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Simple Summary: Molecular subtyping of muscle-invasive bladder cancer (MIBC) via gene ex-
pression can improve therapeutic decision-making and disease prognosis. However, the currently
used molecular classification tools are based on complex transcriptomic profiling methodology that
hinders timely translation to clinical practice. In this study, we evaluated the NanoString nCounter
platform and conventional GATA3-CK5/6 immunohistochemistry for the molecular classification
of MIBC in primary care settings. The methodologies were highly concordant and allowed us to
explore differences in clinicopathologic parameters and prognosis between intrinsic MIBC molecular
subtypes in a cohort of 138 MIBCs.

Abstract: Transcriptional profiling of muscle-invasive bladder cancer (MIBC) using RNA sequencing
(RNA-seq) technology has demonstrated the existence of intrinsic basal and luminal molecular
subtypes that vary in their prognosis and response to therapy. However, routine use of RNA-seq in
a clinical setting is restricted by cost and technical difficulties. Herein, we provide a single-sample
NanoString-based seven-gene (KRT5, KRT6C, SERPINB13, UPK1A, UPK2, UPK3A and KRT20)
MIBC molecular classifier that assigns a luminal and basal molecular subtype. The classifier was
developed in a series of 138 chemotherapy naïve MIBCs split into training (70%) and testing (30%)
datasets. Further, we validated the previously published CK5/6 and GATA3 immunohistochemical
classifier which showed high concordance of 96.9% with the NanoString-based gene expression
classifier. Immunohistochemistry-based molecular subtypes significantly correlated with recurrence-
free survival (RFS) and disease-specific survival (DSS) in univariable (p = 0.006 and p = 0.011,
respectively) and multivariate cox regression analysis for DSS (p = 0.032). Used sequentially, the
immunohistochemical- and NanoString-based classifiers provide faster turnaround time, lower cost
per sample and simpler data analysis for ease of clinical implementation in routine diagnostics.

Keywords: muscle-invasive bladder cancer; molecular classification; molecular taxonomy; luminal
subtype; basal subtype; neuronal subtype; NanoString; gene expression

1. Introduction

Urothelial carcinomas of the bladder have been traditionally classified as either non-
muscle-invasive (≤pT1) or muscle-invasive (MIBC, ≥ pT2) [1]. About 75% of newly
diagnosed bladder cancers are noninvasive (NMIBC), while the rest are MIBC and are asso-
ciated with poor outcome, despite aggressive local and systemic treatment [2]. Cystectomy
with lymph-node dissection and chemotherapy in the neoadjuvant or adjuvant setting is
the standard treatment for MIBC patients [3,4]. Further treatment options such as immune
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checkpoint inhibitors are now being implemented in a subset of patients with varying
success [5]. However, current tools have limited capacity to identify, at time of cystectomy,
those that are most at risk of recurrence, metastasis and death of disease. Therefore, iden-
tifying which specific subset of MIBC patients would derive the most benefit from these
therapies is urgently needed [6–16].

Over the last decade, advances in sequencing technologies have enhanced our under-
standing of the genomic, transcriptomic and proteomic landscape of MIBC. In particular,
RNA sequencing (RNA-seq) revealed that MIBCs can be classified into distinct molecular
subtypes with variable clinical properties [17–21]. Multiple different research teams have
published various iterations of MIBC molecular subtyping and a consensus definition
was recently published tin an attempt to unify these multiple definitions [20,21]. Overall,
there is an agreement on at least two general MIBC molecular subtypes, luminal and basal.
Importantly, several reports have highlighted the clinical significance of MIBC molecu-
lar subtypes, by noting improved survival with neoadjuvant chemotherapy in the basal
subtype [17,18] along with enhanced response to immune checkpoint inhibitors in certain
luminal subtypes [20,21].

However, these prior efforts have not seen widespread implementation in clinical
practice due to their reliance on multi-omic technologies for sample classification, which is
neither practical nor fiscally possible in everyday practice. A rapid, cost effective, clinically
useful and accurate method of molecular subtyping is therefore needed. Accordingly,
immunohistochemical (IHC) markers have been investigated as a clinically applicable
alternative to gene expression profiling for MIBC molecular subtyping [22–25]. We and
others have recently reported that CK5/6 and GATA3 IHC can classify MIBCs into basal
and luminal molecular subtypes correctly in 80–97% of cases [25].

NanoString nCounter technology provides a lower cost alternative to RNA-seq for
gene expression profiling with faster turnaround time and user-friendly readouts for better
clinical implementation [26]. Further, the NanoString platform does not require high-
quality RNA and thus allows for precise and accurate measurements of RNA expression
in formalin-fixed, paraffin-embedded (FFPE) tissue [27]. Therefore, a NanoString-based
MIBC molecular classifier is a viable alternative to RNA-seq. Indeed, the utility of a
NanoString-based molecular classifier in bladder cancer has been demonstrated in recent
publications [28,29].

In this study, we developed a NanoString-based gene expression classifier for molecu-
lar stratification of MIBC tumors and assessed its applicability in a clinical setting. Further,
we validated a two-marker IHC-based classifier which can be used in routine pathology
practice for molecular subtyping of MIBC in primary care centers, building on our previous
publication [25].

2. Materials and Methods
2.1. Case Selection and Morphologic Review

This retrospective study was approved by the Sunnybrook Health Sciences Centre re-
search ethics board (REB 187-2016) and written informed consent was waived. The study
included a subset of 138 randomly selected cases from a larger cohort of 243 chemotherapy
naïve and checkpoint inhibitor therapy naïve high grade MIBC treated by cystectomy from
1999 to 2019, characterized in our previous study [25]. Cystectomy cases that were < pT2
with non-urothelial histology were excluded. For each case, hematoxylin and eosin slides
were reviewed by a pathologist with subspecialty training in genitourinary pathology who
confirmed and documented the following: tumor grade (as per 2016 World Health Organiza-
tion/International Society of Urologic Pathology), pathologic stage (TNM 8th edition), tumor
histology, presence of carcinoma in situ (CIS), margin status, lymphovascular invasion and
presence of nodal metastases. Date of surgery, neoadjuvant therapy, date of last known follow
up, date of recurrence and date of disease-specific death (DSD), if applicable, were recorded.
Only deaths noted in the electronic patient record were available.
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2.2. Tissue Microarray Construction

To perform immunohistochemical staining, tissue microarrays (TMAs) were used as
previously described [25]. In brief, for each patient, three tissue sites (superficial, mid and
deep tumor) containing MIBC were circled on a single representative slide. Triplicate 1 mm
core TMAs were constructed using a TMA instrument (Beecher Instruments, Silver Springs,
MD, USA) to punch the areas of interest from the respective FFPE tumor blocks. TMAs
were then cut into 4 mm-thick sections for IHC staining.

2.3. Immunohistochemistry and Interpretation

GATA3 and CK5/6 expression was evaluated by IHC on TMA sections as previously
described [25]. Each case was ascribed as basal (CK 5/6+, GATA3–), luminal (CK 5/6–,
GATA3+) or double-negative (CK 5/6–, GATA3–). For cases exhibiting expression of both
GATA3 and CK5/6, when CK5/6 exhibited patchy or central loss they were categorized as
luminal but when the CK5/6 staining was intense and diffuse, they were classified as basal.
Luminal tumors have been reported to occasionally show a linear layer of CK5/6 positive
cells outlining the tumor nests and may also have scattered positive CK5/6 cells [22]. Cases
were assessed as positive for CK 5/6 and GATA3 when cytoplasmic and nuclear staining
were observed, respectively.

2.4. RNA Extraction and mRNA Expression Analysis

Tissue RNA extraction from macrodissected FFPE sections (3 to 5 sections per case,
5 µm thickness) was performed using the High-Pure FFPET RNA Isolation Kit (Roche,
Basel, Switzerland), following the manufacturer’s instructions. RNA was quantified with
QuantusTM Fluorometer (Promega Inc., Madison, WI, USA). RNA profiling was performed
with 250 ng of RNA using a custom NanoString probeset (NanoString Technologies Inc,
Seattle, WA, USA), following the manufacturer’s instructions. A comprehensive literature
review including public databases and published manuscripts was carried out to define a
set of differentially expressed genes across MIBC molecular subtypes [9–12,14–16,20,30–32].
A custom NanoString nCounter (NanoString Technologies, Seattle, WA, USA) mRNA probe
set was created to analyze the expression of 62 mRNA molecules of interest, and also five
housekeeping genes. Experimental reagents were provided by NanoString Technologies.
Elements TagSet chemistry was utilized. Sequence-specific oligonucleotides with unique
tag-attachment sites were designed by NanoString and ordered from an oligonucleotide
provider (Integrated DNA Technologies, Inc., Coralville, IA, USA).

Raw reporter code counts and the reporter library file obtained from the nCounter
software were utilized for gene expression data analysis using NanoString’s software
nSolver version 4.0 with the Advanced Analysis version 2.0 plugin (free software available
from NanoString Technologies, Seattle, WA, USA). Data normalization was achieved using
internal negative controls, synthetic positive controls and five housekeeping genes. Normal-
ization was performed using geometric mean and data was log2-transformed. Normalized
mRNA counts were analyzed for differential expression. Statistically significant, differen-
tially expressed genes (DEGs) were defined as those with expression levels corresponding
to a fold change > 2 and Benjamini–Hochberg (BH) adjusted p < 0.05 (to control the false
discovery rate (FDR)). Unsupervised hierarchical clustering and heatmap visualization
was performed using the using the R package ComplexHeatmap (version 2021.9.2.382).
Subtype classification was run using a PAM classifier with the pamr package version 1.56.1
in R Studio version 4.0.0 to derive both molecular subtype calls and correlations to the
basal and luminal centroid for each case. The data were split into training and test datasets
using a 70/30 split ratio, with five-fold cross-validation used to select the optimal threshold
in the training dataset estimate expected performance.

2.5. Statistical Analysis

Statistical analysis was performed using SPSS 24.0 (IBM Corporation, Armonk, NY,
USA). Data correlations were assessed using Chi-Square test for categorical variables and
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one-way ANOVA for continuous variables. Survival curves were calculated by the log-rank
test and visualized with the Kaplan–Meier plot for recurrence free survival (RFS) and
disease specific survival (DSS). Univariate and multivariate Cox proportional hazards
regression model was used to compute the prognostic value of the molecular classifiers
with regard to RFS and DSS. A two-sided p < 0.05 was deemed statistically significant.

3. Results
3.1. Development of NanoString nCounter Probe Set for Muscle-Invasive Bladder Cancer
Molecular Stratification

To define MIBC molecular groups, we performed NanoString-based gene expression
profiling of FFPE tissue from a cohort of 138 chemotherapy naïve MIBC (≥ pT2) patients,
divided into Cohort I (n = 72) and Cohort II (n = 66). Samples were selected on the
basis of availability of tissue as well as quantity of RNA for analyses. Clinicopathological
parameters of the cohort are summarized in Supplementary Table S1.

In the development phase of the study, we custom designed a NanoString nCounter
probe set comprised of 62 literature-curated candidate genes with the aim of developing
mRNA signatures specific for the luminal, basal and neuroendocrine MIBC molecular
subtypes. Neuroendocrine markers have been previously suggested to define a group of
MIBCs that are negative for basal and luminal markers and, consequently, was included in
this study [32]. The 62 candidate genes were selected based on a comprehensive literature
review, including MIBC-associated genes and MIBC subtyping models described by the
University of North Carolina (UNC), MD Anderson Cancer Center (MDA), The Cancer
Genome Atlas (TCGA), Lund and Baylor [9–12,14–16,20,30–32] (Supplementary Table S2).
We employed this 62-gene set to profile Cohort I (n = 72).

Unsupervised hierarchical clustering of gene expression levels using Pearson correlation
revealed two different gene clusters, each defined by distinct patterns of expression of luminal
and basal markers (Figure 1A). The first cluster, referred to as basal (n = 30), expressed
higher levels of basal cytokeratins and other genes associated with urothelial basal cells (such
as DSG3, KRT14 and CD44), while expression of urothelial cell differentiation genes was
relatively lower. The second cluster, referred to as luminal (n = 42), expressed relatively lower
levels of basal genes and higher levels of terminal urothelial differentiation genes such as
KRT20, GATA3 and FOXA1. Further, consensus clustering analysis also yielded the same two
clusters, suggesting that two robust expression subtypes, luminal and basal, exist in our cohort
(Figure 1B). Differential gene expression analysis utilizing linear regression analysis with
multiple-testing correction identified 18 DEGs between basal and luminal tumors according
to the cutoff values of |Fold Change| ≥ 2 and FDR p ≤ 0.05 (Supplementary Table S3).
Cancers 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. (A) Unsupervised hierarchical clustering (Pearson correlation) of normalized abundance 
levels of 62 mRNAs derived by NanoString nCounter assay for Cohort I. Annotation of immuno-
histochemical subtypes is indicated for reference; (B) consensus matrix (k  =  2) for Cohort I where 
samples represent rows and columns. The consensus values range from 0 denoted in white (never 
clustered together) to 1 denoted in red (always clustered together). 

3.2. Validation of the Muscle-Invasive Bladder Cancer NanoString-Based Gene Expression 
Classifier 

In the validation phase of the study, we custom designed a NanoString nCounter 
probe set comprised of a filtered list of genes including the 18 DEG from the develop-
ment phase and five neuronal genes (to help define potential neuroendocrine MIBCs, 
Supplementary Table S2). Unsupervised hierarchical clustering of these select genes ex-
pression levels in Cohort I using Pearson correlation yielded the same basal and luminal 
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firmed the presence of luminal and basal subtypes of MIBC (Figure 2B). Taken together, 
unsupervised and consensus clustering of the 23 markers showed that our cohort of 138 
tumors can be divided into two clusters; luminal (n = 84) and basal (n = 54) that show an 
opposing transcriptomic profile (Figure 2C,D). 

Figure 1. (A) Unsupervised hierarchical clustering (Pearson correlation) of normalized abundance
levels of 62 mRNAs derived by NanoString nCounter assay for Cohort I. Annotation of immunohisto-
chemical subtypes is indicated for reference; (B) consensus matrix (k = 2) for Cohort I where samples
represent rows and columns. The consensus values range from 0 denoted in white (never clustered
together) to 1 denoted in red (always clustered together).
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3.2. Validation of the Muscle-Invasive Bladder Cancer NanoString-Based Gene Expression Classifier

In the validation phase of the study, we custom designed a NanoString nCounter probe
set comprised of a filtered list of genes including the 18 DEG from the development phase
and five neuronal genes (to help define potential neuroendocrine MIBCs, Supplementary
Table S2). Unsupervised hierarchical clustering of these select genes expression levels
in Cohort I using Pearson correlation yielded the same basal and luminal clusters we
identified in the development phase (Figure 2A). This 23-gene panel was then used to
profile Cohort II (n = 66). Utilizing unsupervised hierarchical clustering we confirmed the
presence of luminal and basal subtypes of MIBC (Figure 2B). Taken together, unsupervised
and consensus clustering of the 23 markers showed that our cohort of 138 tumors can
be divided into two clusters; luminal (n = 84) and basal (n = 54) that show an opposing
transcriptomic profile (Figure 2C,D).
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Figure 2. Unsupervised hierarchical clustering (Pearson correlation) of normalized abundance levels
of a filtered list of 23 mRNAs derived by NanoString nCounter assay for (A) Cohort I; (B) Cohort
II; and (C) total cohort of 138 tumors. Annotation of immunohistochemical subtypes and disease
specific survival is indicated for reference. (D) Consensus matrix (k = 2) for the total cohort of
138 tumors. Samples represent both rows and columns, and consensus values range from 0 denoted
in white (never clustered together) to 1 denoted in red (always clustered together).

3.3. Immunohistochemical Muscle-Invasive Bladder Cancer Molecular Classifier

To define IHC-based MIBC molecular groups, we investigated the previously pub-
lished routine assays for GATA3 and CK5/6 [22]. Both GATA3 and CK5/6 showed a
strong positive correlation between mRNA expression and the respective encoded protein
expression status (GATA3 AUC = 0.887 and CK5/6 AUC = 0.961).

Assessment of the IHC slides with the knowledge of NanoString-based molecular
subtypes provided the following insights into the identification of IHC-based MIBC molec-
ular subtypes; strong uniform positivity (++) for CK 5/6 was always indicative of basal
tumors, irrespective of GATA3 staining patterns. In cases where CK 5/6 expression was
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less than ++, including either central loss of staining or complete loss of staining, then any
GATA3 staining pattern was indicative of a luminal tumor. This IHC-based classification
algorithm was then provided as a written instruction without any case review to a second
genitourinary pathologist (CS) who independently reviewed 60 cases in a blinded fashion.
There was agreement in 57/60 cases (95%).

The final IHC-based classification was as follows: basal n = 54, luminal n = 77 and double-
negative n = 7. Assignments to these molecular subtypes significantly correlated with RFS and
DSS in univariable Kaplan–Meier regression (Figure 3A,B, log-rank p = 0.006 and p = 0.011,
respectively) and multivariate cox regression analysis for DSS (p = 0.032, Table 1).
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Table 1. Univariate and multivariate analysis of clinic-pathological parameters related to cancer-
specific survival prediction in the current study.

Univariate Multivariate

Variable HR (95% CI) p-Value HR (95% CI) p-Value

Age ≥ 74 (median) 1.179 (0.637–2.183) 0.600
Stage pT4 2.111 (1.104–4.038) 0.024 1.204 (0.548–2.644) 0.644

Positive surgical
Margins 2.228 (1.152–4.309) 0.017 1.985 (0.881–4.474) 0.098

Lymph Node
Involvement 2.335 (1.232–4.425) 0.009 2.251 (1.132–4.476) 0.021

Variant histologic
subtype 1.516 (0.781–2.945) 0.219

NanoString-based gene expression subtype
Basal vs. Luminal 1.125 (0.670–2.336) 0.482

Immunohistochemical subtype 0.032
Double-Negative vs.

Luminal 5.868 (1.607–21.427) 0.007 5.326 (1.372–20.669) 0.016

Basal vs. luminal 1.734 (0.864–3.480) 0.122 1.714 (0.853–3.443) 0.130

HR, hazard ratio; 95% CI, 95% confidence interval.

Comparing the IHC classifier to the NanoString 23-gene expression clustering, a high
level of agreement was observed (Kappa = 0.937), with only four (3.1%) cases assigned a
different molecular subtype by the IHC classifier versus gene expression clustering. Of
note, cases staining negative for both CK5/6 and GATA3 on IHC and were classified as
double-negative did not form a distinct cluster based on their gene expression but rather
clustered with luminal MIBCs. Therefore, double-negative cases were excluded from
comparative analysis between IHC and NanoString 23-gene expression clustering.
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3.4. Development of a NanoString-Based MIBC Molecular Classifier

To train an accurate and robust NanoString-based MIBC molecular classifier we
utilized PAM (prediction analysis of microarrays), a statistical approach to class prediction
from gene expression data via nearest shrunken centroid method. First, we utilized PAM to
identify the number of genes that best characterize the basal and luminal centroids using the
IHC classifier as the supervising variable. For this, the combined cohort was randomly split
into training (n = 91) and test (n = 40) datasets using a 70/30 split ratio. Within the training
dataset, we established a seven-gene PAM classifier by setting the optimal threshold for
centroid shrinkage taking into account the trade-off between classification performance and
gene signature size (Figure 4A). The following genes were selected as surrogate markers for
the basal (KRT5, KRT6C and SERPINB13) and luminal (UPK1A, UPK2, UPK3A and KRT20)
MIBC subtypes (Figure 4B–E). Application of the classifier to the training dataset was
highly accurate as only 3 of the 91 samples (3.3%) were discordant between the IHC and
NanoString-based gene expression classifier (Figure 4D). When applied to the test dataset,
only 1 of the 40 samples (2.5%) was discordant between the IHC and NanoString-based
MIBC molecular classifier (Figure 4F).

Next, we examined the clinical characteristics of the two molecular subtypes (Table 2)
and found association of CIS and LVI with luminal subtype classification (p < 0.05).

Table 2. Relationship between molecular subtypes and clinicopathological parameters of 138 muscle-
invasive bladder cancers included in the study.

Variables

Study Cohort

Total Basal Luminal χ2

n = 138 n = 52 n = 86 p-Value

Sex 0.939
Female 35 (25%) 13 (37%) 22 (63%)
Male 103 (75%) 39 (38%) 64 (62%)
Age 72.1 (33–90) 73.4 (49–90) 71.4 (33–88) 0.277

Histology 0.144
Urothelial carcinoma 99 (72%) 37 (37%) 62 (63%)

Squamous 23 (17%) 13 (57%) 10 (43%)
Sarcomatoid 4 (3%) 1 (25%) 3 (75%)

Nested 3 (2%) 0 3 (100%)
Micropapillary 4 (3%) 0 4 (100%)
Plasmacytoid 4 (3%) 1 (25%) 3 (75%)

Carcinoma in situ 0.003
Present 56 (41%) 13 (23%) 43 (77%)
Absent 81 (59%) 39 (48%) 42 (52%)
Stage 0.859
pT2 15 (11%) 5 (33%) 10 (67%)
pT3 81 (59%) 32 (40%) 49 (60%)
pT4 42 (30%) 15 (36%) 27 (64%)

Node 0.138
N0 88 (64%) 37 (42%) 51 (58%)
N1 45 (33%) 13 (29%) 32 (71%)

N/A 5 (4%) 2 (40%) 3 (60%)
Margins 0.377

No 103 (75%) 41 (40%) 62 (60%)
Yes 35 (25%) 11 (31%) 24 (69%)

Lymphovascular
invasion 0.033

No 41 (30%) 21 (51%) 20 (49%)
Yes 97 (70%) 31 (32%) 66 (68%)

Recurrence 0.058
No 62 (45%) 27 (44%) 35 (56%)
Yes 56 (41%) 15 (27%) 41 (73%)

N/A 20 (14%) 10 (50%) 10 (50%)
Death 0.623

No 84 (61%) 31 (37%) 53 (61%)
Yes 41 (30%) 17 (41%) 24 (59%)

N/A 13 (9%) 4 (31%) 9 (69%)

Note: The patients in this cohort did not receive any chemotherapy or checkpoint inhibitor therapy prior to their
cystectomy. Postoperative chemotherapy was given in 32 patients and post-operative immune checkpoint therapy
in 3 patients.
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resulting in seven genes being selected for the classifier (KRT5, UPK2, KRT6C, UPK1A, SERPINB13,
UPK3A, KRT20); (B) visualization of the shrunken class centroids, i.e., the distance of each gene to the
nearest shrunken centroid for each subtype; (C) dot plot of the relationship between gene expression
and MIBC subtype classification for each tumor in the training dataset. Each point represents a unique
tumor and the color represents the MIBC subtype that the PAM classifier classified these tumors
into; (D) PAMR scores for each gene in the seven-gene MIBC molecular classifier; (E) confusion
matrix for predicted subtype vs. immunohistochemical subtype. The overall misclassification error
rate was 3.3% in the training dataset and 2.5% in the testing dataset; (F) unsupervised hierarchical
clustering (Pearson correlation) of normalized abundance levels of the seven genes selected for the
PAM classifier in the total cohort of 138 tumors.

Lastly, we explored the correlation between NanoString-based MIBC molecular sub-
types and patient survival. Figure 5 illustrates a univariate Kaplan–Meier regression for
RFS and DSS and Table 1 the univariate and multivariate Cox proportional hazards model
with DSS as the end point. Although patients with a basal MIBC had a shorter median time
to recurrence (8.5 months versus 10.0 months for luminal MIBCs) and DSD (4.5 months
versus 12 months for luminal MIBCs), it did not reach statistical significance (p > 0.05).
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3.5. Technical Cost Analysis

The reagent cost of one NanoString assay testing 23 mRNAs and five housekeeping
genes was 87.53 CAD per sample. The NanoString-based gene expression classifier assay
with seven mRNAs and five housekeeping genes is estimated to cost 60.99 CAD. Lab fee
was 30.42 CAD per sample. Cutting unstained sections was 10.20 CAD and RNA extraction
was 20 CAD per sample. Therefore, the total per sample cost for the NanoString assay was
148.14 CAD while the cost of a two-antibody IHC panel (CK 5/6 and GATA3) was 29.24
CAD per sample.

4. Discussion

The introduction of molecular subtype classification has advanced our understanding
of MIBC and has shown great potential to improve the diagnostics and treatment of MIBC
in the future. However, it is based on whole transcriptome analysis which is challenging to
implement in routine clinical diagnostics. Therefore, surrogate markers of MIBC molecular
subtypes are needed.

In this study, we have developed and validated a MIBC molecular classifier that
accurately stratifies FFPE samples using a seven-gene expression panel quantified by the
NanoString nCounter platform. Further, we validated the previously published GATA3
and CK5/6 IHC classifier which showed high concordance (96.9%) with gene expression-
based MIBC molecular subtyping. These results validate the utility of IHC for MIBC
molecular subtyping [22,33]. In light of our present findings and previous reports we
suggest implementing this clinically applicable two-marker IHC panel in routine diag-
nostics to identify the intrinsic basal, luminal and double-negative molecular subtypes of
MIBC [22,33]. Cases that may be difficult to classify such as the ones displaying unusual pat-
terns of GATA3 and/or CK5/6 expression or cases with ambiguous staining pattern would
then be sent for confirmatory gene expression-based testing. Future studies with larger
cohorts are necessary to explore if discordant classifications between gene expression-based
and immunohistochemistry-based subtyping are clinically relevant.

Current MIBC molecular classification schemas, including the recently published
consensus molecular classification, are based on whole transcriptome profiling [20]. This
hinders the translation of MIBC molecular subtype classification into routine clinical prac-
tice as the technology is expensive, time consuming, requires high quality RNA and
extensive bioinformatics resources. To surmount these limitations as well as the limited
availability of RNA sequencing technology in primary care settings, we conducted gene
expression analysis using the NanoString nCounter platform. The NanoString assay pro-
vides a faster turnaround time and lower cost per sample while maintaining the accuracy
of whole transcriptome-based subtype classifiers [28,29]. Kardos et al. performed com-
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parative analysis of the RNA-Seq and NanoString platforms for a two subtype (basal and
luminal) molecular stratification of MIBC utilizing a 47-gene classifier, BASE47 [29]. The
NanoString-based BASE47 MIBC molecular classifier had an accuracy of 87% and 93% in
the training and validation datasets, respectively. Another study by Weyerer et al. utilized
a NanoString-based modified 21-gene MDA MIBC molecular classifier and a 6 marker IHC
classifier to analyze a cohort of 193 MIBCs [23]. The study defined four distinct cluster
groups; basal, luminal, luminal p53-/ECM-like and double-negative. There was 83.9%
concordance between gene expression-based and IHC-based subtyping. Additionally,
Lopez-Beltran et al. reported a four-gene NanoString-based classifier for a three-subtype
molecular stratification; basal, luminal and null/double-negative [28]. This classifier was
utilized for molecular stratification of 91 bladder urothelial carcinomas (including NMIBCs
and MIBCs), which had prognostic implications. In line with these studies, our findings
further support the utility of the NanoString nCounter platform as an accurate tool for
MIBC molecular classification. Notably, there was an overlap between the genes included
in our seven-gene NanoString-based panel and each of the abovementioned previously
published panels including the established basal markers KRT5 and KRT6C as well as the
luminal markers UPK2 and KRT20.

Our NanoString-based gene expression MIBC classifier has several advantages for
easier clinical implementation over whole transcriptome clustering analysis. First, it can
stratify a single individual sample. The PAM classifier developed in this study does not
compare relative gene expression patterns among tumors, thus eliminating the need for
platform normalization and/or a cohort of samples for subtyping algorithm development.
Second, NanoString technology provides a more affordable, fast, and less complex, more
clinically accessible results. Moreover, MIBC subtype classification based on IHC presents
similar advantages to the NanoString platform and thus has gained interest in the field.
Guo et al. has reported that GATA3-CK5/6 IHC-based MIBC classifier has > 80% accu-
racy [22]. Other studies since used these markers for assessment of molecular subtypes of
MIBC and found them to be an accurate tool for MIBC tumor classification that could be
eventually implemented in a clinical setting [23,28,33–35]. Our findings are consistent with
these reports. In our cohort of 138 MIBCs, we found a 96.9% concordance between gene
expression-based and protein-based subtyping. The importance of this is that most MIBC
should be readily classified as basal or luminal using IHC with only difficult to classify cases
requiring a NanoString approach. One additional advantage to IHC is the ability to further
subclassify the heterogeneous luminal group using p16 IHC into genomically unstable
(GU) and urothelial-like (Uro-like) subtypes which adds prognostic information [25].

Guo et al. and Koll et al. have previously reported a molecular subtype of MIBC
characterized by lack of basal or luminal IHC marker expression [22,33]. Similarly, a small
fraction of tumors in our cohort did not express either basal or luminal IHC markers and
thus were referred to as double-negative. This molecular subtype seems to be of clinical
significance, as patients with double-negative MIBC in our cohort had decreased DSS rates
in univariate and multivariate analysis, which is in concordance with previously published
data [23,24,33]. Weyerer et al. recently reported an association between the IHC double-
negative MIBC subtype and neuroendocrine tumor histology [23]. Further, in a study by
Koll et al., all cases with neuroendocrine histology were double-negative for CK5/6 and
GATA3 IHC [33]. Neuroendocrine bladder carcinoma is a rare variant of MIBC associated
with poor prognosis [32]. This could potentially explain the association between the IHC
double-negative MIBC subtype and inferior outcomes. To identify neuroendocrine tumors
in our cohort we have added various neuronal markers (i.e., NESTIN, TUBB2B, PEG10)
to our gene classifier. However, MIBCs double-negative for CK5/6 and GATA3 IHC in
our cohort did not form a cluster with a distinct gene expression profile characterized by
high neuronal gene expression combined with low basal and luminal gene expression as
previously reported [32]. In our cohort, IHC double-negative MIBCs clustered with luminal
MIBCs in gene expression analysis and were classified as such using the NanoString-based
gene expression classifier. This highlights the heterogeneity of IHC double-negative MIBCs.
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The potential of MIBC molecular subtyping to improve precision patient management
and survival outcomes has been documented in the literature [17,20]. Therefore, the
potential benefit of MIBC molecular stratification is that the subtype may represent an
informative description of tumor biology that translates into improved risk stratification
and clinical decision-making compared to grade and stage alone. However, contradictory
results with regard to outcome have been published, partially attributed to the diversity of
molecular subtype taxonomy in MIBC [20]. In the recently published consensus molecular
classifier, Kamouns et al. analyzed the transcriptome of 1750 MIBCs and found significant
prognostic differences only between the luminal and neuroendocrine-like MIBC molecular
subtype, known to have aggressive clinical behavior [20]. Further, Kollberg et al. did
not find molecular subtyping to be a prognostic factor in a population-based consecutive
cystectomy cohort of 519 patients [36]. Our findings are in line with these previous studies
as we demonstrate no association between gene expression-based molecular subtyping
and DSS or RFS. In our study, only IHC double-negative MIBCs had significantly worse
prognosis compared to luminal MIBCs. The lack of difference in prognosis between basal
and luminal molecular subtypes in the present study could be attributed to variation in
prognosis among the different previously published sub-classes within the luminal and
basal classifications [37] as we have previously shown that IHC subclassification of the
luminal group into GU and Uro-like is prognostically significant. Future prospective
multicenter trials are needed to investigate the prognostic impact of higher-resolution
MIBC subtyping in cohorts with clinically meaningful outcomes.

This retrospective study has several limitations. First, the sample size in this study
was relatively small and thus may be not sufficiently powered to demonstrate association
with survival, as has been the case with prior classifiers in MIBC. Second, lack of sufficient
number of patients with neoadjuvant treatment in our cohort hindered our ability to analyze
the possible predictive value of molecular subtyping in MIBC. Therefore, our classifier
will require additional prospective validation before it can be used clinically. Nonetheless,
given the low classification error in our training and testing datasets, it advances molecular
subtype classification toward clinical utility.

5. Conclusions

In conclusion, the development of a simplified two-marker immunohistochemical
MIBC molecular classifier to be used sequentially with a seven-gene NanoString assay pro-
vides an accurate and clinically applicable approach to MIBC molecular subtyping. Further,
this approach may accelerate future research in the field and the eventual implementation
of MIBC molecular subtype classification into routine clinical use.
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neuroendocrine muscle-invasive bladder cancers.
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