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Abstract

In cystic fibrosis (CF), reduced HCO3
2 secretion acidifies the airway

surface liquid (ASL), and the acidic pH disrupts host defenses. Thus,
understanding the control of ASL pH (pHASL) in CF may help
identify novel targets and facilitate therapeutic development. In
diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate
HCO3

2 and Cl2 transport, but their functions in airway epithelia are
poorly understood. Here, we tested the hypothesis that WNK kinases
regulate CF pHASL. In primary cultures of differentiated human
airway epithelia, inhibiting WNK kinases acutely increased both CF
and non-CF pHASL. This response was HCO3

2 dependent and
involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-
alanine-rich protein kinase/oxidative stress responsive 1 kinase).

Importantly, WNK inhibition enhanced key host defenses otherwise
impaired in CF. Human airway epithelia expressed twoWNK
isoforms in secretory cells and ionocytes, and knockdown of either
WNK1 orWNK2 increased CF pHASL. WNK inhibition decreased
Cl2 secretion and the response to bumetanide, an NKCC1 (sodium-
potassium-chloride cotransporter 1) inhibitor. Surprisingly,
bumetanide alone or basolateral Cl2 substitution also alkalinized CF
pHASL. These data suggest that WNK kinases influence the balance
between transepithelial Cl2 versus HCO3

2 secretion. Moreover,
reducing basolateral Cl2 entry may increase HCO3

2 secretion and
raise pHASL, thereby improving CF host defenses.
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anion transport; pH

Cystic fibrosis (CF) is an inherited,
multisystem channelopathy caused by
mutations in the CFTR (cystic fibrosis
transmembrane conductance regulator)
gene (1–3). Loss of CFTR protein function
reduces anion secretion, disrupts
epithelial function, and impairs airway
host defense. These abnormalities result in

chronic airway obstruction, inflammation,
infection, tissue destruction, and
bronchiectasis and limit the life span of
affected individuals.

CFTR is an apical HCO3
2 and Cl2

channel (4–6). In airway epithelia, these
transport activities control the acid–base
balance and composition of the thin film

of liquid, the airway surface liquid (ASL),
that covers the apical membrane. The ASL
interfaces with the environment and
mediates at least two vital respiratory host
defenses (7–9). Mucociliary clearance uses
gel-forming mucins to trap inhaled
particles and ciliary beating to propel them
out of the airways. Secreted antimicrobial
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peptides disrupt bacterial cell membranes
and kill inhaled pathogens. An abnormally
acidic pH of the ASL (pHASL) resulting
from reduced CFTR-mediated HCO3

2

secretion impairs these respiratory defenses
(10–18). Importantly, ASL alkalinization
rescues these defects and may benefit
individuals with CF independent of CFTR
genotype (19–21).

Transepithelial HCO3
2 secretion is a

complex process. Several studies have
identified key apical and basolateral
transporters involved in this process
(11, 22–25); others have resolved tissue-
specific and species–specific differences
(26–28). However, the cellular and
molecular mechanisms that regulate airway
HCO3

2 secretion in humans remain
incompletely defined. CF airways express
apical HCO3

2 channels and transporters
other than CFTR (8, 29). Thus, identifying
mechanisms that regulate non-CFTR
HCO3

2 secretion may suggest novel ways
to increase CF pHASL.

We considered that knowledge of
HCO3

2 transport in nonairway epithelia
might yield insights relevant to CF airways.
In several epithelia, the WNK (with-no-
lysine [K]) kinases act as key regulators of
anion transport (30, 31). WNK kinases are
serine/threonine protein kinases that
modify surface expression or activity of
membrane transporters. In the pancreas,
which shares similarities with airway
HCO3

2 transport, WNK kinases control
ductal HCO3

2 secretion (26, 32). In one
study of mouse pancreatic duct, silencing
of WNK kinases increased, and WNK
expression decreased HCO3

2 secretion
(33). In other reports, these kinases were
shown to modulate CFTR HCO3

2 channel
activity (34, 35) and membrane expression
of SLC26 (solute carrier 26) family
transporters (36). However, whether WNK
kinases coordinate HCO3

2 secretion across
human airway epithelia remains poorly
understood.

In this study, we tested the hypothesis
that WNK kinases regulate CF pHASL. We
studied primary cultures of differentiated
human airway epithelia and applied
pharmacologic and genetic interventions to
elicit responses. Our results show that airway
epithelia express twoWNK isoforms, WNK1
andWNK2, in secretory cells and ionocytes.
Importantly, reducingWNK kinase activity
increases pHASL and enhances key
respiratory host defenses that are otherwise
impaired in CF.

Methods

Additional details on materials andmethods
are in the data supplement.

Cell Culture
Airway epithelial cells were harvested from
human lungs procured as postmortem
specimens, as explants from patients
undergoing lung transplant, or as lungs
deemed unfit for transplant. Informed
consent for use in research was obtained. All
studies were approved by the University of
Iowa Institutional Review Board. Proximal
bronchi were dissected, cut into small pieces,
and enzymatically digested. Epithelial cells
were isolated and seeded without passage
onto collagen-coated inserts (Costar, 3470;
Falcon, 353180). Cell culture medium
comprised a 1:1 mixture of Dulbecco’s
modified Eagle medium/F-12, supplemented
with 2% Ultroser G (Sartorius). Epithelia
were differentiated at the air–liquid interface
for 3 weeks or more before assay (37).
During the course of this study, new CF lung
donors became scarce, partly due to more
individuals taking highly active CFTR
modulators. To manage this situation,
epithelial cells from previous donors with
CF cryopreserved at P0 were thawed and
differentiated. Table E1 in the data
supplement reports genotypes of CF donors
included in this study. Whenever feasible,
studies followed a paired design so that
epithelia from the same donor were assayed
under control and treatment conditions.
In experiments shown in Figure 2B,
differentiated airway epithelia were generated
from cryostocks of transformed human
airway epithelial cell lines NuLi-1 (wild-type
[WT]/WT) and CuFi-4 (G551D/DF508), as
previously reported (38). These cell lines
were used as additional models to test CFTR
dependence of pHASL responses evoked by
inhibitingWNK kinases. To assess cytokine-
induced responses, epithelia were treated
with a combination of 10 ng/ml TNFa
(R&D Systems) and 20 ng/ml IL-17
(R&D Systems). Both cytokines were added
to the Ultroser G-supplemented basolateral
media for 48 hours before assessments.

Pharmacologic Reagents
WNK463 and ivacaftor were purchased from
Selleckchem. Other reagents were purchased
fromMilliporeSigma.

Single-Cell RNA-seq and Analysis
Cells for scRNA-seq (single-cell RNA
sequencing) were obtained from primary
cultures of human airway epithelia. The
epithelia were grown at the air–liquid
interface for 3 weeks or more before assay.
The cell culture methods were the same as
reported above. At the time of assessment,
all epithelia were visibly dry on the apical
side. Electrophysiologic assessments in
Ussing chambers showed a mean basal
transepithelial conductance (Gt) of
3.2 mS/cm2, resistance of 433.3 V.cm2,
and short-circuit current (ISC) of
72.6 mA/cm2. These properties indicated
well-differentiated, polarized epithelia
performing electrogenic ion transport.
Additional details about library
preparation, sequencing methods, and
bioinformatic analysis can be found in the
supplement. The data are available in the
National Center for Biotechnology
Information’s Gene Expression Omnibus
(GEO) database (GEO GSE159056).

Immunocytochemistry
Airway epithelia were washed, fixed,
permeabilized, and immunostained to reveal
WNK1 andWNK2 expression. See
supplemental methods for details.

pHASL Measurement
pHASL was measured using a fluorescent
ratiometric pH indicator, SNARF-1,
conjugated to 70 kD dextran (Thermo Fisher
Scientific). Additional details are reported in
the supplement.

Epithelial Host Defenses
Several assays were performed to assess
epithelial defense mechanisms. 1) ASL
viscosity was measured using the
fluorescence recovery after photobleaching
method (12). 2) Liquid absorption was
measured using the micropipette technique
(39). 3) Ciliary beat frequency was measured
using phase contrast microscopy. 4) ASL
antimicrobial activity was assessed using
bacteria-coated grids (13). Additional details
on these assays are provided in the
supplement.

siRNA Knockdown
Gene knockdown in primary CF airway
epithelia was achieved as reported previously
(40). siRNAs were obtained from Integrated
DNA Technologies (negative control: IDT DS
NC 1;WNK1: IDT hs.Ri.WNK1.13.2;WNK2:
IDT hs.Ri.WNK2.13.3) and transfected into
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dissociated primary airway epithelial cells
using Lipofectamine RNAiMax (Invitrogen).
Transfected cells were seeded onto collagen-
coated inserts (Costar, 3470) and
differentiated at the air–liquid interface.
pHASL was measured at Day 6 or 7 after
seeding. The efficiency of gene knockdown
was assessed with RT-PCR.

Electrophysiologic Studies
Airway epithelia were mounted in
modified Ussing chambers (Physiologic
Instruments) and bathed in symmetric
Krebs buffer solution. Epithelia were
voltage clamped, followed by recording of
the ISC and Gt. See supplemental
information for details.

Bulk RNA-seq
RNA isolation, library preparation,
sequencing, and bioinformatics analysis were
previously reported (41). RNA-seq data are
available in the National Center for

Biotechnology Information’s GEO database
(GEOGSE176121).

Real-Time PCR
The primer pairs used were as follows:
WNK1, 59-GCCGTCAGATCCTTAAAGGT
C-39 and 59-CCAGTAGGGCCGGTGAT
AA-39;WNK2, 59-CATACCTGAAGCG
GTTCAAGG-39 and 59-CTTTTGGCAAA
TGACGCTCTTT-39; and SFRS9, 59-
TGCGTAAACTGGATGACACC-39 and
59-CCTGCTTTGGTATGGAGAGTC-39.
See supplemental methods for details.

Statistics
Statistical significance testing was
performed on GraphPad Prism
8 Software. Statistical tests included paired
Student’s t test for comparing two groups
and one-way ANOVAwith Tukey’s multiple
comparison test for comparingmore than two
groups. A P value of,0.05 was considered
significant.

Results

Airway Epithelia Express WNK1
and WNK2
The fourWNK isoforms are expressed in a
tissue-specific manner (42, 43). However,
their expression in human airways remains
relatively unexplored. Recent scRNA-seq
studies have revealed considerable cellular-
level heterogeneity within airway epithelia
with implications for ion transport (44–46).
Notably, these studies have shown that
secretory cells express nearly half the
epithelial CFTR transcript, and the ionocytes,
though rare, express the highest amount on a
per-cell basis (44–47). These cell types also
express basolateral transporters involved in
HCO3

2 and Cl2 secretion.
To identify whichWNKkinasesmight

regulate anion transport across airway epithelia,
we performed scRNA-seq.We studied primary
cultures of differentiated airway epithelia from
four different donors without CF and four
different donors with CF and examined
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Figure 1. Expression of WNK (with-no-lysine [K]) kinases in human airway epithelia. (A and B) Single-cell RNA-seq was performed on primary
cultures of differentiated airway epithelia from donors without (n=4) and with cystic fibrosis (CF) [n=4; see Table E1 for cystic fibrosis
transmembrane conductance regulator (CFTR) genotypes]. Dot plot showing cell type–specific expression of the four WNK isoforms, and STK39
(serine/threonine kinase 39) and OXSR1 (oxidative stress responsive kinase 1), which encode Ste20/SPS1-related proline-alanine-rich protein
kinase (SPAK) and oxidative stress responsive 1 kinase (OSR1), respectively. CDH1 (e-cadherin) is included as a reference epithelial gene. For
each dot, the size represents the detection rate in a particular cell type, and the color represents average gene expression for cells in which
gene was detected. Data for CF ionocytes is not shown, as these cells were not detected in three out of four CF epithelia. Also see Figure E2.
(C and D) Confocal images showing WNK1 and WNK2 immunolocalization in non-CF and CF epithelia. Scale bar, 5 mm. For each panel, similar
staining results were obtained in two different donors. RNA-seq = RNA sequencing; PNEC = pulmonary neuroendocrine cell.
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cell type–specificWNK gene expression
(Figures 1A and 1B).WNK1was broadly
expressed in all major cell types (i.e., secretory
cells, ciliated cells, and basal cells), as well as
ionocytes.WNK2was also abundantly
expressed in secretory cells and ionocytes. In
contrast toWNK1,WNK2was rarely detected
in ciliated or basal cells. The remainingWNK
isoforms,WNK3 andWNK4, were either not
expressed, or expressed at a very low level.
Importantly,WNK genes showed similar
expression in CF versus non-CF epithelia
(Figure E2).We also studied the expression of
the twomain downstream kinases (i.e., STK39,
which encodes Ste20/SPS1-related proline-
alanine-rich protein kinase [SPAK], and
OXSR1, which encodes oxidative stress
responsive 1 kinase [OSR1]). Both genes were
broadly expressed and abundantly detected in
secretory cells as well as ionocytes.

To reveal WNK protein expression, we
immunolabeled non-CF and CF epithelia for
WNK1 andWNK2 (Figures 1C and 1D).
In agreement with scRNA-seq results, we
detectedWNK1 in ciliated as well as
nonciliated cells andWNK2 predominantly
in nonciliated cells. Further immunol-
ocalization studies revealedWNK1 and
WNK2 expression in secretory cells (labeled
with anti-CC10 antibody) as well as ionocytes
(labeled with anti-BSND antibody). Overall,
these studies identified twoWNKkinases in
airway cells that secrete anions.

WNK Inhibition Increases CF pHASL

Several HCO3
2 and H1 transport

mechanisms integrate to determine pHASL,
and pHASL influences host defense (13, 19).
To begin to understand the role ofWNK
kinases in regulating pHASL, we used
pharmacologic WNK inhibition.WNK463 is
a selective, ATP-competitive, pan-WNK
kinase inhibitor and has recently emerged as
a useful tool for studying ion transport
physiology (48–51). We exposed airway
epithelia to either vehicle orWNK463 for
2 hours and measured pHASL in an
environment containing 25 mMHCO3

2 and
5% CO2. In primary cultures of both CF and
non-CF epithelia, WNK463 increased pHASL

(Figure 2A). As an additional test, we also
studied NuLi-1 (WT/WT) and CuFi-4
(G551D/DF508) epithelia and found
thatWNK463 elicited similar responses
(Figure 2B). Alkalinization in CF epithelia
indicated that theWNK463-induced response
did not require CFTR. However, exposure of
WNK463-treated CuFi-4 epithelia to ivacaftor
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Figure 2. WNK463 increases airway surface liquid pH (pHASL). Human airway epithelia were
exposed to either vehicle or WNK463 (10 mM) for 2 hours, and pHASL was measured using
SNARF-1-dextran. (A) pHASL responses in primary cultures of non-CF (n=7) and CF epithelia
(n=8). (B) pHASL responses in NuLi-1 (n=6) and CuFi-4 epithelia (n=6). Ivacaftor (10 mM) was
applied for 2 hours in combination with WNK463. (C) pHASL response in primary CF epithelia in
the presence of HCO3

2/CO2 and after replacing HCO3
2 with HEPES and removing CO2 from

the environment (n=4). (D) Time course of WNK463-evoked response in primary CF epithelia
(n=5). (E) Schematic showing direct versus indirect modulation of membrane transporters by
WNK kinases. (F) pHASL response in primary CF epithelia after 2-hour exposure to rafoxanide, a
SPAK/OSR1 inhibitor (n=4). In B, each data point is an epithelium derived from either NuLi-1
or CuFi-4 cells. In all other cases, each data point represents a primary differentiated airway
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significance was tested using two-way ANOVA with two-stage Benjamini, Krieger, and Yekuteli
false discovery rate procedure for A, and ANOVA with post hoc Tukey’s test for B, C, D, and F.
*P, 0.05, ***P, 0.001, and ****P , 0.0001. Veh = vehicle.
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further increased pHASL. Ivacaftor increases
open-state probability and function of
CFTR-G551D channels. We concluded that
inhibitingWNK supports ASL alkalinization
through CFTR-independent as well as CFTR-
dependent mechanisms.

To further characterize theWNK463-
induced response, we performed additional
studies in primary differentiated airway
epithelia. When these epithelia were exposed
toWNK463 in a nominally HCO3

2/CO2-
free environment, the pHASL response
disappeared (Figure 2C). This result
suggested that WNK463 increased CF pHASL

by increasing HCO3
2 secretion and not by

decreasing H1 secretion. Next, we asked
whether this response was time and dose
dependent. Two hours of exposure increased
pHASL, and continued exposure up to
24 hours did not further alkalinize ASL
(Figure 2D). Moreover, 10 μMWNK463
alkalinized but a lower dose (1 μM) did not
alter pHASL (Figure E3).

WNK kinases modulate membrane
transporters either directly or indirectly
through their native substrates, SPAK and
OSR1 (52) (Figure 2E). In scRNA-seq data,

cell types expressingWNK1 andWNK2 also
expressed genes encoding SPAK andOSR1.
To test the latter’s involvement in controlling
pHASL, we treated CF epithelia with
rafoxanide, an allosteric SPAK/OSR1 inhibitor
(53). Similar toWNK463, rafoxanide applied
for 2 hours also increased CF pHASL (Figure
2F). Taken together, these responses suggested
that CF pHASL is controlled by upstream as
well as downstream kinases in the canonical
WNK/SPAK/OSR1 signaling pathway.

WNK463 Enhances CF Host Defenses
Previous studies showed that alkalinizing
CF ASL improves respiratory host
defenses (12, 19–21). Because WNK463
increased pHASL, we tested its impact in CF
epithelia. Defective mucus transport is a key
feature of CF (54). In primary cultures of
differentiated CF epithelia, WNK463
decreased ASL viscosity (Figure 3A),
consistent with previous studies showing
that increasing pHASL decreases viscosity.
In addition, WNK463 did not alter the rate
of apical liquid absorption (Figure 3B),
suggesting that a change in apical fluid
volume was not involved. WNK463 also

increased ciliary beat frequency, albeit
modestly (Figure 3C). Both decrease in
viscosity and increase in ciliary beat
frequency would improve CF mucus
transport. Previous studies also indicated
that CF ASL has reduced antibacterial
activity (13, 55). WNK463 increased ASL-
mediated Staphylococcus aureus killing in
primary CF epithelia (Figure 3D). Overall,
these results suggested that targeting WNK
kinase signaling may at least partially rescue
CF host defense defects.

Either WNK1 or WNK2 Knockdown
Increases CF pHASL

WNK463 is a pan-WNK kinase inhibitor (48).
Because airway epithelia expressed two
WNK kinases, we asked whetherWNK1
orWNK2 controlled CF pHASL. To test,
we performed siRNA-mediated gene
knockdown. Reducing eitherWNK1 or
WNK2 expression increased CF pHASL

(Figures 4A–4D). This result suggested that
both isoforms,WNK1 andWNK2, participate
in regulating CF pHASL. Although analyses of
additive and compensatory effects ofWNK1
andWNK2would require single- and
double-knockout experiments rather than
knockdown experiments, these knockdown
studies suggest that if compensatory effects
exist, they are incomplete.

WNK463 Reduces Electrogenic
Cl2 Secretion
CFTR is the main route for anion exit across
the apical membrane of airway epithelia.
WhetherWNK inhibition alters CFTR
activity in airway epithelia is not well
established. To test, we exposed non-CF
epithelia toWNK463 for 2 hours and assayed
in Ussing chambers containing symmetric
Krebs solution (118 mMCl2 and 25 mM
HCO3

2, gassed with 5% CO2). After
clamping transepithelial voltage, we recorded
ISC and Gt and elicited responses to selective
channel inhibitors or activators (Figures 5A
and 5B). We added amiloride followed by
DIDS (4,49-diisothiocyano-2,29-
stilbenedisulfonic acid) to abolish ENaC
(epithelial Na1 channel)-mediated Na1

absorption and CaCC (Ca21-activated Cl2

channel)-mediated anion secretion,
respectively. Next, we added forskolin to
increase cellular cAMP and thereby
phosphorylate and activate CFTR channels.
We concluded with CFTRinh-172, an
inhibitor of CFTR.We assessed the response
to CFTRinh-172 and used it to estimate
CFTR channel activity. WNK463 reduced
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Figure 3. WNK463 enhances CF host defenses. Primary cultures of differentiated CF airway
epithelia were treated with either vehicle or WNK463 (10 mM). All treatments were for 2 hours except
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DISC-CFTR by�50% (Figure 5C).
However,DGt-CFTR remained unchanged
(Figure 5D). This result suggested that
WNK463 decreased CFTR-mediated
anion transport but did not alter
CFTR channel activity at the apical
membrane.

CF epithelia lack functional CFTR
channels but express CaCC. Accordingly, we
studied the effect ofWNK463 on CaCC-
mediated anion transport in CF epithelia
(Figures 5E and 5F). After blocking ENaC
with amiloride, we added uridine
triphosphate, a P2Y2 purinergic receptor
agonist that increases cytosolic [Ca21] and
thus activates CaCC. Next, we added DIDS, a
nonspecific CaCC inhibitor, and recorded
the change in ISC and Gt. WNK463 decreased
DIDS-sensitiveDISC but slightly increased
DIDS-sensitiveDGt (Figures 5G and 5H).
Together, these findings suggested that
inhibitingWNK kinases reduces anion
secretion, but the effect is not on apical anion
channels.

To separate the effects of WNK
inhibition on Cl2 versus HCO3

2 transport,
we repeated the studies in single anion
solutions. In symmetric HCO3

2-free
solution,WNK463 reducedDISC-CFTR

(Figure 5I); however, in Cl2-free solution,
DISC-CFTR remained unchanged. Similar
results were obtained for the DIDS-sensitive
DISC in CF epithelia (Figure 5J). These data
suggested that WNK inhibition reduces
electrogenic Cl2 secretion but does not alter
electrogenic HCO3

2 secretion.

Reducing Basolateral Cl2 Entry
Increases CF pHASL

Transcellular Cl2 secretion involves the
movement of Cl2 across the apical and the
basolateral membranes in series. Because
studies of electrically conductive anion
transport showed reduced Cl2 secretion
without major effects at the apical
membrane, we asked whether a change at the
basolateral membrane was involved. The
loop-sensitive NKCC (Na1-K1-2 Cl2)
cotransporter is the main route for Cl2 entry
across the basolateral membrane, andWNK
kinases are known to increase NKCC activity
in renal epithelia (56, 57). To further
investigate the effect of WNK463 on this
transport mechanism, we studied non-CF
and CF epithelia in Ussing chambers. After
blocking ENaC with amiloride, we added
either forskolin to activate CFTR in non-CF
epithelia, or uridine triphosphate to activate

CaCC in CF epithelia. To estimate the
contribution of NKCC1(sodium-potassium-
chloride cotransporter 1), we added
basolateral bumetanide andmeasuredDISC.
WNK463 reduced bumetanide-sensitive ISC
in both non-CF and CF epithelia (Figures 6A
and 6B). This result pointed to the
involvement ofWNK kinases in controlling
basolateral Cl2 uptake through a
bumetanide-sensitive mechanism.

Previous studies in airway epithelia
showed that bumetanide decreases
intracellular [Cl2] (58–60). This led us to
hypothesize that lowering intracellular [Cl2]
might also increase CF pHASL. To test, we
performed two experiments: 1) We tested the
effect of NKCC1 inhibition in CF epithelia.
Exposure to bumetanide increased CF pHASL

(Figure 6C, left panel). 2) Wemeasured
pHASL in a Cl

2-free environment. Similar to
bumetanide, the removal of basolateral Cl2

also increased CF pHASL (Figure 6C, right
panel). BecauseWNK463 reduced
bumetanide-sensitive ISC, and lowering
NKCC1 activity or intracellular [Cl2]
increased pHASL, we considered whether
intracellular [Cl2] was involved in the
response evoked byWNK463. When
introduced in the absence of Cl2, WNK463
failed to alkalinize CF ASL, thus indicating
that theWNK463-elicited pHASL response
was Cl2 dependent (Figure 6D).

WNK463 Further Increases pHASL in
TNFa/IL-17–treated CF Epithelia
Airway inflammation is ubiquitous in
individuals with CF after the first few weeks
of life (61–63). The CF airway inflammation
is characteristically neutrophil predominant,
may develop in the absence of infection, and
is further exacerbated by infection and
colonization. Two CF-relevant inflammatory
cytokines, TNFa and IL-17, drive
neutrophilic inflammation (64–67). In
previous work, combined TNFa/IL-17
increased HCO3

2 secretion and CF pHASL

by increasing pendrin expression (41, 68).
We asked if TNFa/IL-17–induced
alkalinization was also accompanied by
altered expression ofWNK kinases. In gene
expression studies, TNFa/IL-17 modestly
reducedWNK1 andmarkedly reduced
WNK2 expression (Figures 7A and 7B). In
immunocytochemistry studies, TNFa/IL-17
decreasedWNK2 detection, butWNK1
remained unchanged (Figures 7C and 7D).
This led us to hypothesize that residual
WNK kinases might continue to regulate
HCO3

2 secretion in cytokine-treated
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epithelia. Accordingly, exposure toWNK463
further increased pHASL in CF epithelia
treated with TNFa/IL-17 (Figure 7E).
BecauseWNK463 decreased Cl2 secretion,
and reducing basolateral Cl2 entry increased
CF pHASL, we predicted a similar response to
lowering basolateral Cl2 entry in cytokine-

treated CF epithelia. Exposure to bumetanide
further alkalinized ASL in TNFa/IL-
17–treated CF epithelia (Figure 7F). This
result suggested that TNFa/IL-17 shifted
apical anion secretion in favor of HCO3

2

over Cl2, and lowering basolateral Cl2 entry
further augmented this response.

Discussion

Our transcript and immunocytochemistry
data forWNK1 andWNK2, and their
substrates STK39 andOXSR1, indicated that
these kinases are expressed in secretory cells
and ionocytes, the main airway epithelial
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2. (I and J) To separate the effect of WNK463 on electrogenic Cl2 versus
HCO3

2 transport, Ussing chamber studies were repeated with HCO3
2-free or Cl2-free solutions. (I) shows DISC response with addition of
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cells that secrete anions. Consistent with that
localization, pharmacologically inhibiting
WNK kinases, SPAK/OSR1 kinases, and
knocking downWNK1 andWNK2
transcripts increased pHASL. These results
thus identified an important role forWNK
kinases in regulating HCO3

2 secretion
across airway epithelia. Figure 8 shows a
tentative model for howWNK1 andWNK2
may influence Cl2 and HCO3

2 secretion
and the ratio between the two transport
processes in CF airway epithelia. Some
features in this model are unknown at
present and are an opportunity for future
research.

Electrophysiological studies indicated
that inhibitingWNK kinases decreased the
Cl2-mediated, but not HCO3

2-mediated
current. Moreover, ASL alkalinization
persisted in the absence of CFTR activity in
CF epithelia. A clue to a potential
mechanism came with the finding that
inhibitingWNK kinases largely eliminated
the inhibitory effect of basolateral

bumetanide on ISC. Bumetanide inhibits
NKCC1, the major pathway for Cl2 entry
into the cell, and thereby reduces the
intracellular [Cl2] (58–60). Further evidence
implicating intracellular [Cl2] came from
studies showing that adding bumetanide
alone or removing Cl2 from the medium
also alkalinized ASL in CF epithelia.

These results suggest thatWNK kinases
may play a key role in determining the
balance between Cl2 secretion and HCO3

2

secretion across airway epithelia (Figure 8).
InhibitingWNK kinases decreased NKCC1
activity, which decreased Cl2 secretion,
increased HCO3

2 secretion, and increased
pHASL. The inference that inhibitingWNK
reduces NKCC1 activity is supported by the
finding that bumetanide also increased
pHASL and previous reports thatWNK
kinases increase NKCC activity in nonairway
epithelia (56, 57). However, the mechanism
that increases HCO3

2 secretion is uncertain.
One possibility is thatWNK inhibition
reduces the intracellular [Cl2], thereby

increasing the driving force for Cl2/ HCO3
2

exchange at the apical membrane and hence
HCO3

2 secretion. Finding that bumetanide
replicates the effect of WNK inhibition on
pHASL is consistent with this hypothesis.
However, Cl2-free bathing solution also
induced HCO3

2 secretion despite the fact
that reduced [Cl2] would initially and
transiently drive Cl2/HCO3

2 exchange in
the opposite direction, and over the 2-hour
time course of the experiment, cellular Cl2

would be largely depleted. Thus, we favor an
alternative explanation that intracellular Cl2

is a signaling molecule that regulates
membrane transport (69).

Intracellular [Cl2] regulation of HCO3
2

secretion has been reported previously.
A Cl2-sensing motif has been identified in
some HCO3

2 transporters and other
proteins (35, 70). Low intracellular [Cl2] was
shown to increase IRBIT (IP3 receptor
binding protein released with IP3)-
stimulated NBCe1-B (electrogenic sodium
bicarbonate cotransporter 1) activity (70).
Kim and colleagues showed that low
intracellular [Cl2] enabled structural
association betweenWNK1 and CFTR and
increased CFTRHCO3

2 channel activity
(35). Notably, this effect did not depend on
WNK1 kinase activity. Yamaguchi and
colleagues developed a computational model
of guinea pig pancreatic duct HCO3

2

secretion (71). In this model, maximal
HCO3

2 secretion did not depend on an
increase in CFTRHCO3

2 permeability or a
change in SLC26 Cl2/HCO3

2 exchange
stoichiometry, but instead depended on
suppression of basolateral Cl2 uptake. The
addition of NKCC1, normally missing from
guinea pig pancreatic ducts, increased
intracellular [Cl2] and reduced secreted
[HCO3

2]. Our results also support
intracellular [Cl2]-dependent regulation of
HCO3

2 secretion. It will be important for
future studies to establish underlying
molecular mechanisms in airway epithelia.

We previously reported that combined
TNFa/IL-17 increased production of
pendrin, an apical Cl2/ HCO3

2 exchanger,
and alkalinized CF ASL (41, 68). Here, we
show that TNFa/IL-17 also reduced WNK2
expression. Moreover, inhibiting the
residual WNK kinase activity with
WNK463 further increased pHASL, and
basolateral bumetanide mimicked the effect
of WNK inhibition. These proinflammatory
cytokines may thus induce HCO3

2

secretion and increase pHASL by at least two
mechanisms, increasing pendrin
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expression and reducing WNK2
expression. Whether WNK kinases
regulate apical expression or activity of
pendrin in cytokine-treated airway
epithelia remains to be determined. Some
reports have suggested an interaction
between pendrin and apical anion
channels that may increase activity of
both transporters (72); additional studies
are needed to fully understand whether
WNK kinases modulate such interactions.

WNK kinases have an ATP-binding site
that is unique among protein kinases, and

WNK463 targets this site. Previous studies
have foundWNK463 to be highly selective
(48), but it is possible that higher doses may
also affect other targets. To confirm the effect
of reducingWNK activity on pHASL, we used
two orthogonal approaches (i.e.,
pharmacologic inhibition and gene
knockdown). Moreover, inhibiting
downstreamWNK targets (i.e., SPAK/OSR1
and NKCC1) also increased pHASL. Overall,
these results point to a key role for theWNK
signaling pathway in controlling airway
HCO3

2 secretion and pHASL.

This study has several advantages. First,
we studied primary cultures of differentiated
human airway epithelia from both CF and
non-CF genotypes. Second, to account for
biological variability, we included epithelia
frommultiple human donors. Third, we
measured pHASL under thin-film conditions
without adding additional apical fluid.
Fourth, in testing our hypothesis, we
used a combination of pharmacologic,
transcriptomic, gene silencing, protein
immunolabeling, and electrophysiologic
approaches. Fifth, although all studies and
interventions were performed in primary
cultures of differentiated airway epithelia, a
preliminary study in established human airway
epithelial cell lines, NuLi-1 and CuFi-4, yielded
similar results. Finding thatWNK signaling is
active in these epithelia enables their use as
models for studyingWNK signaling.

This study also has limitations. First, we
used human airway epithelia as an in vitro
model, and assessingWNK kinase inhibition
in vivomay be of value. However,
interpretation of in vivo effects may be
complicated by the fact thatWNK kinases are
expressed broadly in epithelial and
nonepithelial cells (42, 43). Newer animal
models with tissue- or cell-specificWNK
knockouts might help further elucidate roles of
WNK kinases. Second, we did not identify the
transporter directly responsible for
apical HCO3

2 exit. RNA-seq studies show that
CF airway epithelia express several non-CFTR
HCO3

2 transporters, including CaCC and
SLC26 familymembers (41, 73), andWNK
inhibitionmay affect more than one
simultaneously. Third, inflammation in CF
airways is a complex process, and it will be
important for future studies to characterize the
effects of other proinflammatorymediators
(e.g., IL-8, IL-1b, etc.) onWNK signaling.

The results have implications for CF
airways. First, previous studies have shown
that the abnormally acidic pHASL observed in
newborns with CF increases with time and
inflammation (74, 75), although not to levels
observed in non-CF epithelia studied under
comparable conditions (41). As indicated
above, our current data, together with
previous results, suggest complex regulatory
mechanisms are responsible. Second, loop
diuretics, which inhibit NKCC, are
commonly used to treat heart failure and
fluid overload states (76). Yet, to our
knowledge, these agents have not been
shown to cause adverse airway phenotypes.
This study suggests that HCO3

2 secretion
may compensate for any decrease in
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loop-sensitive Cl2 secretion and preserve, if
not augment, host defenses (77). Third, by
enhancing respiratory host defense, WNK
inhibition might be a potential therapeutic
target in CF and possibly in acquired CFTR
dysfunction, such as that induced by
cigarette smoking (78). AlthoughWNK463
produced adverse effects in a rat model of
hypertension (48), it is a nonselectiveWNK
kinase inhibitor. Interestingly, WNK2 has a
more restricted tissue expression than the
ubiquitousWNK1, it is detected in airway
epithelial cell types relevant for anion
secretion, and its knockdown alkalinizes CF
ASL. Thus, selectiveWNK2 inhibitors,
inhibitors of downstream SPAK/OSR1
kinases, or inhibitors restricted to the airways
might be pursued as potential CF
therapeutics.�
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panel: WNK1 and WNK2 regulate activity of basolateral NKCC1 (sodium-potassium-chloride
cotransporter 1) via intermediate SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein
kinase/oxidative stress responsive 1 kinase). NKCC1 imports Cl2 into the cell. Cl2 and HCO3
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kinase activity, inhibiting NKCC1, and eliminating Cl2 lower the intracellular chloride concentration
and transepithelial Cl2 secretion. At the same time, these interventions increase HCO3
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