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Anxiolytics for Bronchodilation: Refinements to GABAA Agonists
for Asthma Relief

In 1961, Julius Axelrod and colleagues (1) described the effects of
psychotropic drugs on the uptake of catecholamine neurotransmitters
by several tissues, including at the nerve endings (2), that opened the
floodgates of investigation into the identity of the [uptake] channels.
Such concerted efforts led to the cloning of many transporter genes,
including that for neurotransmitter g-aminobutyric acid (GABA), the
principal inhibitory neurotransmitter in the central nervous system (3).

Subsequently, it became clear that GABA exerts its physiological
actions by activating the ligand-gated ionotropic Cl2 channels,
GABAA, or the metabotropic GABAB receptor (4). GABAA activation
typically results in membrane hyperpolarization, resulting in the rapid
synaptic inhibition of excitatory signals associated with anxiety
disorders. Allosteric modulation of GABAA can be achieved by a
diverse class of compounds, including barbiturates, alcohol, steroids,
and benzodiazepines. Benzodiazepines are of particular interest for
general anxiety disorders, owing to an efficacious anxiolytic profile.
Most benzodiazepines also promotemuscle relaxation, which led to the
subsequent discovery of GABA and associated channels and receptors
in peripheral tissues (5), including airway smoothmuscle (ASM) (6, 7).

Research by Charles Emala and colleagues over the past 2
decades has advanced our understanding of the physiological
function of GABA channels and receptors on ASM, especially
GABAA. Activation of GABAA channels results in ASM relaxation
(6, 8, 9) and augments b2-adrenoceptor–mediated airway relaxation
(10). Mechanistically, GABAA activation on ASM cells inhibits
agonist-evoked membrane depolarization and intracellular calcium
flux (8, 9). In contrast, the metabotropic GABAB receptors are G
protein–coupled receptors (GPCRs) that, on stimulation with
agonists such as baclofen, inhibit (by means of Gi protein) adenylyl
cyclases (11). Inhibition of adenylyl cyclases reduces the accumulation
of cAMP and short-circuits protein kinase A–mediated ASM
relaxation (12). Moreover, GABAB activation leads to increased
intracellular calcium (comparable with that induced by Gq-coupled
GPCRs such as the M3muscarinic acetylcholine receptor) and
potentiates ASM contraction stimulated by other contractile agonists
(13), thus limiting the utility of GABAB in the treatment of airflow
obstruction in asthma.

GABAA channels are hetero-oligomeric with multiple possible
combinations of distinct subunits, which creates challenges in
developing selective agonists. Fortunately, GABAA on human ASM
cells is limited to pentameric oligomers of only a4 and a5 subunits
(among a-subunit variants) (8). Emala and colleagues have previously
demonstrated that selective pharmacological targeting of these subunits
evokes airway relaxation (9, 14, 15) and also limits the development
of airway hyperresponsiveness and inflammation inmurine models
(14, 16). Finally, in vivo studies in murine models of asthma have

established that deletion of the GABAA a4 subunit in mice results in
exacerbation of airway inflammation, underscoring its relevance to
mitigating asthma features beyond airway constriction (17).

In this issue of the Journal, Perez-Zoghbi and colleagues
(pp. 482–490) report on their studies in which they sought to
characterize a recently developed (16) and highly efficacious agonist
(PI320) of GABAA that can also improve tissue specificity, thus
avoiding nonspecific activation at central sites (18). PI320 is a
modified (polyethylene glycol chain) derivative of an existing GABAA

ligand, the imidazodiazepineMIDD0301. Using a combination of
in vivo (forced oscillation technique, flexiVent; SCIREQ) and
ex vivo (murine precision-cut lung slices [PCLS]) approaches, they
demonstrate that PI320 can inhibit methacholine-induced airway
contraction. Using transgenic mice that express the intracellular
Ca21 sensor GCaMP6f, the authors elegantly show that PI320
inhibits contractile agonist–induced Ca21 oscillations. To gain
mechanistic insight into PI320-mediated inhibition of agonist-
induced Ca21, they also loaded murine PCLS with membrane-
permeable caged inositol 1,4,5-trisphosphate (IP3) to examine the
contribution of IP3 receptors on the sarcoplasmic reticulum. By
combining flash photolysis (using an ultraviolet-light illuminator) to
uncage IP3 in PCLS in tandem with monitoring changes in the airway
lumen area with phase-contrast microscopy, the authors demonstrate
that PI320 significantly inhibits the airway constriction induced by
uncaging IP3. Also, PI320 does not inhibit caffeine-induced murine
PCLS contraction. Collectively, these experiments demonstrated that
PI320 regulates Ca21mobilization mediated through IP3 receptors
(and not ryanodine receptors) on the sarcoplasmic reticulum.

The physiological approaches applied by the authors are essential
toward establishing the relevance of GABAergic functional outcomes
in ASM. However, as noted by the authors, preliminary studies
suggest that PI320-mediated relaxation (at least in murine tissues)
appears to be independent of GABAA. Although this may be partly
due to the differential pharmacokinetic and pharmacodynamic
behavior of PI320, muscimol (GABAA agonist), and flumazenil
(GABAA antagonist) in different species, additional studies with
human tissues (e.g., PCLS) are warranted to establish the clinical
relevance of targeting GABAA with PI320. These in vivo and ex vivo
approaches could also significantly benefit from supplementation with
in vitro live-cell micromechanical approaches that allow for the
integration of pharmacological and gene-deletion–based approaches
to detail various nuances associated with receptor activation and ASM
cell function. Further, reductionist approaches aimed at linking the
proximal events after GABAA activation to the downstream signaling
driving ASM relaxation will provide much needed clarity into the
mechanistic action of PI320. Potentiation of GABAA channels
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associated with the central nervous system is always a concern,
because it may lead to undesirable side effects, including sedation or
drug dependence. However, it should be noted that GABAA a subunit
variants that contribute toward such outcomes (a1, a2, and a3) (19)
may not be activated by a4- and a5-subunit selective agonists.
Although the solubility profile of PI320 (owing to polyethylene glycol
chain) is an improvement, GABAA a subunit selectivity is unclear.

In summary, these studies by Perez-Zoghbi and colleagues
underscore the importance of continuous refinements in ligand
development to improve the receptor selectivity and efficacy profile
of novel targets for providing relief from the pathophysiological
features of asthma. These approaches could help overcome possible
nonspecific interactions and examine relative contributions of other
receptors such as the ovarian cancer OGR1 (G protein-coupled
receptor-1) (20–23) and the mitochondrial translocator protein (also
termed the peripheral benzodiazepine receptor) that can also bind
certain benzodiazepine-class drugs (24). Future studies seeking to
clarify the relaxation mechanisms for benzodiazepine in ASM cells
may help uncover unique signaling networks shared by GABAA,
OGR1, and the translocator protein that can be exploited to refine
therapeutic strategies for asthma control.�
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