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Abstract 

Background:  Stomach adenocarcinoma (STAD) is a highly heterogeneous disease and is among the leading causes 
of cancer-related death worldwide. At present, TNM stage remains the most effective prognostic factor for STAD. 
Exploring the changes in gene expression levels associated with TNM stage development may help oncologists to 
better understand the commonalities in the progression of STAD and may provide a new way of identifying early-
stage STAD so that optimal treatment approaches can be provided.

Methods:  The RNA profile retrieving strategy was utilized and RNA expression profiling was performed using two 
large STAD microarray databases (GSE62254, n = 300; GSE15459, n = 192) from the Gene Expression Omnibus (GEO) 
and the RNA-seq database within the Cancer Genome Atlas (TCGA, n = 375). All sample expression information was 
obtained from STAD tissues after radical resection. After excluding data with insufficient staging information and 
lymph node number, samples were grouped into earlier-stage and later-stage. Samples in GSE62254 were randomly 
divided into a training group (n = 172) and a validation group (n = 86). Differentially expressed genes (DEGs) were 
selected based on the expression of mRNAs in the training group and the TCGA group (n = 156), and hub genes were 
further screened by least absolute shrinkage and selection operator (LASSO) logistic regression. Receiver operating 
characteristic (ROC) curves were used to evaluate the performance of the hub genes in distinguishing STAD stage 
in the validation group and the GSE15459 dataset. Univariate and multivariate Cox regressions were performed 
sequentially.

Results:  22 DEGs were commonly upregulated (n = 19) or downregulated (n = 3) in the training and TCGA datasets. 
Nine genes, including MYOCD, GHRL, SCRG1, TYRP1, LYPD6B, THBS4, TNFRSF17, SERPINB2, and NEBL were identified 
as hub genes by LASSO-logistic regression. The model achieved discrimination in the validation group (AUC = 0.704), 
training-validation group (AUC = 0.743), and GSE15459 dataset (AUC = 0.658), respectively. Gene Set Enrichment 
Analysis (GSEA) was used to identify the potential stage-development pathways, including the PI3K-Akt and Calcium 
signaling pathways. Univariate Cox regression indicated that the nine-gene score was a significant risk factor for over-
all survival (HR = 1.28, 95% CI 1.08–1.50, P = 0.003). In the multivariate Cox regression, only SCRG1 was an independent 
prognostic predictor of overall survival after backward stepwise elimination (HR = 1.21, 95% CI 1.11–1.32, P < 0.001).
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Introduction
Stomach adenocarcinoma (STAD) is the fifth most fre-
quently diagnosed cancer and the fourth-leading cause of 
cancer-related death worldwide [1]. The long-term prog-
nosis of patients with STAD differs significantly as a func-
tion of tumor stage as assessed by the 8th American Joint 
Committee on Cancer (AJCC) tumor, node, metastasis 
(TNM) system. At present, although surgical resection is 
the only possible curative treatment for resectable STAD 
in stages I to III, a satisfactory result is only achieved in 
early-stage STAD cases. According to the SEER data-
base, the 10-year survival rate for patients below stage IIa 
is approximately 70% but for those above stage IIb, it is 
only about 50% [2]. Preoperative treatment is particularly 
important for patients with mid-to-late stage STAD and 
has been recommended in various guidelines for many 
years [3, 4 5]

To identify whether drug or surgical treatment should 
be performed in the first instance, an accurate preopera-
tive staging method for STAD is imperative. Microarray 
technology and high-throughput transcriptome profiling 
have provided new insights into tumor occurrence and 
development. It may be possible to link the gene expres-
sion profile of STAD with certain phenotypes or clinical 
features. As such, a set of gene signatures could poten-
tially be used to profile STAD at different stages, fur-
ther assisting clinicians in treatment decision-making in 
order to achieve optimal outcomes for STAD patients. 
Current radiological measures, including widely-applied 
computed tomography (CT), have only limited accuracy, 
especially in lymph node assessment [6]. Considerable 
under-staging still occurs.

More importantly, as TNM staging is still the most 
accurate indicator of STAD patient prognosis, there is 
an urgent need to identify the relationships between 
changes in gene expression and disease stage progres-
sion. This could assist oncologists to identify common-
alities in tumorigenesis and development among this 
highly heterogeneous cancer type. Previous studies have 
focused on the direct links between gene expression and 
survival using open-access data [7–9]. However, it is clear 
that a patient’s duration of survival partially depends 
on the treatment they receive: the resection type (D2 or 
not) they received, their compliance with postoperative 
chemotherapy, and their choices for second-line treat-
ment upon relapse. The TNM stage may be a more direct 

characteristic that reflects the mechanism of ontogenesis 
in some ways. To date, few studies have focused on TNM 
staging and this may be due to differences in the staging 
criteria applied to previous public data, which hampers 
the ability of researchers to link genes and staging data. 
Therefore, unified staging criteria based on the latest 8th 
AJCC edition are required.

The present study aimed to screen gene expression sig-
natures for the discrimination of earlier and later TNM 
stages in local, non-metastatic STAD patients using sys-
tematic bioinformatic analysis of transcriptomic data.

Methods
Data sources and data pre‑processing
TCGA dataset
The RNA sequencing data for STAD tissues were down-
loaded from the TCGA dataset (https://​tcga-​data.​nci.​nih.​
gov/​tcga/) and contained 375 STAD samples with com-
plete clinical and pathological information. The messen-
ger RNA (mRNA) expression dataset was then extracted. 
Samples were excluded if: (1) the data were missing T 
stage information, (2) less than 16 lymph nodes were 
retrieved, (3) the patient had distant metastasis (M1), or 
(4) the patient had received preoperative treatment. In 
total, 162 eligible samples were screened from the 374 
samples. The T and N stages and overall TNM stage were 
modified according to the latest AJCC 8th edition criteria 
(Additional file 1: Table S1). Patients who were classified 
as 8th edition TNM stages I to IIa were combined into 
an earlier-stage group (I-IIa) and those classified as stages 
Iib to III were combined into a later-stage group (Iib-III). 
To assure the accuracy of the results, features with less 
than two counts in more than 50% of the samples were 
discarded.

Training‑validation dataset
The GEO website includes five publicly available series 
that contain more than 30 STAD tissue samples with 
complete TNM stage information (GSE15459, GSE26942, 
GSE62254, GSE29272, and GSE27342). None of these 
were staged according to the AJCC 8th edition. Only one 
publicly available gene expression profile (GSE62254) 
has detailed information on the pathological T stage, 
the number of retrieved and positive lymph nodes, and 
metastasis. For this reason, GSE62254 was selected as the 
training-validation dataset. The expression data of the 

Conclusion:  Through a series of bioinformatics and validation processes, a nine-gene signature that can distinguish 
STAD stage was identified. This gene signature has potential clinical application and may provide a novel approach to 
understanding the progression of STAD.
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300 STAD samples in GSE62254 were generated using 
the GPL570 platform (Affymetrix Human Genome U133 
plus 2.0 Array) and downloaded from the GEO data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). For microar-
ray datasets, ineligible records were excluded according 
to the same principles as described above: (1) missing T 
stage information, (2) less than 16 retrieved lymph nodes, 
and (3) distant metastasis (M1). In total, 262 samples met 
these criteria.

Validation set 2
To verify the robust performance of the model fitting, 
GSE15459—obtained from the same GPL570 platform—
was adopted as the second validation set. GSE15459 
contains 192 qualified genome-wide mRNA expression 
profiles of primary STAD patients. The staging system in 
GSE15459 is based on the AJCC 6th edition TNM sys-
tem, ranging from I to IV. As this database lacks clinical 
data on the number of retrieved/positive lymph nodes 
and the metastasis status, the GSE15459 data could 
not be transformed into the AJCC 8th staging system. 
Therefore, the stage I samples were classified as the ear-
lier-stage group (N = 31) and the stages II to IV samples 
(N = 161) were classified as the later-stage group. Despite 
the diagnostic accuracy and criteria divergence, the diag-
nostic scope of stage I in the 6th edition is similar to 
that of stage I-IIA in the 8th edition (except for T2N1). 
Thus, agreement under the same prediction model was 
expected (Table Additional file 1: S1).

Outlier detection and removal
The TCGA dataset (N = 159) and GSE62254 dataset 
(N = 262) were separately subjected to outlier analysis 
using hierarchical cluster analysis via the “hclust” func-
tion in the WGCNA package [10]. After outlier removal, 
expression data were obtained from 156 subjects in the 
TCGA dataset (44 in the earlier-stage group and 112 in 
the later-stage group) and 258 subjects in the training-
validation microarray dataset (73 in the earlier-stage 
group and 185 in the later-stage group; Additional file 5: 
Figure S1A, S1B).

Data splitting
The training-validation set was further divided into a 
training set (66.7%) and a validation set (33.3%) at a 2:1 
ratio. A stratified sampling method was adopted accord-
ing to grouping (earlier-stage vs. later-stage) using the 
function “strata” in the “sampling” R package. After sam-
pling, there were 49 earlier-stage and 123 later-stage 
subjects in the training set and 24 earlier-stage and 62 
later-stage subjects in validation set 1.

Selection of differentially expressed genes (DEGs)
Differentially expressed genes were identified using the 
LIMMA package (version 3.42.2) for microarray data 
and DESeq2 (version 1.26.0) for RNA-seq data in R 3.6.2 
[11, 12]. Significant DEGs were detected according to the 
following criteria: (1) absolute fold-change > 1.5, (2) nor-
malized (NOM) P value < 0.05, and (3) q-value (false dis-
covery rate [FDR]) < 0.25. Overlapping DEGs between the 
GEO and TCGA database were reserved for subsequent 
study. Heat maps and volcano plots of the DEGs were 
drawn using the “ggplots” and “pheatmap” packages in R.

Enrichment analysis of DEGs
Functional enrichment analysis included Gene Ontol-
ogy (GO) analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis. GO and KEGG analyses were 
carried out using “clusterProfiler” in R (version 3.14.3) 
[13–15]. GO analysis encompassed biological processes, 
cellular components, and molecular functions. Gene 
Set Enrichment Analysis (GSEA) was also performed 
using the “gsekegg” function with 1,000 permutations of 
the gene sets and a log2 ratio of classes as the metric for 
ranking genes. For both enrichment analysis and GSEA, 
pathways with both a NOM P-value < 0.05 and FDR < 0.25 
were considered significant, as recommended previously 
[16]. Additionally, only those pathways with an absolute 
normalized enrichment score (NES) > 1 were adopted in 
the GSEA results.

Establishment of outcome signature with LASSO logistic 
regression model
The Least Absolute Shrinkage and Selection Operator 
(LASSO) method was applied to reduce the dimensions 
of the data and select the DEGs that best distinguished 
the data. This was achieved using the “glmnet” (ver-
sion 4.0-2) package in the training microarray data. In 
the LASSO model, the minimum criterion (λ) based 
on 10-fold cross-validations was chosen. A multivari-
ate logistic regression model was used to build a model 
for predicting later-stage cancer. The predictive index of 
each sample was calculated according to the constructed 
prognostic signatures based on the following formula: 
prediction index = n

i=1
βi× Xi , where βi represents the 

coefficient obtained from LASSO-logistic regression and 
Xi indicates the relative expression level of each selected 
gene. The area under the curve (AUC) was calculated in 
the training, validation 1, and validation 2 datasets using 
the “rms” package.

Statistical analysis
All data were analyzed using R (version 3.6.2). Compari-
sons between the two groups were made using the χ2 test 
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(nominal data), Wilcoxon rank test (nonparametric con-
tinuous data), or Student’s t-test (Gaussian continuous 
data), as appropriate. For predictive ability, the AUC was 
required to be equal to or higher than 0.65 with a 95% 
confidence interval (95% CI) excluding 0.5; an AUC ≥ 0.7 
was considered to reflect good prediction or discrimina-
tion. We also compared the predictive ability of our gene 
signature with previously published prognostic signatures 
[17–25]. The Venkatraman permutation test was used to 
compare the paired ROC curves based on different sig-
natures [26]. The prognosis values of the hub genes with 
the same probe IDs were inspected using Kaplan-Meier 
analysis based on the log-rank test. The relationships 
between clinicopathological factors and both long-term 
overall survival (OS) and disease-free survival (DFS) 
were assessed using univariate Cox regression analysis. 
Covariates that achieved a P-value < 0.05 in the univari-
ate analyses were included in the multivariate analysis. 
A backward stepwise approach was used to identify pos-
sible predictors of OS among the candidate variables. 
The AIC was used to set a limit on the total number of 
variables included in the final model. P-values < 0.05 were 
considered statistically significant. The “sva” package in R 
was used to remove the batch effect between the datasets 
using the same platform, if necessary [27].

Results
Identification of DEGs
A detailed flow chart of the prognostic predictive model 
in this study is shown in Fig. 1. The detailed clinical fea-
tures of the TCGA, training-validation, and validation 2 
datasets before outlier removal are shown in Additional 
file 2: Table S2.

The DEGs between the earlier-stage and later-stage 
samples in the TCGA dataset and training set were 
screened. Detailed patient information from both data-
bases is shown in Tables 1 and 2. Compared to the ear-
lier-stage tumors, a total of 1748 DEGs, including 554 
upregulated genes and 1194 downregulated genes, were 
identified in the later-stage group of the TCGA dataset 
(Fig. 2A) while 74 upregulated genes and 31 downregu-
lated DEGs between the later-stage and earlier-stage sam-
ples were identified in the training set (Fig. 2B). Among 
the two datasets, 22 overlapping DEGs (19 upregulated 
and 3 downregulated) were identified (Fig.  2C, D). All 
DEGs are listed in Additional file  3: Table  S3. Heatmap 
analysis was used to determine the relative expression 
levels of these 22 DEGs in the different groups (Fig. 2E).

All overlapping DEGs were submitted to GO and 
KEGG pathway analyses. The top three GO enrichment 
terms for target genes in the biological processes of 
ontology, cellular components of ontology, and molecular 
function of ontology are shown separately in Fig. 3A; all 

seven enriched KEGG terms are presented in Fig. 3B. The 
results showed that “positive regulation of cytosolic cal-
cium ion concentration” and “calcium ion transport into 
cytosol” were the most enriched GO terms, while “tyros-
ine metabolism”, “malaria”, and“cAMP signaling pathway” 
were the most enriched KEGG terms. The DEGs and 
their interactions with KEGG pathways are visualized in 
Fig. 3C.

Predicting pathological stage with binomial LASSO logistic 
regression
To examine the DEGs with the best discriminative abil-
ity for stage prediction, and to minimize multicollin-
earity, LASSO logistic regression was employed. Feature 
selection was performed based on the training dataset 
with the 22 identified DEGs. LASSO regression yielded 
a model with nine predictors (seven upregulated and 
two downregulated) that minimized binomial devi-
ance and enhanced sparsity (Fig. 4A, B). These nine hub 
genes showed significant upregulation/downregulation 
between the two stage groups (Fig.  4C). The Kaplan-
Meier plots indicated that overexpression of MYOCD, 
SCRG1, TYRP1, and THBS4 was associated with signifi-
cantly poorer survival, while upregulation of GHRL and 
LYPD6B and downregulation of SERINB2 and NEBL 
tended to be associated with poorer survival. Only 
TNFRSF17 showed no expression-related survival trend 
(Additional file 6: Figure S2A–I).

The nine hub genes (MYOCD, GHRL, SCRG1, TYRP1, 
LYPD6B, THBS4, TNFRSF17, SERPINB2, and NEBL) 
were included in a multivariate logistic regression model. 
The obtained coefficients of each identified DEG were 
then used to form the nine-gene model (Table  3). No 
reverse sign was observed in any of the covariates within 
the univariate and multivariate regressions. The abil-
ity of the nine-gene signature to predict TNM stage was 
evaluated by ROC curves and AUC analysis. In the train-
ing set, the AUC was 0.763 (0.685–0.841). The predic-
tion model also achieved satisfactory performance with 
an AUC of 0.704 (0.587–0.821) in validation set 1 and an 
AUC of 0.743 (0.679–0.808) in the merged training-vali-
dation set. The prediction model performed moderately 
in validation set 2 with an AUC of 0.658 (0.558–0.758). 
The AUCs in each data set are presented in Fig. 5A.

A significant batch effect between GSE15459 (valida-
tion set 2) and GSE62254 (training-validation set) was 
observed. Because the two series used the same GPL570 
platform, batch correction for validation set 2 with ref-
erence to the training-validation set was then performed. 
Boxplots of the merged dataset before and after batch 
effect removal are presented in Additional file  7: Fig-
ures  S3A and S3B, respectively. There was an obvious 
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Fig. 1  Flow chart of samples selection
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improvement in the AUC value, which increased to 0.717 
(0.627–0.806) after batch correction (Fig. 5B).

The nine-gene model was then applied to several clini-
cal phenotypes. The prediction model performed well 

in forecasting lymph node metastasis (AUC: 0.728, 95% 
CI 0.647–0.808), signet ring (AUC: 0.711, 95% CI 0.617–
0.805), and Lauren diffuse type (AUC: 0.707, 95% CI 
0.643–0.771) STAD. The model achieved a moderate pre-
dictive value for T4 tumors (Table 4).

Identification of KEGG pathways related to the TNM stage 
using GSEA
To improve our understanding of the gene expression 
changes that accompany stage development, GSEA was 
performed using the training-validation set (GSE62254). 
From this, 134 (62 upregulated and 72 downregulated) 
significantly enriched pathways were identified (P < 0.05, 
FDR < 0.25). All of the top 10 significantly enriched path-
ways were upregulated (Fig.  6A). The “PI3K-Akt signal-
ing pathway” was the most significantly upregulated, 

Table 2  Demographic and clinicopathologic characteristics in 
TCGA dataset

Variables Overall

N 156

Sex

Female 43 (27.6)

Male 113 (72.4)

Age (years)

≤ 65 52 (33.8)

> 65 102 (66.2)

Signet ring

No 150 (96.2)

Yes 6 ( 3.8)

T stage

1 14 ( 9.0)

2 36 (23.1)

3 52 (33.3)

4a 39 (25.0)

4b 15 ( 9.6)

N stage

0 44 (28.2)

1 27 (17.3)

2 33 (21.2)

3a 31 (19.9)

3b 21 (13.5)

Lauren

Diffuse 31 (19.9)

Intestinal 93 (59.6)

Not specified 32 (20.5)

Number of positive lymph nodes 7.15 ± 10.11

Stage by AJCC 8th

Earlier stage (≤ IIa) 44 (28.2)

Later stage (> IIa) 112 (71.8)

Table 1  Demographic and clinicopathologic characteristics in 
training and validation cohorts (GSE62254)

Variables Training Validation P value

N 172 86

Sex

Female 61 (35.5) 24 (27.9) 0.281

Male 111 (64.5) 62 (72.1)

Age (years)

≤ 65 105 (61.0) 43 (50.0) 0.119

> 65 67 (39.0) 43 (50.0)

Signet ring

No 144 (83.7) 77 (89.5) 0.286

Yes 28 (16.3) 9 (10.5)

Perineural invasion

No 87 (63.0) 51 (68.9) 0.481

Yes 51 (37.0) 23 (31.1)

Lymphovascular invasion

No 43 (27.2) 21 (25.9) 0.953

Yes 115 (72.8) 60 (74.1)

T stage

2–3 113 (65.7) 57 (66.3) 0.817

4a 50 (29.1) 26 (30.2)

4b 9 ( 5.2) 3 ( 3.5)

N stage

0 19 (11.0) 13 (15.1) 0.755

1 37 (21.5) 16 (18.6)

2 45 (26.2) 22 (25.6)

3a 42 (24.4) 24 (27.9)

3b 29 (16.9) 11 (12.8)

Number of positive lymph nodes 8.06 ± 9.27 7.87 ± 9.96 0.879

Lauren

diffuse 81 (47.1) 30 (34.9) 0.126

intestinal 79 (45.9) 51 (59.3)

mixed 12 ( 7.0) 5 ( 5.8)

Tumor location (%)

Cardia/Upper 19 (11.0) 7 ( 8.1) 0.613

Middle 65 (37.8) 30 (34.9)

Antrum/Distal 88 (51.2) 49 (57.0)

ACRG.sub (%)

EMT 25 (14.5) 10 (11.6) 0.809

MSI 41 (23.8) 24 (27.9)

TP53neg 59 (34.3) 31 (36.0)

TP53positive 47 (27.3) 21 (24.4)

Stage by AJCC 8th

Earlier stage (≤ IIa) 49 (28.5) 24 (27.9) 1.000

Later stage (> IIa) 123 (71.5) 62 (72.1)
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followed by the “MAPK signaling pathway”, “Calcium 
signaling pathway”, “cAMP pathway”, and “focal adhe-
sion”. A network of gene sets in the first half (N = 67) 
was constructed to illustrate the pathway interactions 
(Fig.  6B). The details of the significantly enriched gene 
sets are provided in Additional file 4: Table S4.

Exploring the prognostic significance of the nine genes 
and other clinicopathological factors
We further investigated the prognostic impact of the 
nine selected genes together with various clinico-
pathologic and genomic features. As the ACRG cohort 

had the most sophisticated clinical information and 
molecular subtypes, both the training-validation data-
set (N = 258) and the original dataset (N = 300) were 
used to achieve robust results. Univariate Cox analysis 
revealed that higher signature score, tumor location, 
total resection, T stage, N stage, MLH1 positivity, dif-
fuse Lauren type, poor differentiation, ACRG subtype 
(especially EMT), absent chemotherapy, mesenchymal 
phenotype, and Borrmann type IV were risk factors 
for OS and/or DFS either in the training-validation 
dataset (Table  5A) or in the complete ACRG cohort 
(Table 5B). Specifically, four of the nine selected genes, 

Fig. 2  Differentially expressed stage-related genes for STAD in (A) TCGA and (B) training datasets; Venn diagram showing overlapped (C) 
upregulated and D down-regulated DEGs between TCGA and training dataset; E the expression heatmap of the 22 overlapped DEGs
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i.e., MYOCD, SCRG1, TYRP1, and THBS4, were signif-
icantly correlated with survival as continuous variables. 
All statistically significant variables were then included 
in a multivariate Cox regression using the backward 
stepwise algorithm for covariate selection. The results 
showed that N stage, chemotherapy, and SCRG1 
expression level (training-validation dataset: HR 1.21, 
95% CI 1.11–1.32, P < 0.001; ACRG cohort: 1.14, 95% 
CI 1.05–1.24, P = 0.001) were significant covariates in 
both datasets (Table  6A, B), while T stage and MLH1 
status were significant covariates only in the complete 
ACRG cohort (Table  6B). Other features, e.g., ACRG 
subtype, mesenchymal phenotype, and other selected 
genes, were ruled out in both datasets using the same 
algorithms.

Comparison of our signature with other gene signatures 
for stage prediction
A literature search was then performed, and the stage 
prediction ability of our signature was compared with 
those of nine other gene combinations containing similar 
gene numbers (ranging from 6 to 13 genes). The dataset 
for this analysis included the training-validation set and 
validation set 2 (N = 450) after batch correction. The 
coefficients were adjusted in all 10 signatures with the 
aim of achieving maximum predictive ability. Among 
the 10 gene collections, our signature achieved the high-
est AUC for stage prediction (AUC = 0.742, Fig.  7). The 
ROC curves indicated that our nine-gene signature was 
significantly different from the signatures reported in six 

Fig. 3  A GO analysis of the 22 overlapped DEGs; B KEGG pathway of DEGs. C Net plot of the pathways enriched with DEGs, as identified by KEGG 
pathway analysis
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studies and marginally significantly different from the 
signatures reported in three studies (Table 7).

Discussion
The present study identified 22 overlapping DEGs 
based on the integration of the TCGA and GEO pub-
lic datasets. A nine-gene signature was formed based 
on LASSO regression results and was further validated 
in several sets with satisfactory AUC values of > 0.7 in 

most datasets. The moderate AUC performance in the 
GSE15459 dataset is likely due to the inconsistent group-
ing criteria used in this dataset; we were unable to deal 
with the stage migration problem due to a lack of clinical 
data. The significant improvement in the AUC after batch 
correction provides further verification of the stage dis-
tinguishing ability of our nine-gene signature. The nine-
gene signature reported here is the first stage-oriented 
prediction model at the transcriptome level using the 

Fig. 4  LASSO logistic analysis via 10‑fold cross‑validation with minimum criteria. A Tuning parameter selection via 10‑fold cross‑validation with 
minimum criteria in the LASSO model. B LASSO coefficient profiles of 22 candidate DEGs. LASSO. C The expression level of the nine hub genes 
between the earlier-stage and later-stage groups as identified by LASSO regression
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AJCC 8th edition TNM staging system. The results sug-
gest that this nine-gene signature may be of diagnostic 
value for the management of non-metastatic STAD and 
may assist with clinical decision-making.

For historical reasons, most current open-access gene 
expression sets for STAD have followed the AJCC 6th 
edition stage classification. The well-known “GEPIA” 
tool, for example, integrated various datasets and final-
ized a “stage plot” module [28]. Despite this excellent 
work and contribution to the field, this approach is 
somewhat open to question because, from the view-
point of gastroenterologists and clinical oncologists, 
the relationship between the 6th staging system and the 
newest 8th TNM staging system is by no means a sim-
ple permutation or combination. For example, the AJCC 
6th edition categorizes muscularis propria invasion as 
pT2a, subserosal invasion as pT2b, serosal penetration 

as pT3, and adjacent organ invasion as pT4, which cor-
responds to pT2, pT3, pT4a, and pT4b T stage criteria 
in the 8th (and 7th ) editions [29, 30]. Even more impor-
tantly, both the 5th and 6th editions defined N1, N2, and 
N3 as positive lymph node numbers of 1–6, 7–15, and 
> 15, respectively, while starting from the 7th edition, 
the N stages were further refined as N1: 1–2, N2: 3–6, 
N3a:7–15, and N3b: > 15 positive lymph nodes. This 
means that there is a considerable discrepancy when 
discussing the association between gene expression/
behavior and stage [28]: patients with the same “N2” 
staging according to the 6th and 8th editions reflect dif-
ferent concepts and prognoses which cannot be simply 
merged together [9, 31]. Additionally, stage migration is 
another key factor in translating stages from the old to 
the new system and is a precondition for explaining the 
expression differences between earlier- and later-stage 

Table 3  LASSO regression results. Genes selected by the LASSO 
logistic regression, with the estimated coefficients and odds ratio

Gene Coefficient Odds ratio

MYOCD 0.02258333 1.0228403

GHRL 0.14381831 1.1546743

SCRG1 0.10258011 1.1080261

TYRP1 0.03295502 1.0335041

LYPD6B 0.30825199 1.3610439

THBS4 0.27385904 1.3150294

TNFRSF17 0.04663749 1.0477421

SERPINB2 −0.18898024 0.8278029

NEBL −0.24998835 0.7788099

Fig. 5  Receiver operating characteristic curve based on the training, validation set 1, training-validation and validation set 2 (GSE15459); The ROC 
performances in validation set 2 before and after batch correction

Table 4  The AUC performances of the 9 hub genes on other 
clinicopathologic phenotypes

Variables AUC (95% CI)

N+ 0.728 (0.647–0.808)

T4 0.687 (0.617–0.756)

Signet ring 0.711 (0.617–0.805)

Lauren diffuse type 0.707 (0.643–0.771)

Diffuse + Mixed 0.709 (0.647–0.772)

Antrum 0.602 (0.531–0.673)

Cardia 0.563 (0.441–0.685)

Age (> 65 years) 0.611 (0.543–0.680)

Gender (male) 0.608 (0.533–0.683)
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Fig. 6  Gene set enrichment analysis analysis based on the training-validation set A Top five GSEA enrichment analysis results of the KEGG pathways 
for the later-stage group. B Network plots for GSEA. Network plot showing enriched upregulated pathways (in red) and downregulated pathways 
(in blue) for gene expression data samples with higher stage. Top 50% significant KEGG were included in this network
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Table 5  (A) Univariate Cox regression in Training-Validation dataset (N = 258). (B) Univariate Cox regression in the whole ACRG cohort 
(N = 300)

Variables Overall survival Disease free survival

Hazard ratio P value Hazard ratio P value

(A) N = 258

Male 0.98 (0.67–1.45) 0.940 1.01 (0.66–1.54) 0.977

Age (per 1 year increase) 1.01 (0.99–1.03) 0.255 1.00 (0.98–1.02) 0.893

Tumor location

Upper 1.00 1.000 1.00 1.000

Middle 0.61 (0.34–1.08) 0.089 0.76 (0.40–1.44) 0.397

Lower 0.56 (0.32–0.99) 0.045 0.56 (0.30–1.07) 0.082

Whole 2.91 (0.66–12.82) 0.158 3.33 (0.74–15.02) 0.117

Total resection 0.34 (0.23–0.50) < 0.001 0.31 (0.21–0.48) < 0.001

T stage

T2-3 1.00 1.000 1.00 1.000

T4a 2.48 (1.70–3.61) < 0.001 2.73 (1.81–4.13) < 0.001

T4b 1.73 (0.79–3.78) 0.169 1.69 (0.72–3.94) 0.229

 N stage

N0 1.00 1.000 1.00 1.000

N1 2.79 (1.06–7.37) 0.039 2.73 (0.92–8.13) 0.070

N2 2.08 (0.79–5.54) 0.140 1.71 (0.56–5.20) 0.344

N3a 4.82 (1.90–12.25) 0.001 5.60 (1.98–15.83) 0.001

N3b 10.09 (3.91–26.03) < 0.001 11.81 (4.13–33.77) < 0.001

T4 stage 2.35(1.64–3.38) < 0.001 2.54 (1.71–3.79) < 0.001

 N + stage 3.87 (1.58–9.48) 0.003 4.04 (1.48–10.99) 0.006

High stage 2.18 (1.36–3.50) 0.001 2.35 (1.37–4.02) 0.002

MLH1 positivity 1.76 (1.09–2.85) 0.021 1.86 (1.07–3.23) 0.027

Lauren classification

Intestinal 1.00 1.000 1.00 1.000

Mixed 2.18 (1.13–4.19) 0.020 1.89 (0.85–4.23) 0.120

Diffused 1.59 (1.09–2.33) 0.017 1.49 (0.98–2.25) 0.062

Poor differentiation 1.50 (1.03–2.17) 0.035 1.40 (0.93–2.11) 0.106

ACRG subtype

TP53 negative 1.00 1.000 1.00 1.000

TP53positive 0.85 (0.53–1.36) 0.496 0.97 (0.58–1.63) 0.904

MSI 0.65 (0.39–1.09) 0.107 0.63 (0.34–1.16) 0.134

EMT 1.86 (1.14–3.06) 0.014 2.08 (1.23–3.51) 0.007

Chemotherapy 0.55 (0.35–0.85) 0.007 0.55 (0.34–0.88) 0.012

Mesenchymal phenotype 1.93 (1.32–2.81) 0.001 2.09 (1.38–3.15) < 0.001

9-gene score 1.28 (1.08–1.50) 0.003 1.30 (1.10–1.55) 0.003

MYOCD 1.38 (1.23–1.55) < 0.001 1.42 (1.25–1.61) < 0.001

GHRL 1.03 (0.93–1.14) 0.585 1.04 (0.94–1.16) 0.399

SCRG1 1.27 (1.18–1.38) < 0.001 1.30 (1.19–1.41) < 0.001

TYRP1 1.20 (1.08–1.33) 0.001 1.22 (1.09–1.36) 0.001

LYPD6B 1.00 (0.89–1.13) 0.982 0.96 (0.85–1.09) 0.557

THBS4 1.27 (1.15–1.40) < 0.001 1.29 (1.16–1.44) < 0.001

TNFRSF17 0.95 (0.85–1.05) 0.298 0.95 (0.85–1.06) 0.388

SERPINB2 1.00 (0.90–1.10) 0.955 0.94 (0.84–1.06) 0.34

NEBL 1.01 (0.92–1.11) 0.865 1.01 (0.91–1.12) 0.854

Borrmann type

Borrmann I or EGC 1.00 1.000 1.00 1.000
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Table 5  (continued)

Variables Overall survival Disease free survival

Hazard ratio P value Hazard ratio P value

Borrmann II 0.71 (0.29–1.73) 0.455 0.62 (0.25–1.54) 0.302

Borrmann III 1.49 (0.64–3.44) 0.352 1.24 (0.53–2.90) 0.615

Borrmann IV 3.62 (1.48–8.89) 0.005 3.31 (1.33–8.25) 0.010

(B) N = 300

Male 0.90 (0.65–1.27) 0.559 0.96 (0.66–1.39) 0.825

Age (per 1 year increase) 1.01 (1.00–1.03) 0.181 1.00 (0.99–1.02) 0.715

Tumor location

Upper 1.00 1.000 1.00 1.000

Middle 1.09 (0.76–1.56) 0.631 1.21 (0.82–1.78) 0.330

Lower 1.66 (1.02–2.70) 0.041 1.62 (0.93–2.83) 0.087

Whole 3.27 (1.42–7.56) 0.006 2.21 (0.80–6.11) 0.127

Subtotal resection 0.38 (0.27–0.52) < 0.001 0.38 (0.27–0.55) < 0.001

T stage

T2-3 1.00 1.000 1.00 1.000

T4a 2.37 (1.69–3.32) < 0.001 2.52 (1.73–3.67) < 0.001

T4b 2.51 (1.46–4.32) < 0.001 2.71 (1.53–4.79) 0.001

 N stage

N0 1.00 1.000 1.00 1.000

N1 1.74 (0.86–3.54) 0.124 1.71 (0.76–3.83) 0.191

N2 3.37 (1.65–6.85) < 0.001 3.94 (1.77–8.79) 0.001

N3 6.94 (3.36–14.33) < 0.001 7.46 (3.31–16.83) < 0.001

MLH1 positivity 2.03 (1.28–3.22) 0.003 2.10 (1.25–3.56) 0.005

Lauren classification

Intestinal 1.00 1.000 1.00 1.000

Diffused 1.69 (0.68–4.20) 0.260 2.70 (0.97–7.50) 0.057

Mixed 1.75(1.26–2.42) < 0.001 1.63 (1.13–2.34) 0.009

Poor differentiation 1.60 (1.14–2.24) 0.006 1.51 (1.05–2.19) 0.028

ACRG subtype

TP53 negative 1.00 1.000 1.00 1.000

TP53positive 0.78 (0.52–1.18) 0.246 0.82 (0.52–1.29) 0.391

MSI 0.52 (0.32–0.84) 0.008 0.48 (0.27–0.85) 0.012

EMT 1.56 (1.02–2.40) 0.041 1.62 (1.03–2.55) 0.037

Chemotherapy 0.48 (0.32–0.73) < 0.001 0.49 (0.31–0.76) 0.001

Mesenchymal phenotype 1.79 (1.29–2.50) < 0.001 1.92 (1.34–2.76) < 0.001

9-gene score 1.29 (1.12–1.49) < 0.001 1.31 (1.13–1.52) < 0.001

MYOCD 1.34 (1.21–1.48) < 0.001 1.37 (1.23–1.52) < 0.001

GHRL 1.05 (0.97–1.14) 0.193 1.07 (0.98–1.16) 0.148

SCRG1 1.23 (1.15–1.32) < 0.001 1.24 (1.15–1.34) < 0.001

TYRP1 1.18 (1.08–1.30) < 0.001 1.19 (1.08–1.31) < 0.001

LYPD6B 1.02 (0.92–1.13) 0.760 0.99 (0.89–1.11) 0.896

THBS4 1.23 (1.13–1.34) < 0.001 1.24 (1.14–1.36) < 0.001

TNFRSF17 0.95 (0.87–1.04) 0.240 0.94 (0.86–1.04) 0.218

SERPINB2 0.98 (0.89–1.07) 0.653 0.94 (0.84–1.04) 0.225

NEBL 1.00 (0.92–1.09) 0.985 1.01 (0.92–1.11) 0.882

Borrmann type

Borrmann I or EGC 1.00 1.000 1.00 1.000

Borrmann II 0.87 (0.37–2.08) 0.757 0.83 (0.34–1.99) 0.670

Borrmann III 1.70 (0.74–3.91) 0.209 1.42 (0.61–3.27) 0.417
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samples (Additional file 1: Table S1). Our previous find-
ings of 1663 patients indicated that prognosis differ-
ences begin to reach statistical significance when pTNM 
stage reaches IIB [32]. This result prompted us to split 
the data in the current study into earlier- and later-
stage patient groups as these groups are associated with 
prognosis and treatment strategy variations. Finally, as 
retrieval of > 15 lymph nodes is required for optimal 
staging, samples with inadequate lymph node retrieval 
are at considerable risk of under-staging and should be 
filtered out in analyses [33–36]. Given the above, due to 
the strict data processing performed in this study, these 
data can be used for accurate stage prediction and to 
identify factors (DEGs and pathways) that lead to step-
wise STAD progression.

Based on TNM stage characteristics, 22 overlapping 
DEGs were identified between the TCGA set and the 
training set. This number is similar to that in a progno-
sis-based study [37], but is far less than those obtained 
in other data mining studies that have focused on gene 
expression between tumor and normal tissue. This sug-
gests that either the homogeneity or heterogeneity 
among gastric adenocarcinomas is much more complex. 
Accordingly, a penalized model (LASSO regression) was 
implemented to exclude the confounding variables that 
could generate multicollinearity in the prediction model. 
In fact, the coefficients of the nine selected genes in the 
multivariate analysis maintained the same sign as in the 
univariate models. This confirms the robust performance 

Table 5  (continued)

Variables Overall survival Disease free survival

Hazard ratio P value Hazard ratio P value

Borrmann IV 4.07 (1.70–9.76) 0.002 3.33 (1.37–8.11) 0.008

Table 6  (A) Multivariate backward stepwise Cox regression 
on OS Training-Validation (N = 258, including 2 cases with NA 
entries). (B) Multivariate backward stepwise Cox regression on OS 
whole ACRG (N = 300, including 3 cases with NA entries)

Hazard ratio Pvalue

(A) (N = 258)

N stage

0 1.00 1.000

1 2.77 (1.04–7.39) 0.042

2 2.06 (0.77–5.47) 0.149

3a 4.50 (1.75–11.56) 0.002

3b 8.78 (3.36–22.90) < 0.001

Chemotherapy 0.48 (0.31–0.75) 0.001

SCRG1 1.21 (1.11–1.32) < 0.001

(B) (N = 300)

T stage

T2-3 1.00 1.000

T4a 1.51 (1.03–2.20) 0.034

T4b 1.61 (0.91–2.85) 0.104

 N stage (6th AJCC)

N0 1.00 1.000

N1 1.71 (0.84–3.48) 0.143

N2 2.92 (1.42–6.00) 0.004

N3 5.14 (2.45–10.81) 0.000

MLH1 positivity 1.60 (1.00–2.57) 0.051

Chemotherapy 0.43 (0.28–0.66) 0.000

SCRG1 1.14 (1.05–1.24) 0.001

Table 7  The collection of gene signatures of STAD used for comparison

AUC: area under curve; †P-value stands for Venkatraman permutation test

Study Genes AUC​ P value†

Ours MYOCD, GHRL, SCRG1, TYRP1, LYPD6B, THBS4, TNFRSF17, SERPINB2, NEBL 0.742 1.000

Cho et al. CTNNB1, EXOSC3, TOP2A, TRANK1, LZTR1, CCL5 0.657 0.003

Hou et al. TRPC1, SGCE, TNFRSF11A, LRRN1, HLF, CYS1, PPP1R14A, NOVNBEA, CES1, RGN 0.686 0.026

Wang et al. NR1I2, LGALSL, C1ORF198, CST2, LAMP5, FOXS1, CES1P1, MMP7, COL8A1 0.703 0.060

Liu et al. TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, TIMP1 0.686 0.108

Peng et al. ACOT7, CES1, IPMK, NES, PBX3, TMEM245, MIR6756, RAB11FIP4, RBPMS2, RPS27L, TPMT, TNFRSF11A 0.656 0.006

Yu et al. MFAP2, SPP1, COL1A1, BGN, COL11A1, COL10A1, MXRA5, COMP, AGRN 0.681 0.046

Dai et al. DCLK1, FLRT2, MCC, PRICKLE1, RIMS1, SLC25A15, SLCO2A1, CDO1, GHR, CD109, SELP, UPK1B, CD36 0.673 0.011

Guan et al. HBB, C4orf48, MANEAL, CXCL3, TRIM31, TMEM200A, SERPINE1, F5, NOXO1, DKK1 0.685 0.101

Jiang et al. AKAP12, ANGPTL1, CYS1, MLLT11, NAV3, NBEA, NOV, PTN, TUSC3, ZSCAN18 0.666 0.006
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of the model. This model also avoided overfitting and 
the Simpson’s Paradox, which are risks when perform-
ing bioinformatics analysis and model building [37–40]. 
More importantly, our signature had higher accuracy for 
stage prediction than previous signatures focusing on 
various prognostic features. Therefore, the results of this 
study indicate that the nine-stage signature is a novel bio-
marker with superior tumor stage predictive ability for 
LAGC patients.

Of the nine identified genes, some have been reported 
to be of relevance to various cancers. THBS4 is one of 
five extracellular calcium-binding proteins that modulate 
the extracellular matrix (ECM). High levels of THBS4 
have been found to be significantly related to cancer-
associated ECM in breast cancer tissue [41], and the high 
expression levels of THBS4 in cancer-associated fibro-
blasts in Lauren diffuse-type gastric adenocarcinoma 
support its use as a biomarker [42]. Clinically, the Lau-
ren type has been shown to be strongly correlated with 
lymph node metastasis in STAD [43]. In  vitro, THBS4 

also promotes tumor progression by interacting with 
ITGB1 via the FAK/PI3K/AKT pathway [44, 45].

Tyrosinase-related protein 1 (TYRP1) is the most 
abundant intracellular glycoprotein in melanoma and 
melanocytes [46]. Although it has a specific function in 
melanogenesis, it seems that high expression profiles of 
TYRP1 are not exclusive to melanoma. Bioinformatics 
analyses have demonstrated similar unusual overexpres-
sion of TYRP1 in STAD, and its expression is associated 
with poorer prognosis [8, 47]. It is proposed that the high 
expression of TYRP1 could serve as an indicator of the 
abnormal activation of transcription regulator microph-
thalmia-associated transcription factor (MITF), which is 
phosphorylated by the SCF/KIT pathway, or of the inacti-
vation of anti-oncogenes like p53, which results in tumor 
progression [48–50]. Furthermore, TYRP1 mRNA has 
been proven to cause ncRNAs to function as sponges for 
miR-16, which is known for its tumor-suppressor func-
tion in STAD [51, 52]. All of the above evidence indicates 
that TYRP1 plays a role in STAD progression.

Fig. 7  Receiver operating characteristic (ROC) curve analysis for stage prediction of our signature and other gene sets appeared in previous studies
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SERPINB2, commonly known as plasminogen activator 
inhibitor-2 (PAI-2), serves as an inhibitor of extracellular 
protease urokinase plasminogen activator (uPA) and tis-
sue plasminogen activator (tPA), both of which transform 
plasminogen into plasmin [53]. uPA-triggered fibrinoly-
sis plays various roles in tumor progression, including 
ECM degradation, the release of tumor-related growth 
factors, and the promotion of angiogenesis [54–56]. 
In  vitro, SERPINB2-deficient cancer cells are associated 
with increased tumor growth, aberrant ECM, and inva-
sive properties, while SERPINB2 overexpression inhibits 
tumor proliferation and migration [57, 58]. A low-expres-
sion profile of SERPINB2 is linked with poor prognosis in 
various cancers, including STAD [7, 59].

The GHRL gene encodes the prepropeptides of ghrelin 
and obestatin. Physiologically, ghrelin/obestatin stimu-
late/decrease food intake, regulate growth hormones, and 
may have a role in cell proliferation, differentiation, and 
apoptosis [60, 61]. In vitro, ghrelin is reported to induce 
colon cancer cell proliferation through the GHS-R/Ras/
PI3K/Akt/mTOR axis [62]. Abnormally high expression 
of GHRL is not only observed in gastrointestinal tumors 
but also in other types of cancer including breast cancer, 
renal cell carcinoma, and ovarian cancer [63, 64]. Inter-
estingly, although in  vitro studies and expression arrays 
have suggested stimulatory effects of ghrelin on prolifera-
tion and invasion of STAD, several clinical studies have 
indicated that ghrelin in serum acts as a protective factor 
for STAD patient prognosis [65, 66]. This suggests that 
circulating ghrelin and tumor-localized ghrelin have dif-
ferent effects [67]. A more comprehensive mechanistic 
analysis is needed to explain this phenomenon.

Scrapie responsive gene 1 (SCRG1) is predominantly 
expressed in neurons and is overexpressed in the cen-
tral nervous system during infection or brain injury [68]. 
SCRG1 was initially recognized as a marker of autophagic 
vacuoles in terminal-stage disease [69]. The upregulation 
of SCRG1 was previously reported in STAD with lymph 
node metastasis in a data-mining study; however, the 
mechanism was not explained [70]. More recent studies 
have revealed that SCRG1 acts on CD157 to activate ERK 
and PI3K/Akt in human mesenchymal stem cells [71, 
72]. SCRG1 is also specifically highly expressed in breast 
cancer with metastatic propensity [73] and might serve 
as an ideal indicator for developmental cancer-associated 
fibroblasts [74].

NEBL is also a commonly distinguishable gene that 
serves as a prognostic factor in various cancers, accord-
ing to previous microarray results [75, 76]. Because the 
nebulette protein encoded by the NEBL gene mostly 
functions to stabilize actin filaments, the expression 
level of NEBL may reflect the extent of focal adhesion of 
anchored cancer cells [77]. Contrary to previous findings 

in colorectal cancer, whereby Hosseini et  al. discovered 
a positive correlation between the expression level of 
NEBL and lymph node metastasis, the bioinformatics-
based analysis in the present study revealed a negative 
correlation between these two factors. It is proposed that 
a stabilized cytoskeletal structure results in less random 
motility, thus enhancing focal adhesion and predicting 
late-stage STAD with poorer prognosis [78, 79].

Among the remaining three genes, the tumor necro-
sis factor receptor superfamily member 17 (TNFRSF17) 
gene, also known as the B-cell maturation antigen gene, 
is expressed on mature B cells and directly reflects B-cell 
homeostasis and autoimmune response [80]. The expres-
sion of TNFRSF17 is associated with the development of 
breast cancer, ovarian cancer, and colon cancer [81–83]. 
TNFRSF17 also has the potential to act as a marker for 
evaluating tumor immune infiltration status and it may 
predict beneficial effects of immune checkpoint block-
ade antigens [84–86]. Interestingly, in the current study, 
although TNFRSF17 showed a higher expression profile 
in later-stage samples, it had no effect on patient survival. 
In fact, the role of B cells in tumorigenesis and progres-
sion is much less understood than other immune cells 
[87, 88]. This may be due to the two-pronged nature of 
B cells [87]. On the other hand, the relationship between 
the overexpression of TNFRSF17 and its global con-
tribution to/reflection of the tumor microenviron-
ment requires further study [89]. LYPD7, also known as 
LYPD6B, belongs to the LY6/PLAUR domain-containing 
subclass (LYPD) of the Ly-6/uPAR superfamily [90]. Sev-
eral bioinformatics-based analyses have revealed that 
increased LYPD7 expression may be implicated in the 
pathogenesis of NSCLC, while decreased hypermethyla-
tion of LYPD DNA is correlated with an invasive pheno-
type of malignant melanoma [91, 92]. Finally, contrary to 
the MYOCD profile in other common tumors, in which 
myocardin plays a suppressive role in the malignant 
transformation process [93, 94], the MYOCD level in 
STAD was vastly upregulated, indicating poorer progno-
sis (Additional file  8: Figure S4). This MYOCD amplifi-
cation should be comprehensively investigated because 
activation of the PI3K/Akt pathway can lead to JAK3 
phosphorylation, thus resulting in a STAT3 and myocar-
din interaction which co-regulates smooth muscle cell 
proliferation and angiogenesis [95].

Given that the limited number of DEGs identified in 
this study may not provide a robust enrichment analy-
sis, GSEA was used to inspect the pathways involved 
in STAD development, with samples grouped by stage. 
GSEA analysis revealed that the PI3K-Akt, MAPK, and 
calcium signaling pathways are the top three pathways 
correlated with later-stage STAD compared to earlier-
stage STAD. All three pathways play a vital role in cell 
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proliferation, growth, and apoptosis escape, which are 
indicative of the higher proliferative profile of late-stage 
STAD. Based on the network analysis, the proliferation-
related and metabolic-related pathways are two major 
modules that are widely upregulated in stage advance-
ment, while immune-related and DNA repair-related 
genes are widely downregulated. These results suggest 
that the development and migration of STAD depend 
on the stepwise activation of these commonly dysregu-
lated pathways in cancer. Additionally, the GSEA analy-
sis provides solid evidence of changes in tumor behavior 
according to tumor stage.

As most genes identified in this study were linked with 
the genesis and development of STAD, the increase in the 
nine-gene score resulted in a poorer prognosis. Among 
the nine identified genes, MYOCD, SCRG1, TYRP1, and 
THBS1 were statistically associated with patient sur-
vival, while GHRL, LYPD6B, SERPINB2, and NEBL only 
showed trends toward better or worse prognosis. Using 
stepwise backward elimination, only SCRG1 was an inde-
pendent prognostic factor. This result is understandable 
because the stepwise algorithm is designed to mathe-
matically avoid multicollinearity [96, 97]. This method 
is advantageous when the significance of covariates is 
unknown and the covariates are equally weighted [98]. 
Since our nine-gene signature was designed to predict 
tumor stage, a higher correlation with the T or N stage 
is unavoidable (Table 3), and several stage-related genes 
can be ruled out when the N and T stages become two of 
the most important prognostic factors. Apart from T and 
N stage, chemotherapy and MLH1 status are two clin-
icopathological features that significantly influence OS. 
Other important features, including the Lauren classifica-
tion, ACRG subtype, and mesenchymal phenotype were 
also excluded from the Cox model due to multicollinear-
ity. To read beyond the analysis, we hypothesize that the 
results shed light on a simple idea that some genomic or 
transcriptomic results might be products of an overfit-
ting model using a limited sample size. Nonetheless, a 
population-based transcriptomic result is still necessary. 
Meanwhile, several key clinical features (e.g., chemother-
apy management) and phenotypes (e.g., TNM stage) are 
still key factors that drive patient prognosis. Moreover, as 
several key clinical features are successively related, it is 
important to focus on the correlation between transcrip-
tomic signatures and key cancer phenotypes to prescribe 
individualized treatment for patients. Based on this, the 
nine-gene signature identified in this study can assist 
with accurate STAD staging.

Clinically, our stage-related gene signature could sup-
port decision-making in several ways. First, as preopera-
tive diagnosis has become increasingly important in the 
multimodality treatment of patients who are initially 

diagnosed with locally-advanced gastric cancer, a chip-
based panel facilitates accurate clinical staging where 
diagnostic accuracy to date has been limited by the use 
of enhanced CT [99, 100]. Patients who are over-staged 
could receive timely resection, while under-staged 
patients may benefit from systemic treatment before 
surgery. Second, for D0/D1 surgery or D2 with limited 
lymph node retrieval number (< 15), a stage-related gene 
panel allows for tumor restage and more accurate fore-
casting of the risk of lymph node metastasis, which can 
inform clinicians’ postoperative regimen choices. Third, 
for early gastric cancer (T1a/1b) with endoscopic resec-
tion, the signature identified here can be used to help 
decide whether salvage surgery is needed, as it is highly 
linked with lymph node metastasis and infiltration [101, 
102]. Similarly, an extended lymphadenectomy or exten-
sive radical resection may improve long-term outcomes 
for patients with staggeringly high signature scores [103, 
104]. To sum up, more precise preoperative staging can 
be achieved collaboratively using radiological and tran-
scriptomic methods.

This study has some limitations that should be noted. 
First, the prediction model was based on bioinformatic 
analysis and lacked its own validation cohort. Second, 
although a stringent data washing workflow was imple-
mented, there were still some under-staged samples due 
to missing information in the public dataset. Third, the 
nine-gene signature is a probe-based model limited to 
the GPL570 platform; cross-platform validation may 
require systemic correction considering the different sen-
sitivity of gene probes in each platform. Fourth, although 
the nine-gene signature exhibited promising predictive 
ability, the present model was mRNA-based. The perfor-
mance of our signature should be further explained by 
the regulation of corresponding non-coding RNA, other-
wise the consistency of associations across genomic and 
protein-level needs further inquiry. Finally, yet impor-
tantly, both GSEA and conventional enrichment analysis 
methods were used to investigate the expression profile 
differences between groups, but results that drawn from 
each method were fragmented. According to GSEA, 
the Calcium and MAPK signaling pathways achieved 
high normalized enrichment scores. However, none of 
the nine genes were involved in these two pathways. It 
is obvious that biological meanings were limited by the 
gene number of mathematical optimum, which need our 
further expansion.

Conclusion
In summary, under stringent data filtering, nine hub genes 
were identified. These genes predict stage advancement 
in gastric adenocarcinoma. This nine-gene signature may 
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help facilitate clinical decision-making for patients with 
localized STAD of uncertain stage. This model may also 
assist with tumor staging/restaging, especially for those 
patients with insufficient lymph node retrieval. Neverthe-
less, further analysis of the molecular mechanisms under-
lying the roles of these hub genes is required, as well as 
identification of the factors that drive activation/deactiva-
tion of the pathways involved in STAD progression.
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