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Simple Summary: Gliomas make up ~80% of malignant brain tumors in adults and are responsible
for the majority of deaths from primary brain tumors. Consequently, a better understanding of the
malignant features of the TME in glioma is pertinent. The aim of our study was to evaluate the
expression of immune-related genes (IRGs) in glioma and their association with patient prognosis.
We utilized several approaches to interrogate the glioma immune microenvironment. We found
that immune genes are generally negatively associated with survival and that overall survival was
significantly lower in those with a high level of microglia infiltration. The microglia abundance was
significantly associated with common genomic aberrations. Lastly, we generated a 23-gene expression
signature that is highly associated with patient prognosis, independent of clinical variables. These
findings are relevant to investigators in the glioma field, those working in biomarker development,
but also to individuals working on glioma therapeutics.

Abstract: Gliomas make up ~80% of malignant brain tumors in adults and are responsible for the
majority of deaths from primary brain tumors. The glioma tumor microenvironment (TME) is
a dynamic, heterogeneous mixture of extracellular matrix and malignant and non-malignant cells.
Several ongoing clinical trials are evaluating the efficacy of therapies that target non-malignant cells,
particularly immune cells. Consequently, a better understanding of the TME in glioma is pertinent. We
utilized several gene expression datasets to evaluate the relationship between immune-related genes
(IRGs) and patient prognosis. We generated microglia signatures using single-cell RNAseq data from
human and mouse glioma cells to infer microglia abundance. Lastly, we built a LASSO Cox regression
model that predicts patient survival. We found that 428 IRGs were negatively associated with survival
in glioma patients. Overall survival was significantly lower in those with a high level of microglia
infiltration. In addition, we also found that microglia abundance was significantly associated with
several common genomic aberrations, including IDH2 and TP53 mutations. Furthermore, we found
that patients with high risk scores had significantly worse overall survival than those with low risk
scores in several independent datasets. Altogether, we characterized immune features predictive
of overall survival in glioma and found that microglia abundance is negatively associated with
survival. We developed a 23-gene risk score that can significantly stratify patients into low- and
high-risk categories.

Keywords: microglia; glioma; glioblastoma; prognosis

1. Introduction

Gliomas make up ~80% of malignant brain tumors in adults and are responsible
for the majority of deaths from primary brain tumors [1]. Gliomas can originate from
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different types of glial cells, including astrocytes, oligodendrocytes and ependymal cells.
As these cells are present throughout the nervous system, gliomas can appear in various
parts of the brain and spinal cord. The 2021 World Health Organization Classification of
Tumors of the Central Nervous System (WHO CNS) provides detailed tumor classification
guidelines based on histology and immunohistochemistry [2]. Four grades of glioma are
distinguished: grades I and II are considered low-grade gliomas (LGGs), and grades III
and IV are high-grade gliomas (HGGs). In addition, grade IV gliomas are often designated
as glioblastoma (GBM). Treatment is based on molecular profiling and tumor grade and
generally involves surgery, adjuvant therapy and radiotherapy [3].

The glioma tumor microenvironment (TME) is a dynamic, heterogeneous mixture of
extracellular matrix and malignant and non-malignant cells [4]. Half or more of the cells
within the glioma TME are typically non-neoplastic and include neurons, glia, leukocytes
and endothelial cells [5]. Valuable insights have been gained from both the study of T-cell
biology in brain tumors [6,7] and the investigation of other cell populations contributing
to immune suppression in the glioma TME [8–10]. The modulation of these cell popu-
lations in the glioma TME could improve the efficacy of immunotherapy against brain
malignancies [11,12].

Immune checkpoint inhibitors, which mainly target checkpoint proteins, including
PD-1 and anti-PD-L1, on T cells, have not yet significantly improved overall survival for
patients with glioma. Examples of evaluated antibodies include Nivolumab, an anti-PD-1
antibody, Pembrolizumab, an anti-PD-1 antibody, and Ipilimumab, an anti-CTLA4 antibody.
In a phase II clinical trial in resectable GBM, neoadjuvant Nivolumab (anti-PD-1) prior to
tumor resection did not substantiate obvious clinical benefit [13]. Another phase II clinical
trial compared Pembrolizumab (anti-PD-1) to Pembrolizumab with Bevacizumab (anti-
VEGF) and found that Pembrolizumab alone or with Bevacizumab was well-tolerated but
of limited benefit [14]. In a phase III clinical trial comparing Nivolumab (anti-PD-1) to Beva-
cizumab (anti-VEGF) for recurrent GBM, both treatments conferred similar median overall
survival. Lastly, a phase I clinical trial showed that combination therapy of Nivolumab
(anti-PD-1) and Ipilimumab (anti-CTLA-4) in patients with recurrent GBM did not improve
overall survival but worsened treatment-related adverse events (AEs) [15]. Multiple clinical
trials are still underway in glioma and GBM to evaluate, for example, the combination of
immune checkpoint inhibitors and radiotherapy [16]. Given the extraordinary success of
immune checkpoint inhibitors in other cancer types, including metastatic melanoma or
lung cancer, the hope of successfully treating glioma patients with immune checkpoint
inhibitors remains.

Consequently, a better understanding of the TME in glioma is pertinent. In this study,
we evaluated the expression of immune-related genes (IRGs) in glioma and their association
with patient prognosis. We characterized immune features predictive of overall survival
and developed a 23-gene risk score that can stratify patients as having a low and high risk of
death due to glioma. An overview of our study can be found in Supplementary Figure S1.

2. Materials and Methods
2.1. Data Utilized in this Study

Level 3 TCGA RNAseq data and clinical information for low-grade glioma (LGG,
n = 515) and glioblastoma multiforme (GBM, n = 160) were obtained from TCGA on
FireBrowse (gdac.broadinstitute.org/ (accessed on 29 July 2022)). TCGA MAF files for gene
mutation analyses were obtained from https://gdc.cancer.gov/about-data/publications/
pancanatlas (accessed on 29 July 2022). All genes in which non-silent mutations occurred
were considered to be mutated. Total mutation burden (TMB) was represented as the
sum of all non-silent mutations in a given TCGA sample. The copy number variation
(CNV) data were also downloaded from Firehose, which provided DNA segments deviated
from normal copy numbers (copy number = 2) in each tumor sample. The CNV burden
of a sample was calculated as the total size (in bp) of genomic regions covered by those
segments. Macrophage regulation scores, leukocyte and lymphocyte infiltration scores

gdac.broadinstitute.org/
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and IFNγ response and TGFβ response scores for TCGA samples were downloaded as
a supplemental file from prior work [17]. We note here that the TCGA classification of low-
grade gliomas includes grades II and III, although grade III gliomas are considered high-
grade gliomas clinically. The GBM dataset contains all grade IV gliomas. In addition, TCGA
glioma subtypes were assigned based on the fourth WHO CNS version and may not reflect
classification based on the latest WHO CNS version [2]. The transcriptomic and clinical
data of glioma patients from the Rembrandt data (n = 580) [18] were accessed through the
Rembrandt data portal (https://sites.google.com/georgetown.edu/g-doc/home (accessed
on 29 July 2022)). The transcriptomic and clinical data of glioma patients from the Chinese
Glioma Genome Atlas (CGGA) databases (mRNAseq_693, n = 693) were downloaded from
cgga.org.cn (accessed on 29 July 2022).

2.2. Curation of Immune-Related Genes (IRGs)

Immune-related genes (IRGs) were obtained from Supplementary Table S6 from
Charoentong et al. [19], Supplementary Table S1 from Bindea et al. [20] and Supplementary
Table S1A from Xu et al. [21]. All genes from immune cells were collected; i.e., marker genes
attributed to cancer cells were excluded and combined into a single list of IRGs totaling
831 genes.

2.3. Immune Cell Inference

Immune infiltration scores of six immune cells were calculated using Binding Asso-
ciation with Sorted Expression (BASE) [22], a rank-based gene set enrichment method.
Immune cell infiltration using this method has been detailed and validated in previous
publications [23,24]. Briefly, BASE uses immune-cell-specific weight profiles and patient
gene expression data to infer immune cell infiltration for each patient and immune cell
type. Full details on the calculation and validation of the immune infiltration scores can be
found in [23,24]. Similarly, BASE was used to calculate single-cell-based microglia scores
using microglia signatures (see next section).

2.4. Generation of Microglia Signatures

Glioma single-cell-RNAseq datasets from human [25] and mouse gliomas [26] were
obtained from previous publications. Cluster annotations were obtained from these works,
and the biological interpretation of each cluster is extensively described in the correspond-
ing publications. For each human/mouse cluster, a list of marker genes was provided
by identifying genes that were overexpressed in the corresponding cluster as compared
to all other clusters. These cluster-specific marker gene sets were used as microglia sig-
natures [27]. In total, 9 human and 20 mouse microglia signatures were defined. Given
an LGG/GBM gene expression dataset, the BASE algorithm was used to calculate sample-
specific microglia scores for each signature. For all mouse microglia signature genes, we
queried for homologous human genes using biomaRt [28] and used these homologs as
signature genes. Of note, microglia signatures were represented as gene sets without
assigning weights to genes. In this case, the BASE algorithm degenerated into a method
like the single-sample GSEA analysis [29]. A higher microglia score indicates that the
corresponding subtype of microglia cells is more abundant in the tumor.

2.5. Lasso Cox Regression

The TCGA LGG dataset was randomly divided into a training and testing set with
a 1:1 ratio. The training set was analyzed to identify potential prognostic genes, and both
the testing set and the entire set were used for validation. First, univariate Cox proportional
hazards regression analysis was used to evaluate the association between the expression of
the 831 IRGs and overall survival. Genes with a p-value of <0.05 based on the log-rank test
were selected as candidate genes. Second, least absolute shrinkage and selection operator
(LASSO) Cox regression analysis from the R glmnet package was employed to screen the
IRGs most associated with overall survival in a multivariate model, which resulted in

https://sites.google.com/georgetown.edu/g-doc/home
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23 genes (ADAMTSL2, APOBEC3C, ARHGAP12, CARHSP1, CBFB, CD274, EVL, FAM161A,
HIST2H2BE, HSPB1, ITGAV, MYBL1, PLAT, RCCD1, SAR1A, SLC25A45, SMC4, STAP1,
TFDP1, TGIF1, TMEM55B, TNFRSF11B, WEE1). These 23 genes composed the final risk
score, which is described as follows:

iskscore =
n

∑
i=0

βixi

where βi refers to the coefficients of each gene and xi represents the expression value of
the gene.

2.6. Survival Analysis

For univariate and multivariate survival analyses, Cox proportional hazards models
were calculated using the “coxph” function from the R “survival” package. Survival
curves were visualized using Kaplan–Meier curves using the “survfit” function from
the R “survival” package. Median immune cell infiltration scores were used to stratify
patients into “high” and “low” groups for univariate analyses. For multivariate analyses,
an infiltration score of 0 was used as a separator to stratify patients into “high” and “low”
groups. Differences in survival distributions in each Kaplan–Meier plot were calculated
using a log-rank test using the “survdiff” function from the R “survival” package.

2.7. Statistical Analyses

The Spearman correlation coefficient (SCC) was reported for all correlation analyses as
the assumptions underlying the Pearson correlation (i.e., normal distribution, homoscedas-
ticity or linearity) were not met. The SCC was calculated using the R function cor, and
significance was assessed using cor.test. Principal component analysis (PCA) was per-
formed using the prcomp R function. Principal component coordinates for each sample
were extracted using the factoextra R package (https://github.com/kassambara/factoextra
(accessed on 29 July 2022)). Principal component 1 (PC1) was used to represent microglia
infiltration. The sensitivity and specificity of the diagnostic and prognostic prediction mod-
els were analyzed by the ROC curve and quantified based on the area under the ROC curve
(AUC). All statistical tests were two-sided, and p-values < 0.05 were considered statistically
significant. All statistical analyses were performed using R software (Version 3.5.2).

2.8. Data Availability

All data available in this study are publicly available. These data can be found at: gdac.
broadinstitute.org/ (accessed on 29 July 2022), https://gdc.cancer.gov/about-data/publications/
pancanatlas (accessed on 29 July 2022), https://sites.google.com/georgetown.edu/g-doc/home
(accessed on 29 July 2022), http://www.cgga.org.cn/ (accessed on 29 July 2022).

3. Results
3.1. Immune-Related Genes (IRGs) Are Negatively Associated with Prognosis in Glioma

The glioma TME is heterogeneous and incorporates many different cell types. To focus
in on infiltrating immune cells, we compiled a list of 831 immune-related genes (IRGs)
from several publications [19–21] and evaluated the expression of these genes in LGGs and
GBM. We observed that the majority of IRGs were negatively associated with survival in
both LGGs and GBM (Figure 1A,B). This was especially prominent in LGGs, where 428 of
the 520 significant IRGs were negatively associated with survival, indicating that higher
expression of these IRGs conferred shorter survival. Comparing the expression of IRGs
between LGGs and GBM, we found that GBM expressed the highest levels of IRGs, with
294 IRGs overexpressed in GBM and only 71 IRGs overexpressed in LGGs (Figure 1C).
Several immune checkpoints were among the IRGs associated with poor survival in LGGs,
including HAVCR2 (log-rank p = 0.001), CD274 (log-rank p = 0.001), CD276 (log-rank
p = 4 × 10–5) and CTLA-4 (log-rank p = 0.005) (Figure 1D). Thus, IRGs are overexpressed

https://github.com/kassambara/factoextra
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in LGGs and GBM tumors with poor prognosis, and these include immune checkpoint
molecules. Since many more IRGs were differentially expressed in LGGs as compared to
GBM, we focused the remainder of the study on LGGs.
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Figure 1. Immune-related genes (IRGs) are negatively associated with prognosis in glioma. Log2
hazard ratio of univariate Cox regression models evaluating the association between overall survival
and IRG expression in (A). TCGA-LGG (n = 515) and (B). TCGA-GBM (n = 160). (C). Log2 fold change
between IRG expression in TCGA-LGG (n = 515) and TCGA-GBM (n = 160). (D). Kaplan–Meier plots
of four immune checkpoint genes in TCGA-LGG (n = 515). HR = hazard ratio. p = log-rank p-value.

Several types of immune cells infiltrate into the glioma TME. For example, T cells,
tumor-associated macrophages (TAMs)/monocytes, NK cells, B cells, neutrophils and
dendritic cells (DCs) have all been observed in glioma tumors [10]. To further elucidate
which immune cell types confer a poor prognosis in glioma, we estimated the abundance
of six immune cell types commonly present in the TME: memory B cells, naïve B cells,
CD4+ T cells, CD8+ T cells, NK cells and monocytes. We then clustered patients based
on their immune infiltration profile and observed two groups of patients: patients with
high infiltration of monocytes but no other immune cell types (group 1) and patients
with high infiltration of all immune cell types except monocytes (group 2) (Figure 2A).
When comparing overall survival, patients with high monocyte infiltration (group 1)
had significantly shorter survival as compared to patients with a broader immune cell
infiltration pattern (group 2) (Figure 2B, log-rank p = 9 × 10–5).

We observed a similar pattern when investigating the relationship between overall
survival and individual immune cell types; higher infiltration of naïve B cells (log-rank
p = 0.001), memory B cells (log-rank p = 8 × 10–4) and CD4+ T cells (log-rank p = 0.001)
was associated with longer overall survival, whereas higher infiltration of monocytes was
associated with shorter overall survival in LGGs (log-rank p = 6 × 10–4) (Figure 2C). We
confirmed the significant association of naïve B cells and monocytes with survival in two in-
dependent datasets (Supplementary Tables S1 and S2). Although CD8+ T cell infiltration
was not significantly associated with survival in the TCGA dataset, the two independent
LGG datasets both showed a significant association between higher CD8+ T cell infiltration
and longer overall survival (Supplementary Tables S1 and S2). Lastly, higher infiltration
of both naïve and memory B cells was significantly associated with longer survival in
GBM (Supplementary Tables S3 and S4). Thus, immune cell infiltration is associated with
prognosis in glioma. In LGGs, high monocyte infiltration is associated with shorter survival,
and the infiltration of other immune cells is associated with a better prognosis.
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Figure 2. Patterns of immune infiltration in low-grade glioma. (A). Heatmap depicting the infiltration
scores for six immune cell types in TCGA-LGG. Top sidebar indicates the grouping of the samples
based on hierarchical clustering. (B). Kaplan–Meier plot depicting differential overall survival
between group I and group II. (C). Kaplan–Meier plots comparing low and high infiltration of four
immune cell types. HR = hazard ratio. p = log-rank p-value.

3.2. Microglia Abundance Is Negatively Associated with Prognosis in Glioma

Microglia are the resident macrophages of the brain [1], and the above infiltration of
monocytes likely resembles, at least partially, the infiltration of microglia into the tumor.
Indeed, we observed that several genes prominently expressed in microglia, CCR5 and
TREM2, were also negatively associated with patient survival (Figure 3A), mirroring the
negative association between monocytes and overall survival (Figure 2C). We thus sought
to improve the inferred monocyte profile to resemble microglia infiltration more closely.
We obtained two single-cell RNA-seq (scRNA-seq) datasets, one from human [25] and one
from murine gliomas [26], and isolated all cell clusters that were designated as microglia
cells by the study authors. This resulted in 9 clusters for human and 20 clusters for mouse
microglia cells. For each microglia cluster, we generated a gene expression signature (see
Methods) and inferred the abundance of these signatures in LGG patients.

We observed that almost all microglia signatures were strongly associated with
monocyte infiltration (Supplementary Figure S2), again suggesting that our monocyte
signature likely captures signals from infiltrating microglia cells. In addition, inferred
microglia abundance was highly positively correlated with several markers expressed
in microglia cells, including ITGAM, CCR5 and FCGR2A (Supplementary Figure S3A).
Lastly, the majority of IRGs (Supplementary Figure S3B) and immune checkpoint genes
(Supplementary Figure S3C) were positively associated with microglia signature scores. It
thus seems that our inferred microglia scores represent intratumoral microglia abundance
and are positively associated with IRG expression, including checkpoint genes.

We next assessed the relationship between microglia infiltration and overall survival.
Almost all 29 signatures, except for 1 human and 3 mouse signatures, were negatively
associated with overall survival (Figure 3B). For example, higher inferred infiltration
of hC1_MG1, resembling microglia with homeostatic functions [25], and hC9_MG9, re-
sembling proliferating microglial cells [25], was associated with shorter overall survival
(Figure 3C). In addition, higher abundance of mC3_Ube2c, resembling proliferating mi-
croglial cells [26], and mC9_center, resembling microglia with interferon expression (26),
was also associated with shorter overall survival (Figure 3C). When correlating the inferred
levels of all signatures with each other, we noticed that all signatures were highly positively
correlated with one another (Figure 3D), suggesting high overlap in the signals captured by
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these different signatures. We thus aimed to unify these signatures and generate a single
signature that resembles all microglia signatures. We performed dimensionality reduction
(principle component analysis (PCA)) on the inferred human microglia signature scores
and observed that the first principle component (PC) was highly positively correlated with
all microglia signatures (Supplementary Figure S3D) and captured 72% of the variation
among patients (Figure 3E). This suggested that PC1 can represent all human microglia
signatures, and we thus utilized PC1 to represent overall microglia infiltration. When
comparing overall survival between patients with high microglia abundance (PC1-high)
and low microglia abundance (PC1-low), we observed that patients with high microglia
abundance had significantly shorter survival (log-rank p = 4 × 10–5, Figure 3F). In con-
clusion, high microglial infiltration can be captured by gene-expression-based microglia
abundance inference and is associated with shorter survival.
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Figure 3. Microglia abundance is negatively associated with prognosis in low-grade gliomas.
(A). Kaplan–Meier plot comparing overall survival between patients with low and high expres-
sion of CCR5 (left) and TREM2 (right). (B). Hazard ratios of univariate Cox regression models
evaluating the association between overall survival and 9 human microglia signatures (“h”) and
20 mouse microglia signatures (“m”). (C). Kaplan–Meier plots depicting the association between over-
all survival and four microglia signatures. (D). Spearman correlation between the 29 microglia gene
expression signatures. (E). Principle component analysis (PCA) on the expression of the 29 microglia
gene expression signature in TCGA-LGG patients. (F). Kaplan–Meier plot showing the association
between overall survival and principle component 1 (PC1) in TCGA-LGG.

We next sought to validate our findings in the TCGA-LGG dataset in independent
gene expression datasets. Since both independents datasets are based on human glioma
biopsies, we focused on the 9 human microglia signatures. We indeed confirmed that
almost all human signatures were significantly associated with overall survival in the Rem-
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brandt and CGGA datasets and that PC1-high patients had significantly shorter survival
(Figure 4A–D), confirming our earlier findings. Several subtypes of glioma exist, with as-
trocytoma, oligoastrocytoma and oligodendroglioma being the most common subtypes [1].
As each subtype originates from a different cell type and consequently confers different
morphologies, we investigated what would occur if microglia abundance were different
as well. We indeed observed a difference among subtypes: astrocytomas contained the
highest levels of microglia infiltration, whereas oligodendrogliomas had the lowest levels of
microglia infiltration (Figure 4E). When assessing overall survival, no difference in overall
survival in astrocytomas was observed when comparing high vs. low microglia infiltration,
but patients with lower microglia infiltration had significantly longer survival than patients
with oligoastrocytoma and oligodendroglioma (Figure 4F). Lastly, we evaluated the rela-
tionship between overall survival and microglial abundance while adjusting for several
important clinical variables known to be associated with prognosis. We observed that
microglia infiltration was still associated with prognosis in multivariate regression analysis
(Figure 4G), suggesting that microglia abundance is an independent prognosis marker. In
conclusion, microglia infiltration is associated with survival, varies among glioma subtypes
and can be used as a prognostic marker independent of clinical variables.
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Figure 4. Microglia abundance is negatively associated with prognosis in independent datasets and
subtypes of low-grade glioma. (A). Hazard ratios of univariate Cox regression models evaluating the
association between overall survival and 9 human microglia signatures and PC1 in the Rembrandt
dataset. (B). Kaplan–Meier plot depicting the association between overall survival and PC1 in
the Rembrandt dataset. (C). Hazard ratios of univariate Cox regression models evaluating the
association between overall survival and 9 human microglia signatures and PC1 in the CGGA
dataset. (D). Kaplan–Meier plot depicting the association between overall survival and PC1 in
the CGGA dataset (mRNAseq_693). (E). Boxplot comparing PC1 scores among glioma subtypes.
Astro. = astrocytoma, Oligoa. = oligoastrocytoma and Oligod. = oligodendroglioma. (F). Kaplan–
Meier plots depicting the association between overall survival and PC1 in different glioma subtypes
in the TCGA dataset. (G). Forest plot depicting hazard ratios of univariate Cox regression models
evaluating the association between overall survival and several clinical parameters.

3.3. Microglia Infiltration Is Associated with the mRNA Expression of Immune Checkpoint Genes
and Immune Regulatory Pathways

The glioma TME is often highly infiltrated by non-neoplastic cells, with half or more
of the cells within the glioma TME being non-neoplastic [5]. We thus wanted to evaluate
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the relationship between microglial abundance and non-neoplastic cells, particularly im-
mune cells, in more detail. We first correlated microglial abundance with our curated IRGs
and observed that a substantial fraction of IRGs was positively associated with microglial
abundance, including immune checkpoint genes such as C10orf54 (VISTA), HAVCR2
(TIM-3) and CD274 (PD-L1) (Figure 5A). In addition, genes expressed predominantly in
microglia were strongly positively associated with microglial abundance (Figure 5B), in-
cluding CD68 and MSR1 (Figure 5C), suggesting again that PC1 represents microglial
infiltration. Similarly, a macrophage regulation score was also positively associated with
microglia abundance (Figure 5D). This score represents a colony-stimulating factor-1 (CSF1)
response [30], which is the primary regulator of tissue macrophages and induces prolifer-
ation, differentiation and survival of macrophages and microglia [31]. Lastly, microglia
abundance was more highly correlated with M2 macrophages (SCC = 0.50) as compared
to M1 macrophages (SCC = 0.17) (Supplementary Figure S4), suggesting that microglia
abundance is associated with a suppressive TME.
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Figure 5. Microglia infiltration is associated with the mRNA expression of immune checkpoint genes
and immune regulatory pathways. (A). Spearman correlation coefficient (SCC) between PC1 and the
mRNA expression of several immune checkpoint genes. (B). SCC between PC1 and mRNA genes
expressed in microglia. (C). SCC between PC1 and CD86 and MSR1 mRNA levels. (D). SCC between
PC1 and a macrophage regulation score. (E). SCC between PC1 and leukocyte and lymphocyte
infiltration. (F). SCC between PC1 and IFNγ response and TGFβ response.

When assessing the relationship between microglia infiltration and general immune
cell infiltration, we observed a positive association with both leukocyte and lymphocyte in-
filtration (Figure 5E). We previously noticed a positive correlation between single-cell-based
microglial signatures and B-cell infiltration (Supplementary Figure S2) and hypothesize that
the positive correlation observed in Figure 5E was at least in part due to B-cell infiltration.
Lastly, we inferred pathway activity of several immune pathways, including IFNγ and
TGFβ pathways. Both pathways were positively correlated with microglia infiltration
(Figure 5F). In conclusion, microglia infiltration is associated with the expression of many
immune checkpoint proteins and immune-related pathways.

3.4. Microglia Infiltration Is Associated with Specific Genomic Alterations

After evaluating the relationship between immune-related characteristics and mi-
croglia infiltration, we next investigated the relationship between genomic alterations and
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microglia infiltration. Several genomic alterations are prominent in glioma, including
isocitrate dehydrogenase (IDH) mutations and CDKNA2A deletions. We first evaluated
somatic mutations and observed that several common gene mutations were associated with
microglia infiltration (Figure 6A). For example, patients with TP53 mutations tended to
have higher levels of microglia in their tumor, whereas patients with CIC or IDH2 mutations
tended to have lower microglia infiltration (Figure 6B). A large number of copy number
variations (CNVs) were associated with microglia infiltration, most notably EGFR ampli-
fications and CDKNA2A deletions; both of these genomic abnormalities were associated
with increased microglia infiltration (Figure 6C). Lastly, neither overall mutation counts nor
overall CNVs were not associated with microglia infiltration (Figure 6D,E). These results
suggest that specific genomic alterations are involved in microglia infiltration and not the
general level of genomic abnormalities.
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Figure 6. Microglia infiltration is associated with specific genomic alterations. (A). Heatmap indi-
cating the incidence of coding mutations (horizontal red bars) and the level of microglia infiltration
(top bar). (B). Box plot of microglia infiltration in patients with or without coding mutations in
the specified genes. (C). Box plot of microglia infiltration in patients with or without copy number
variations (CNVs) in the specified genes. (D). Relationship between microglia infiltration and the
number of non-silent mutations. (E). Relationship between microglia infiltration and total CNVs.

3.5. A 23-Gene Risk Score Is Highly Associated with Overall Survival in Glioma

As we have shown previously, microglia infiltration is associated with survival inde-
pendently of clinical variables (Figure 4). However, the inference of microglia abundance
throughout our studies has been based on a large number of genes, each contributing to the
final infiltration score. In order to generate a potentially clinically useful tool, we thus aimed
to significantly reduce the number of genes in a signature that can be used to risk-stratify
glioma patients. We used Lasso Cox regression for feature (gene) selection and ended up
with a 23-gene risk score (Methods, Supplementary Figure S5A). The following genes were
included in the risk score: ADAMTSL2, APOBEC3C, ARHGAP12, CARHSP1, CBFB, CD274,
EVL, FAM161A, HIST2H2BE, HSPB1, ITGAV, MYBL1, PLAT, RCCD1, SAR1A, SLC25A45,
SMC4, STAP1, TFDP1, TGIF1, TMEM55B, TNFRSF11B and WEE1. The expression of these

genes was weighted and summed to generate a final risk score (riskscore =
n
∑

i=0
βixi where

βi refers to the coefficients of each gene and xi represents the expression value of the gene).
This signature was significantly associated with glioma survival in the TCGA training
dataset (Figure 7A) and in two independent datasets (Figure 7B,C), with higher risk scores
being associated with shorter overall survival. This signature is specific to glioma and not
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GBM as only one of the three datasets showed a significant relationship between overall
survival and the risk score in GBM (Figure 7D, Supplementary Figure S5B). Notably, the
risk score was highly associated with survival when evaluated in a multivariate model with
several clinical variables (Figure 7E). In this model, the hazard risk (HR) of our risk score
was much larger than that of tumor grade, a commonly used risk stratification measure in
glioma [3]. In conclusion, we developed a 23-gene risk score that is highly associated with
prognosis in glioma and can be used in addition to other clinical variables.
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Figure 7. A 23-gene risk score is highly associated with overall survival in low-grade glioma. Kaplan–
Meier plot showing the association between overall survival and the 23-gene risk score in (A).
TCGA-LGG, (B). the Rembrandt dataset (mRNAseq_693, non-GBM), (C). CGGA (mRNAseq_693,
non-GBM) and (D). CGGA (GBM). (E). Forest plot of hazard ratios derived from multivariable Cox
regression analysis including the listed variables.

4. Discussion

Glioma is a heterogeneous disease in which many non-malignant cells infiltrate into
the TME. Several clinical trials are underway to assess the efficacy of targeting these
non-malignant cells [5], especially immune cells. To better understand the relationship
between the immune system and patient survival in gliomas, we first started out by
investigating the relationship between IRG expression and patient prognosis. We found
that the overexpression of many IRGs is associated with shorter overall survival. However,
this is contrary to the expression of immune genes in several other cancer types; expression
of IRGs is associated with better survival in, for example, melanoma and kidney cancer [19].
Notably, several immune checkpoint genes were among the IRGs negatively associated
with survival. Thus, this led us to investigate the effect of immune checkpoint inhibitors as
a possible mechanism for these unique effects.

Further investigation showed that the abundance of monocytes, but not other im-
mune cell types, was negatively associated with prognosis. As microglia are the resident
macrophages of the brain [5], we reasoned that this monocyte profile is likely in part reflec-
tive of microglia abundance. We used scRNAseq-based microglia signatures to evaluate the
infiltration of microglia in a more efficient manner. These signatures, as well as a compiled
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microglia signature, were positively associated with the majority of IRGs and immune
checkpoint genes. We hypothesize that microglia express several immune checkpoint genes
and in turn negatively regulate T-cell activation. In addition, microglia potentially act as
antigen-presenting cells (APCs), given their ability to upregulate the expression of MHC
class II and costimulatory molecules [32]. Thus, in the presence of immune checkpoint ex-
pression, T-cell activation will be attenuated, and no effective antitumor response would be
initiated. Alternatively, in pathological states, microglia produce proinflammatory factors
such as cytokines and chemokines [33] that promote tumor invasiveness [34].

Microglia abundance was associated with several genomic alterations. For example,
tumors with IDH2 mutations had significantly lower infiltration of microglia as compared
to tumors without IDH2 mutations. It is known that IDH wildtype gliomas have a poorer
prognosis and are molecularly similar to GBM [35]. This is consistent with our finding
that higher microglia infiltration is associated with shorter survival. CNVs in EGFR and
CDKNA2A often occur in the absence of IDH mutations [35]. These alterations were
consequently associated with higher microglia infiltration. Overall, TMB and CNV burden
were not associated with microglia infiltration, suggesting that specific genomic alterations
affect microglia infiltration and not the magnitude of genomic aberrations.

Lastly, we developed a 23-gene risk score that can stratify high- and low-risk patients
irrespective of the predictive ability of clinical variables. This risk score was validated in
independent datasets and was strongly associated with prognosis. Interestingly, prognosis
could only be predicted in gliomas but not high-grade gliomas, or glioblastoma (GBM).
It was also notable that a much smaller number of IRGs were significantly and differen-
tially expressed in GBM as compared to LGGs. This is likely due to the more aggressive
phenotype of GBM as compared to a glioma, which confers a high risk itself. We do note
that the TCGA-LGG dataset contains includes both grades II and III, although grade III
gliomas are considered high-grade gliomas clinically. Thus, this observation seems specific
to high-grade grade IV gliomas. The 23-gene signature could be clinically relevant as only
a small number of genes need to be measured to establish a patient-specific risk score.

Previous studies have aimed at identifying TME-related factors associated with prog-
nosis. For example, Ni et al. (2020) used the ESTIMATE algorithm [36] in combination with
network analysis to identify a signature of 25 immune genes associated with prognosis [37].
Similar to our study, high signature scores, i.e., high immune infiltration, was associated
with shorter overall survival. While this study identified a non-specific immune signa-
ture that was validated in one dataset, we developed a microglia-specific signature and
validated our signature in multiple independent datasets. The increased specificity of our
signature adds biological relevance and could aid in patient selection for microglia-specific
interventions in the future.

Although our study provides valuable insights into the potential role of microglia in
LGGs, we note a few limitations of our study. First, we used immune inference methods
to infer the abundance of immune cells and microglia. While these methods have been
thoroughly validated, a more precise quantification using, for example, immunohisto-
chemistry, would complement our inference estimates. Second, the expression of immune
checkpoints was based on mRNA data, which might not reflect protein levels. Lastly, our
23-gene signature needs to be validated in a prospective study to assess clinical efficacy.
The potential difference between risk score quantification in FFPE or fresh glioma samples
would also need to be evaluated to establish clinical utility.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14194802/s1, Figure S1: Overview of our study; Figure S2:
Correlation between immune cell infiltration and microglia abundance; Figure S3: Correlation of IRGs
with microglia infiltration; Figure S4: Spearman correlation between PC1 and (A) M1 macrophage
and (B) M2 macrophage scores; Figure S5: Development of a microglia risk score for glioma by
LASSO-cox regression analysis. Table S1: Immune cell infiltration in glioma (Rembrandt); Table S2:
Immune cell infiltration in glioma (CGGA); Table S3: Immune cell infiltration in GBM (Rembrandt);
Table S4: Immune cell infiltration in GBM (CGGA).
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