantage of this approach is that the use of a random 
effects model explicitly accounts for the within-provider 
correlation in outcomes and that the model therefore 
explicitly accounts for underlying quality differences 
between providers. Furthermore, the use of the pre-
dicted, rather than the expected, number of deaths makes 
it simpler to include providers with a small number of 
patients. When outcomes are rare, a low-volume pro-
vider may have zero observed outcomes, despite having a 
predicted number of outcomes that is greater than zero. 

Fig. 2  Empirical coverage rates of 95% bootstrap CIs (normal-theory method) (naive bootstrap)
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Despite the attractive features of the use of predicted-to-
expected ratios, a closed-form variance estimator for the 
ratio has not been developed. Furthermore, the perfor-
mance of the bootstrap for estimating confidence inter-
vals for these ratios has not been systematically 
examined.

The objective of this study was to evaluate the perfor-
mance of different bootstrap estimators for provider-
specific predicted-to-expected ratios. We consider the 
conventional bootstrap procedure for non-clustered data, 
a bootstrap procedure for multilevel data, and a recently-
proposed parametric bootstrap procedure for estimating 
confidence intervals for predicted cluster-specific ran-
dom effects [11]. The paper is structured as follows: in 
Bootstrap procedures for predicted-to-expected ratios, 
we describe different candidate bootstrap procedures 
for estimating confidence intervals for predicted-to-
expected ratios. In Monte Carlo simulations: Methods, 
we describe the design of a series of Monte Carlo simula-
tions to evaluate the performance of different bootstrap 
procedures. The results of these simulations are summa-
rized in Monte Carlo simulations: Results. In Case study, 
we provide a case study illustrating the application of 

these methods to a sample of patients hospitalized with 
AMI. Finally, we summarize our conclusions and place 
them in the context of the literature in Discussion.

Bootstrap procedures for predicted‑to‑expected 
ratios
In this section we provide a brief review of bootstrap 
procedures for clustered (or multilevel) data and a brief 
commentary on why some methods are not appropriate 
for making inferences about cluster-specific predicted-
to-expected ratios.

The simple or naïve bootstrap
The conventional bootstrap draws a random sample with 
replacement from the original sample, such that the ran-
dom sample has the same size as the original sample [12]. 
While the original bootstrap procedure is not recom-
mended for clustered data, we include it here as it is the 
basis of the subsequent bootstrap procedures.

Multilevel bootstrap procedures
Three different bootstrap procedures for use with linear 
mixed models have been described by van der Leeden 

Fig. 3  Empirical coverage rates of 95% bootstrap CIs (percentile method) (naive bootstrap)
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and colleagues, by Goldstein, and by Carpenter and col-
leagues: the parametric bootstrap, the residuals boot-
strap, and the non-parametric bootstrap [13–16]. We will 
describe these in the context of the random effects logis-
tic regression described in formula (1). We assume that 
there are J clusters.

The parametric bootstrap estimates the random 
effects logistic regression model in [1]. In particular, one 
obtains an estimate, τ̂ 2 , of the variance of the cluster-
specific random effects. Then, for each of the J clusters, 
one draws a cluster-specific effect from this distribu-
tion: βbs

0j ∼ N (0, τ̂ 2), j = 1, ..., J . One then determines 
the probability of the outcome occurring for each sub-
ject as: logit(pbsij ) = β̂0 + βbs

0j + β̂X ij . A new binary out-
come Y bs

ij  is simulated from a Bernoulli distribution with 
subject-specific parameter pbsij  . A random effects logistic 
regression model is then fit to the data (Y bs

ij ,Xij) . The pre-
dicted-to-expected ratio is then computed for each hos-
pital using the fitted model. This process constitutes one 
bootstrap iteration.

The residuals bootstrap is very similar to the para-
metric bootstrap described above. It differs from the 

parametric bootstrap in that, rather than simulating 
cluster-specific effects from the estimated distribu-
tion N (0, τ̂ 2) , one simulates the cluster-specific effects 
from their empirical distribution. The empirical distri-
bution of predicted cluster-specific effects begins with 
{β̂0j|j = 1, ..., J } . These are then standardized to have 
mean zero and are inflated so that their sample variance 
is equal to τ̂ 2.

The non-parametric bootstrap, also referred to as the 
cases bootstrap, takes a bootstrap sample of the clusters. 
Once a cluster has been selected, all that cluster’s subjects 
are included in the bootstrap sample. Note that an aver-
age bootstrap will contain 63.2% of the clusters and omit 
36.8% of the clusters. Importantly, those clusters that are 
contained multiple times in a given bootstrap sample are 
given different cluster identifiers so that they are treated 
as distinct clusters.

As described elsewhere, these three bootstrap proce-
dures allow one to make inferences about model param-
eters (e.g., regression coefficients and the variance of the 
random effects), however, they cannot be used to make 
inferences about the predicted cluster-specific random 

Fig. 4  Ratio of mean estimated standard error to standard deviation of sampling distribution (within-cluster bootstrap)
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effects nor on quantities derived from them [11]. With 
both the parametric and residuals bootstrap proce-
dures, for a given cluster, the mean of the simulated 
cluster-specific random effects will be zero across the 
bootstrap replicates. Accordingly, the mean simulated 
cluster-specific random effect will not be an accept-
able estimator for the predicted cluster-specific random 
effect for that cluster. If, for a given cluster, the mean 
simulated cluster-specific random effect is zero, that 
implies that, on average, the predicted-to-expected ratio 
will have a central value of one. Thus, when construct-
ing percentile-based bootstrap confidence intervals, the 
constructed intervals for all clusters will contain the 
null value. With the non-parametric or case bootstrap, 
a given cluster can be included multiple times in a given 
bootstrap sample. The different replicates of this clus-
ter are given distinct cluster identifiers. When making 
inferences about the cluster-specific predicted random 
effects (and quantities derived from this such as the pre-
dicted-to-expected ratio), it is not clear which of these 
cluster replicates should be used. Furthermore, the con-
sequences of omitting 36.8% of the clusters from a given 
bootstrap sample are unclear.

Cluster‑specific parametric bootstrap procedure based 
on predicted cluster‑specific random effects
Austin and Leckie described a novel cluster-specific para-
metric bootstrap procedure for making inferences about 
cluster-specific random effects [11]. After estimating the 
random effects logistic regression model described by for-
mula (1), one obtains the predicted cluster-specific ran-
dom effects and estimates of their standard error: β̂0j and 
se(β̂0j) , for j = 1,…,J. For each cluster, one then simulates a 
cluster-specific random effect: βbs

0j ∼ N (β̂0j , se(β̂0j)
2) . Hav-

ing simulated a cluster-specific random effect for each of 
the J clusters, one then inflates them (as with the residuals 
bootstrap) so that their sample variance is equal to τ̂ 2 . One 
then proceeds identically as with the parametric bootstrap 
or the residuals bootstrap. Note that this procedure differs 
from the parametric bootstrap procedure in that each clus-
ter-specific random effect is drawn from its own distribu-
tion, rather than from the same distribution.

Monte Carlo simulations: methods
We conducted a series of Monte Carlo simulations 
to examine the performance of different bootstrap 
procedures for estimating confidence intervals for 

Fig. 5  Empirical coverage rates of 95% bootstrap CIs (normal-theory method) (within-cluster bootstrap)
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hospital-specific predicted-to-expected ratios gener-
ated using random effects logistic regression models. 
The design of the simulations was informed by empirical 
analyses of patients hospitalized with AMI.

Empirical analyses to inform the Monte Carlo simulations
We conducted a series of empirical analyses to deter-
mine the values of parameters that would be used 
in the data-generating processes in the subsequent 
Monte Carlo simulations. We used data from the 
Ontario Myocardial Infarction Database (OMID) 
which contains data on patients hospitalized with AMI 
in Ontario, Canada between 1992 and 2016 [17]. For 
the current study, we used data on 19,559 patients 
hospitalized with a diagnosis of AMI at 157 hospitals 
between April 1, 2016 and March 31, 2017. Hospital 
volumes of AMI patients ranged from 1 to 1,146, with 
a median of 52 (25th and 75th percentiles: 16 and 148, 
respectively).

We considered two binary outcome variables: 
death within 30  days of hospital admission and death 
within one year of hospital admission. Outcomes were 

determined through linkage with the provincial death 
registry. Of the 19,559 patients, 1479 (7.6%) died within 
30  days of hospital admission, while 2951 (15.1%) died 
within one year of hospital admission.

We considered 11 variables for predicting mortality: 
age, sex, congestive heart failure, cerebrovascular dis-
ease, pulmonary edema, diabetes with complications, 
malignancies, chronic renal failure, acute renal failure, 
cardiogenic shock, and cardiac dysrhythmias. These 11 
variables comprise the Ontario AMI mortality predic-
tion model, which was derived in Ontario and was subse-
quently validated in Manitoba and California [18].

We used conventional logistic regression to regress 
each of the two binary outcomes (death within 30 days 
and within one year) on the 11 variables in the Ontario 
AMI mortality prediction model. For each of the two 
fitted models, we determined the linear predictor for 
each subject. Thus, each subject had two linear pre-
dictors: one for each of the two outcomes. Each of the 
two linear predictors was standardized to have mean 
zero and unit variance across the sample. Each binary 
outcome was then regressed on the standardized 

Fig. 6  Empirical coverage rates of 95% bootstrap CIs (percentile method) (within-cluster bootstrap)
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linear predictor using a random effects logistic regres-
sion model that incorporated hospital-specific random 
effects. We computed the residual intraclass correlation 
coefficient (ICC), which is equivalent to the variance 
partition coefficient (VPC), using the latent variable 
approach [19].

The mean intercept and the fixed slope for the random 
effects logistic regression model for 30-day mortality 
were -3.06 and 1.17, respectively, while the mean inter-
cept and the fixed slope for the 1-year mortality model 
were -2.26 and 1.39, respectively. The residual ICC was 
0.01 for both models, indicating that 1% of the variation 
in mortality unexplained by the standardized linear pre-
dictor was due to between-hospital differences. These 
quantities will be used in our subsequent data-generating 
processes.

Factors in the Monte Carlo simulations
We allowed three factors to vary in our simulations: N 
(the number of patients per hospital), ICC (the intra-
class correlation coefficient denoting the within-cluster 
homogeneity in the binary outcome), and the inter-
cept and slope of the logistic regression model (which 

determine the prevalence of the binary outcome). N 
took on two values: 50 or 100 patients per hospital. ICC 
took on three values: 0.01, 0.02, and 0.05. The intercept 
and slope took on three combinations: (-3.06,1.17), 
(-2.26,1.39), and (0,1.39). The first intercept and slope 
were from the empirical analysis of 30-day mortal-
ity above. The second intercept and slope were from 
the empirical analysis of 1-year mortality above. The 
intercept in the third pair was set to zero so that the 
prevalence of the outcome would be approximately 0.5, 
allowing us to examine the performance of the boot-
strap procedures in a scenario in which the prevalence 
of the outcome was high (the slope in the third pair 
was simply the slope from the 1-year mortality model). 
We used a full factorial design and thus considered 18 
(2 × 3 × 3) scenarios.

Data‑generating process for clustered hospital data
We simulated data for subjects hospitalized at 50 hospi-
tals (this quantity was fixed across all scenarios for com-
putational reasons; increasing the number of clusters 
would have resulted in simulations that were too compu-
tationally intensive). Our objective was to examine 

Fig. 7  Ratio of mean estimated standard error to standard deviation of sampling distribution (parametric BS)
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coverage of estimated confidence intervals for hospital-
specific predicted-to-expected ratios. Thus, it is impor-
tant that these hospital-specific ratios be treated as fixed 
parameters that are fixed across simulation replicates. 
Thus, within each of the 18 different scenarios we gener-
ated 50 hospital-specific random effects from a normal 
distribution: β0j ∼ N (0, τ 2) , where τ 2 was determined so 
that the underlying random effects logistic regression 
model would have the desired ICC (or VPC), using the 
formula: ICC = τ 2

τ 2+π2/3
 [19]. These 50 hospital-specific 

random effects were then fixed for the remainder of the 
simulations in the given scenario.

We then simulated a baseline covariate for each subject 
from a standard normal distribution: xij ∼ N (0, 1) for the 
ith patient at the jth hospital. Since the mean intercept and 
the fixed slope ( β0,β1) are fixed within a given scenario, we 
computed the linear predictor for each subject: 
LPij = β0 + β0j + β1xij . Within each hospital, the pre-
dicted number of deaths was determined as: 
N

i=1

exp(β0+β0j+β1xij)

1+exp(β0+β0j+β1xij)
 , while the expected number of 

deaths was determined as 
N∑

i=1

exp(β0+β1xij)

1+exp(β0+β1xij)
 (note that the 

latter sum differs from the former only by the exclusion of 
the cluster-specific random effect). Each hospital’s true 
predicted-to-expected ratio was computed as the ratio of 
these two quantities. These ratios are the true ratios and 
are fixed across simulation replicates. We will determine 
the empirical coverage rate of estimated 95% confidence 
intervals. The hospital-specific random effects, the sub-
jects’ baseline covariates, and the true predicted-to-
expected ratios are fixed within each scenario and do not 
change across the simulation replicates.

Within a given simulation replicate we generated an 
outcome for each subject using the true linear predictor: 
LPij = β0 + β0j + β1xij . From the true linear predictor, we 
determined pij =

exp(LPij)

1+exp(LPij)
 , the subject-specific proba-

bility of the occurrence of the outcome. We then gener-
ated a binary outcome using a Bernoulli distribution with 
this subject-specific probability. For each of the 18 scenar-
ios we created 200 datasets using this process (so that 
each scenario involved 200 simulation replicates).

Statistical analyses in the simulated samples
In each simulation replicate we conducted the following 
analyses: (i) we fit a random effects logistic regression 

Fig. 8  Empirical coverage rates of 95% bootstrap CIs (normal-theory method) (parametric BS)
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model in which the binary outcome was regressed on 
the continuous baseline covariate. The model incorpo-
rated cluster-specific random effects. The predicted-to-
expected ratio was computed for each of the 50 clusters, 
resulting in 50 cluster-specific predicted-to-expected 
ratios; (ii) we drew 1000 bootstrap samples from the 
simulated sample for the given simulation replicate; (iii) 
in each bootstrap sample we fit a random effects logistic 
regression model (using a procedure identical to that in 
step (i)) and computed the predicted-to-expected ratio 
for each of the 50 clusters (we thus had 1000 predicted-
to-expected ratios for each of the 50 clusters); (iv) we 
constructed 95% confidence intervals for each hospi-
tal’s predicted-to-expected ratio. This was done using 
normal-theory bootstrap methods and percentile-based 
bootstrap methods. For the normal-theory bootstrap 
method, for each hospital, we computed the standard 
deviation of the estimated predicted-to-expected ratios 
across the 1000 bootstrap replicates. This quantity serves 
as an estimate of the standard error of the estimated 
predicted-to-expected ratio. A 95% confidence interval 
for each hospital’s predicted-to-expected ratio was then 

computed as the estimated predicted-to-expected ratio 
from the original simulated sample ± 1.96 × the boot-
strap estimate of the standard error of the predicted-
to-expected ratio. For the percentile-based bootstrap 
method, the end points of the 95% confidence interval 
were the 2.5th and 97.5th percentiles of the predicted-to-
expected ratios across the 1000 bootstrap samples.

We then conducted the following analyses across the 
200 simulation replicates. First, for each of the 50 clusters 
we determined the ratio of the mean bootstrap estimate 
of the standard error of the predicted-to-expected ratio 
across the 200 simulation replicates to the standard devi-
ation of the estimated predicted-to-expected ratio across 
the 200 simulation replicates. If this ratio is equal to one, 
then the bootstrap estimate of the standard error of the 
predicted-to-expected ratio is correctly approximating 
the standard deviation of the sampling distribution of the 
predicted-to-expected ratio. Thus, we obtained 50 such 
ratios, one for each of the 50 clusters. Second, for each 
of the two types of bootstrap confidence intervals (nor-
mal-theory based or percentile-based), we determined 
the proportion of estimated 95% confidence intervals that 

Fig. 9  Empirical coverage rates of 95% bootstrap CIs (percentile method) (parametric BS)
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contained the true value of the predicted-to-expected 
ratio for that cluster. If the estimated confidence intervals 
had the correct coverage rates, we would expect that 95% 
of the constructed confidence intervals contain the true 
value of the predicted-to-expected ratio for that hospital.

We examined four different bootstrap procedures. 
First, we used the standard bootstrap in which sub-
jects were sampled with replacement and the multilevel 
structure of the sample was not accounted for. We will 
refer to this as the naïve bootstrap. Second, we used a 
within-cluster bootstrap, in which a bootstrap sample 
of subjects is selected from within each cluster. Third, 
we used the parametric bootstrap procedure described 
above (this procedure was included despite our hypoth-
esis that it would not perform well). Fourth, we used 
the bootstrap procedure for making inferences about 
cluster-specific random effects that was described 
above.

The simulations were conducted using the R statistical 
programming language (version 3.6.3). Random effects 
logistic regression models were fit using the glmer func-
tion in the lme4 package (version 4_1.1–21).

Monte Carlo simulations: results
We report our results separately for each of the four 
bootstrap procedures.

Naïve bootstrap
Results for the naïve bootstrap are reported in Fig.  1 
(ratio of mean estimated standard error to empirical 
standard error), Fig. 2 (coverage of 95% confidence inter-
vals using the bootstrap with normal-theory methods), 
and Fig.  3 (coverage of 95% confidence intervals using 
bootstrap percentile intervals). Each figure is a dot chart, 
with one horizontal line for each of the 18 scenarios. On 
each horizontal line there are 5 dots, representing the 
minimum, 25th percentile, median, 75th percentile, and 
maximum quantity (ratio or empirical coverage rate) 
across the 50 clusters. On Fig. 1 we have superimposed 
a vertical line denoting a ratio of 1. On Figs. 2 and 3 we 
have superimposed verticals denoting the advertised cov-
erage rate of 0.95. On the latter two figures we have also 
superimposed vertical lines denoting coverage rates of 
0.92 and 0.98. Due to our use of 200 simulation replicates, 
empirical coverage rates that are less than 0.92 or greater 

Fig. 10  Ratio of mean estimated standard error to standard deviation of sampling distribution (cluster-specific parametric BS)
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than 0.98 are significantly different from the advertised 
rate of 0.95 using a standard normal-theory test.

We provide a guide to interpreting Fig.  1 (all subse-
quent figures have a similar interpretation). The top 
horizontal line denotes the scenario with 50 subjects per 
cluster, an ICC of 0.05, and an outcome prevalence of 
approximately 50%. Note that in the simulations we esti-
mated 50 cluster-specific ratios of mean estimated stand-
ard error to empirical standard error (one ratio for each 
cluster). Across the 50 clusters, the lowest ratio of the 
mean estimated standard error to the empirical standard 
error was 0.25. Across the 50 clusters, the 25th percentile 
of the ratio of the mean estimated standard error to the 
empirical standard error was 0.31. Across the 50 clusters, 
the median ratio of the mean estimated standard error 
to the empirical standard error was 0.34. Across the 50 
clusters, the 75th percentile of the ratio of the mean esti-
mated standard error to the empirical standard error was 
0.36. Finally, across the 50 clusters, the largest ratio of the 
mean estimated standard error to the empirical standard 
error was 0.42. These five quantities are represented by 
five different plotting symbols along the horizontal line. 
Note that all five quantities are to the left of the vertical 

line denoting a ratio of one. Thus, for none of the 50 clus-
ters was the mean estimated standard error an accurate 
estimate of the empirical standard error.

In examining Fig.  1, we observe that across most of 
the 18 scenarios, the bootstrap estimate of the stand-
ard error of the predicted-to-expected ratio under-
estimated the standard deviation of the sampling 
distribution of the predicted-to-expected ratio across 
the 50 clusters. In general, the naïve bootstrap provided 
a poor estimate of the standard error of the predicted-
to-expected ratio.

In examining Figs. 2 and 3, we observe that both boot-
strap methods for constructing confidence intervals 
tended to result in 95% confidence intervals with lower 
then advertised coverage rates. The performance of the 
bootstrap percentile interval approach was particularly 
poor, with at least half the clusters having confidence 
intervals whose empirical coverage rates were zero in 15 
of the 18 scenarios.

These analyses demonstrate that the use of the naïve 
bootstrap results in inaccurate estimates of standard 
error and confidence intervals with lower than advertised 
coverage rates.

Fig. 11  Empirical coverage rates of 95% bootstrap CIs (normal-theory method) (cluster-specific parametric BS)
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Within‑cluster bootstrap
Results are reported in Figs. 4, 5 and 6. These figures have a 
structure similar to those of Figs. 1 2 and 3. The use of the 
within-cluster bootstrap substantially over-estimated the 
standard deviation of the sampling distribution of the pre-
dicted-to-expected ratios. The magnitude of over-estima-
tion tended to be greater with 50 subjects per cluster than 
with 100 subjects per cluster. Empirical coverage rates of 
95% confidence intervals, while still suboptimal, tended to 
be better than with the naïve bootstrap. For example, with 
normal-theory confidence intervals, there were clusters for 
which the empirical coverage rate was less than 0.85 across 
all 18 scenarios (and below 0.40 in some scenarios). How-
ever, in the majority of scenarios, at least 75% of the clusters 
had confidence intervals whose coverage rate was at least 
92%. While the use of bootstrap percentile intervals tended 
to not be as good as the use of normal-theory methods, it 
was substantially better than what was observed for the 
bootstrap percentile intervals with the naïve bootstrap.

Parametric bootstrap
Results for the parametric bootstrap are reported in 
Figs.  7, 8 and 9. These figures have a structure similar 

to those of Figs.  1, 2 and 3. The parametric bootstrap 
resulted in inaccurate estimates of the standard error 
of the cluster-specific predicted-to-expected ratios. 
Across the 18 scenarios, the use of the parametric boot-
strap tended to over-estimate the standard deviation of 
the sampling distribution of the predicted-to-expected 
ratio. Both bootstrap-based methods for estimating 
confidence intervals tended to produce confidence 
intervals whose empirical coverage rates were signifi-
cantly different than the advertised rate. In the major-
ity of scenarios, at least half the clusters had estimated 
confidence intervals whose empirical coverage rate was 
less than 92% when using the normal-theory method. A 
similar finding was observed when bootstrap percentile 
intervals were used.

Cluster‑specific parametric bootstrap
Results are reported in Figs. 10, 11 and 12. These figures 
have a structure similar to those of Figs.  1, 2 and 3. In 
general, this bootstrap procedure resulted in estimated 
standard errors for the predicted-to-expected ratios 
that were larger than the standard deviation of the sam-
pling distribution of the predicted-to-expected ratios. 
For each of the 18 scenarios, half of the clusters had a 

Fig. 12  Empirical coverage rates of 95% bootstrap CIs (percentile method) (cluster-specific parametric BS)
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ratio of estimated standard error to standard deviation 
that exceeded about 1.15. Estimated confidence intervals 
(obtained using both normal-theory methods and using 
bootstrap percentile intervals) tended to have empiri-
cal coverage rates that were substantially lower than 
advertised.

Case study
We provide a case study illustrating the application of the 
four bootstrap procedures to a sample of 19,559 patients 
hospitalized with a diagnosis of AMI at 157 hospitals.

Methods
We used the OMID dataset that was described above. The 
outcome was death within 30 days of hospital admission. 
We used the 11 variables in the Ontario AMI Mortality 
Prediction Model (described above) for risk-adjustment. 
We regressed the binary outcome on these 11 variables 
using a random effects logistic regression model that incor-
porated hospital-specific random effects. The fitted model 
was logit(Pr(Yij = 1)) = �0 + �0j + �1X1ij +⋯ + �11X11ij , 

where Yij denotes the binary outcome for the ith patient 
at the jth hospital, and X1ij through X11ij denote the 
11 variables used for risk adjustment. We assume that 
β0j ∼ N (0, τ 2) , where β0j denotes the random effect for 
the jth hospital.

The predicted-to-expected ratio was computed for 
each hospital. Each of the four bootstrap procedures was 
used to compute 95% confidence intervals around each 
hospital’s predicted-to-expected ratio. For each bootstrap 
procedure we constructed two confidence intervals: one 
using normal-theory methods and one using bootstrap 
percentile intervals.

For comparative purposes we also fit the random 
effects model within a Bayesian framework using Markov 
Chain Monte Carlo (MCMC) methods [20]. Diffuse non-
informative priors were assumed for all model param-
eters: βk ∼ N (0, σ 2 = 10, 000), for k = 0, 1, ..., 11 and 
τ 2 ∼ Ŵ−1(shape = 0.01, scale = 0.01) , where Ŵ−1 denotes 
the inverse Gamma distribution. Bayesian 95% credible 
intervals were computed for each hospital’s predicted-to-
expected ratio using MCMC methods.

Fig. 13  Caterpillar plots for frequentist analyses with bootstrap (normal-theory method)
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Results
Caterpillar plots illustrating each hospital’s predicted-to-
expected ratio and its estimated 95% confidence interval 
are reported in Fig.  13 (normal-theory bootstrap confi-
dence intervals) and Fig.  14 (bootstrap percentile inter-
vals). Each figure has four panels, one for each of the 
four bootstrap procedures. All eight panels use the same 
scale for the vertical axis (the predicted-to-expected 
ratio). When using bootstrap percentile intervals, some 
of the estimated 95% confidence intervals did not contain 
the estimated predicted-to-expected ratio. Confidence 
intervals in Fig.  14 are reported using two colours (red: 
confidence interval contains the estimated predicted-to-
expected ratio; blue: confidence interval does not contain 
the estimated predicted-to-expected ratio). The number 
of hospitals with problematic bootstrap percentile inter-
vals were 19 (naïve bootstrap), 28 (cluster bootstrap), 7 
(parametric bootstrap), and 2 (cluster-specific parametric 
bootstrap). In examining Figs. 13 and 14, one notes wide 
variation in the caterpillar plot across the eight panels. 
When using bootstrap percentile methods, one observes 
that the estimated confidence intervals were often 

substantially asymmetric (i.e., the point estimate did not 
lay in the centre of the interval). Furthermore, the widths 
of the intervals varied across bootstrap procedures.

Figure 15 contains a Bland–Altman plot comparing the 
agreement between the frequentist and Bayesian pre-
dicted-to-expected ratios. On this figure we have super-
imposed horizontal lines denoting ± 1 standard deviation 
and ± 2 standard deviations from zero (no difference). 
We see that, for the large majority of hospitals, the two 
predicted-to-expected ratios were within 0.01 of each 
other.

Figure 16 reports the caterpillar plot resulting from the 
Bayesian analysis. Only one hospital had a 95% credible 
interval that excluded unity. We note that the credible 
intervals display greater symmetry than did the boot-
strap percentile intervals in Fig. 14. The Bayesian cred-
ible intervals displayed less variability in width than 
did the bootstrap confidence intervals. The ratio of the 
longest to short width for the Bayesian intervals was 
3.2, while this ratio ranged from 12.8 to 222.9 across the 
eight combinations of bootstrap procedures and meth-
ods for constructing confidence intervals.

Fig. 14  Caterpillar plots for frequentist analyses with bootstrap (percentile intervals)
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Discussion
We examined the performance of four bootstrap proce-
dures for estimating confidence intervals for provider-
specific predicted-to-expected ratios. We found that all 
four bootstrap procedures had suboptimal performance.

The primary limitation of the current study was its reli-
ance on Monte Carlo simulations. Such simulations were 
necessary since we were examining the performance of res-
ampling-based procedures, for which analytic derivations 
are not feasible. Due to our use of simulations, we could 
only examine a limited number of scenarios due to the 
time-intensive nature of these simulations. Despite consid-
ering a limited number of scenarios, the performance of the 
different bootstrap procedures was consistently poor across 
these scenarios, indicating that, in general, these bootstrap 
procedures should not be used for estimating confidence 
intervals for predicted-to-expected ratios. A second limita-
tion was that the simulations only used 200 iterations per 
scenario. The rationale for this decision was the computa-
tional intensity of simulations of bootstrapping of random 
effects models. For example, with 200 iterations per sce-
nario, the simulations for the four bootstrap procedures 
required approximately 23, 27, 29, and 30 days of CPU-time 
for the 18 scenarios (for a total of approximately 109 days 

of CPU-time). Increasing the number of simulation repli-
cates to 1000 would have been prohibitive in terms of com-
putation time. With the use of 200 simulation replicates, 
empirical coverage rates that are less than 0.92 or greater 
than 0.98 are significantly different from the advertised rate 
of 0.95 using a standard normal-theory test.

In the current study we focused on frequentist estima-
tion of the random effects model used for computing the 
predicted-to-expected ratios. An alternative approach, 
as illustrated in the case study, would be to use Bayesian 
methods to estimate the posterior distribution of the model 
parameters and the resultant predicted-to-expected ratios. 
Different authors have suggested that Bayesian methods 
be used for provider profiling [21, 22], while several stud-
ies have evaluated the performance of Bayesian methods 
for provider profiling [23–27]. There are several advantages 
to the use of Bayesian methods. First, when using MCMC 
methods to estimate the posterior distribution of the model 
parameters, one can directly compute the predicted-to-
expected ratios within each iteration of the MCMC pro-
cess. This allows for directly computing credible intervals 
(the Bayesian analogue to confidence intervals) for the 
predicted-to-expected ratios. Second, rather than simply 
report the predicted-to-expected ratios and their associated 

Fig. 15  Bland−Altman plot comparing Bayesian and frequentist predicted-to-expected ratios
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credible intervals, Bayesian methods allow for the reporting 
of other policy-relevant metrics, such as the probability that 
the predicted-to-expected ratio exceeds a predetermined 
policy-relevant threshold (e.g., the probability that the pre-
dicted-to-expected ratio exceeds 1.25). Given the absence of 
a closed-form expression for the standard error of the esti-
mate of the predicted-to-expected ratio and the observed 
failure of different bootstrap procedures, we suggest that 
authors who want to use predicted-to-expected ratios work 
within a Bayesian framework.

Direction for future research includes developing 
closed-form expressions for the standard error of the 
predicted-to-expected ratios or of developing bootstrap 
procedures that are appropriate for use with these meas-
ures of provider performance.

Conclusions
Four bootstrap procedures were observed to result in 
inaccurate estimates of the standard errors of healthcare 
providers’ predicted-to-expected ratios and in confidence 
intervals that did not have the advertised coverage rates. 
We recommend that Bayesian methods be used for anal-
yses involving predicted-to-expected ratios.

Abbreviations
AMI: Acute myocardial infarction; CABG: Coronary artery bypass graft; CPU: 
Central processing unit; ICC: Intraclass correlation coefficient; OMID: Ontario 
Myocardial Infarction Database; MCMC: Markov Chain Monte Carlo; VPC: Vari-
ance partition coefficient.

Acknowledgements
Not applicable

Authors’ contributions
PA conceived the study, conducted the simulations, conducted the analyses, 
wrote the manuscript, and approved the final manuscript.

Authors’ information
Not applicable.

Funding
ICES is an independent, non-profit research institute funded by an annual 
grant from the Ontario Ministry of Health (MOH) and the Ministry of Long-
Term Care (MLTC). As a prescribed entity under Ontario’s privacy legislation, 
ICES is authorized to collect and use health care data for the purposes of 
health system analysis, evaluation and decision support. Secure access to 
these data is governed by policies and procedures that are approved by the 
Information and Privacy Commissioner of Ontario. Parts of this material are 
based on data and/or information compiled and provided by CIHI. However, 
the analyses, conclusions, opinions and statements expressed in the material 
are those of the author(s), and not necessarily those of CIHI. The opinions, 
results and conclusions reported in this paper are those of the authors and 
are independent from the funding sources. No endorsement by ICES or the 
Ontario MOH or MLTC is intended or should be inferred. The dataset from this 
study is held securely in coded form at ICES. This research was supported by 
operating grant from the Canadian Institutes of Health Research (CIHR) (PJT 

Fig. 16  Caterpillar plot for 30-day predicted-expected ratio for Bayesian analysis



Page 18 of 18Austin ﻿BMC Medical Research Methodology          (2022) 22:271 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

166161). Dr. Austin was supported in part by a Mid-Career Investigator award 
from the Heart and Stroke Foundation of Ontario.

Availability of data and materials
The dataset from this study is held securely in coded form at ICES. While legal 
data sharing agreements between ICES and data providers (e.g., healthcare 
organizations and government) prohibit ICES from making the dataset publicly 
available, access may be granted to those who meet pre-specified criteria for 
confidential access, available at www.​ices.​on.​ca/​DAS (email: das@ices.on.ca).

Declarations

Ethics approval and consent to participate
The use of the data in this project is authorized under Section. 45 of Ontario’s 
Personal Health Information Protection Act (PHIPA) and does not require 
review by a Research Ethics Board. Section 45 of PHIPA authorizes health 
information custodians to disclose personal health information to a prescribed 
entity, like the Institute for Clinical Evaluative Sciences (ICES), without consent 
for such purposes. As a prescribed entity under PHIPA, the Institute for Clinical 
Evaluative Sciences (ICES) is permitted to collect personally identifiable infor-
mation without individual consent or research ethics approval (https://​www.​
ices.​on.​ca/​Data-​and-​Priva​cy/​Priva​cy-​at-​ICES). All methods in this study were 
carried out in accordance with relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 ICES, G106, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada. 2 Institute 
of Health Management, Policy and Evaluation, University of Toronto, Toronto, 
ON, Canada. 3 Sunnybrook Research Institute, Toronto, ON, Canada. 

Received: 17 May 2022   Accepted: 28 September 2022

References
	1.	 Iezzoni LI. Risk Adjustment for Measuring Health Outcomes. Iezzoni LI, 

editor. Chicago: Health Administration Press; 1997.
	2.	 Coronary artery bypass graft surgery in New York State 1989–1991. 

Albany, NY: New York State Department of Health; 1992.
	3.	 Luft HS, Romano PS, Remy LL, Rainwater J. Annual Report of the California 

Hospital Outcomes Project. Sacramento, CA: California Office of State-
wide Health Planning and Development; 1993.

	4.	 Pennsylvania Health Care Cost Containment C. Consumer Guide to 
Coronary Artery Bypass Graft Surgery. Harrisburg, PA: Pennsylvania Health 
Care Cost Containment Council; 1995.

	5.	 Romano PS, Zach A, Luft HS, Rainwater J, Remy LL, Campa D. The Cali-
fornia hospital outcomes project: using administrative data to compare 
hospital performance. Jt Comm J Qual Improv. 1995;21(12):668–82.

	6.	 Tu JV, Austin PC, Naylor CD, Iron K, Zhang H. Acute Myocardial Infarction 
Outcomes in Ontario. In: Naylor CD, Slaughter PM, editors. Cardiovascular 
Health and Services in Ontario: An ICES Atlas. Toronto: Institute for Clinical 
Evaluative Sciences; 1999. p. 83–110.

	7.	 Naylor CD, Rothwell DM, Tu JV, Austin PC, the Cardiac Care Network Steering 
C. Outcomes of coronary artery bypass surgery in Ontario. In: Naylor CD, 
Slaughter PM, editors. Cardiovascular health and services in Ontario: an ICES 
atlas. Toronto: Institute for Clinical Evaluative Sciences; 1999. p. 189–98.

	8.	 Jacobs FM. Cardiac Surgery in New Jersey in 2002: A Consumer Report. 
Trenton, NJ: Department of Health and Senior Services; 2005.

	9.	 Hosmer DW, Lemeshow S. Confidence interval estimates of an index 
of quality performance based on logistic regression models. Stat Med. 
1995;14(19):2161–72.

	10.	 Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, et al. An 
administrative claims model suitable for profiling hospital performance 

based on 30-day mortality rates among patients with heart failure. Circula-
tion. 2006;113(13):1693–701.

	11.	 Austin PC, Leckie G. Bootstrapped inference for variance parameters, meas-
ures of heterogeneity and random effects in multilevel logistic regression 
models. J Stat Comput Simul. 2020;90(17):3175–99.

	12.	 Efron B, Tibshirani RJ. An Introduction to the Bootstrap. New York, NY: Chap-
man & Hall; 1993.

	13.	 van der Leeden R, Busing FMTA, Meijer E. Bootstrap methods for two-level 
models. Leiden University; 1997.

	14.	 van der Leeden R, Meijer E, Busing FMTA. Resampling Multilevel Models. In: 
de Leeuw J, Meijer E, editors. Handbook of Multilevel Analysis. New York, NY: 
Springer; 2008. p. 401–33.

	15.	 Carpenter JR, Goldstein H, Rasbash J. A novel bootstrap procedure for 
assessing the relationship between class size and achievement. J R Stat Soc 
Ser C. 2003;52:431–43.

	16.	 Goldstein H. Bootstrapping in Multilevel Models. In: Hox JJ, Roberts JK, edi-
tors. Handbook of Advanced Multilevel Analysis. New York, NY: Routledge; 
2011. p. 163–71.

	17.	 Tu JV, Naylor CD, Austin P. Temporal changes in the outcomes of acute 
myocardial infarction in Ontario, 1992–1996. CMAJ. 1999;161(10):1257–61.

	18.	 Tu JV, Austin PC, Walld R, Roos L, Agras J, McDonald KM. Development and 
validation of the Ontario acute myocardial infarction mortality prediction 
rules. J Am Coll Cardiol. 2001;37(4):992–7.

	19.	 Snijders T, Bosker R. Multilevel Analysis: An introduction to basic and 
advanced multilevel modeling. London: Sage Publications; 2012.

	20.	 Markov Chain Monte Carlo in Practice. Gilks WR, Richardson S, Spiegelhalter 
DJ, editors. London: Chapman & Hall; 1996.

	21.	 Normand SLT, Glickman ME, Gatsonis CA. Statistical mertods for profil-
ing providers of medical care: Issues and applications. J Am Stat Assoc. 
1997;92(439):803–14.

	22.	 Christiansen CL, Morris CN. Improving the statistical approach to health care 
provider profiling. Ann Intern Med. 1997;127(8 Pt 2):764–8.

	23.	 Austin PC. Bayes rules for optimally using Bayesian hierarchical regression 
models in provider profiling to identify high-mortality hospitals. BMC Med 
Res Methodol. 2008;8:30.

	24.	 Austin PC. A comparison of Bayesian methods for profiling hospital perfor-
mance. Med Decis Making. 2002;22(2):163–72.

	25.	 Austin PC. The reliability and validity of bayesian methods for hospital profil-
ing: a Monte Carlo assessment. J Stat Plan Inference. 2005;128:109–22.

	26.	 Austin PC, Brunner LJ. Optimal bayesian probability levels for hospital report 
cards. Health Serv Outcomes Res Method. 2008;8:80–97.

	27	 Austin PC, Naylor CD, Tu JV. A comparison of a Bayesian vs a frequentist 
method for profiling hospital performance. J Eval Clin Pract. 2001;7(1):35–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.ices.on.ca/DAS
https://www.ices.on.ca/Data-and-Privacy/Privacy-at-ICES
https://www.ices.on.ca/Data-and-Privacy/Privacy-at-ICES

	The failure of four bootstrap procedures for estimating confidence intervals for predicted-to-expected ratios for hospital profiling
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Bootstrap procedures for predicted-to-expected ratios
	The simple or naïve bootstrap
	Multilevel bootstrap procedures
	Cluster-specific parametric bootstrap procedure based on predicted cluster-specific random effects

	Monte Carlo simulations: methods
	Empirical analyses to inform the Monte Carlo simulations
	Factors in the Monte Carlo simulations
	Data-generating process for clustered hospital data
	Statistical analyses in the simulated samples

	Monte Carlo simulations: results
	Naïve bootstrap
	Within-cluster bootstrap
	Parametric bootstrap
	Cluster-specific parametric bootstrap

	Case study
	Methods
	Results

	Discussion
	Conclusions
	Acknowledgements
	References


