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Abstract: Background: The trunk strength conventional ratio (CR) has been evaluated. However,
the functional ratio and the ratio of strength to body weight (BW) or muscle mass (MM) have
been poorly explored. Relative strength is a measure of muscle quality. Objectives: To analyze the
trunk strength ratio normalized by BW and MM and compare the trunk’s conventional and func-
tional ratios collected in isokinetic and isometric conditions. Methods: Twenty-seven healthy males
(21.48 ± 2.08 years, 70.22 ± 7.65 kg) were evaluated for trunk isometric and isokinetic strength using
a functional electromechanical dynamometer. Results: The extensor’s strength was greater than
the flexors, with a CR of 0.41 ± 0.10 to 0.44 ± 0.10. Muscle quality was higher in eccentric contrac-
tion and high velocity for flexors and extensors. The functional flexor ratio (FFR) ranged between
0.41 ± 0.09 and 0.92 ± 0.27. The functional extensor ratio (FER) ranged between 2.53 ± 0.65 and
4.92 ± 1.26. The FFR and FER showed significant differences between velocities when considering
the peak strength (p = 0.001) and mean strength (p = 0.001). Conclusions: Trunk extensors were
stronger than the flexors; thus, the CR was less than one. Muscle quality was higher at a high velocity.
Unlike CR, FFR and FER behaved differently at distinct velocities. This finding highlights the need to
explore the behavior of the functional ratio in different populations.

Keywords: isokinetic; core muscles; antagonist/agonist; muscle strength; dynamometer

1. Introduction

The spine and the muscles surrounding it play an essential mechanical role in human
function [1]. The neuromuscular system is crucial for maintaining the spine’s mechanical
stability, increasing its ability to generate tension to avoid injuries [2]. Thus, muscles are the
only voluntary support of the joints and act to initiate or accelerate movement and limit or
decelerate movement [3]. In this way, agonist and antagonist musculature play an essential
role in movement control [4].

It has been shown that a particular ratio exists between the agonist and the antagonist’s
muscles to protect the joint [5]. An imbalance between antagonist/agonist (A/A) could
mean a deficiency in the antagonist’s muscle to produce enough strength to slow down
the agonist’s action in a movement, increasing the probability of ligamentous or muscle
injury [6]. The conventional ratio A/A has been evaluated in certain joints and with
different methods [7,8]. Concerning the trunk, studies in healthy subjects reported a
conventional flexor/extensor’s ratio (F/E) of 0.84 (0.54–1.16), i.e., the isokinetic strength
values of trunk extensors are greater than the flexors [9]. This ratio has been classically
evaluated using an isokinetic dynamometer and calculated using peak torque [9,10], which
has the limitation of not characterizing the inherent torque variation to the length–tension
relationship [10]. Moreover, the conventional ratio does not consider the eccentric muscular
action of the antagonist.
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Trunk musculature depends on the context [11,12]; thus, the conventional ratio may
not adequately explain the dynamics of movement in activities of daily living or sports.
The functional ratio represents the eccentric antagonist/concentric agonist actions [13].
Functionally, the trunk muscles interact in an eccentric/concentric mode [14]. For example,
the bending forward movement, commonly identified as a risk factor for lower-back
pain [15], depends on eccentric control of the extensor muscles for its execution [3,16].
Thus, knowing the trunk’s functional F/E and E/F ratio would allow us to understand its
muscular dynamics.

In this sense, another approach to complement the evaluation of muscle function is
by estimating other ratios, such as relative strength [17]. Relative strength is considered
a measure of muscle quality [18]. Classically, relative strength has been expressed as the
ratio of strength to total body weight [19–21]; however, the strength per muscle mass
ratio has been poorly explored. Assessing muscle quality can help identify individuals
who might benefit from interventions that improve muscle quality and prevent functional
deterioration [22]. Considering the importance of muscle strength balance for joint stability
and injury prevention, in contrast with the limbs that can be evaluated by comparing them
with the contralateral, the trunk does not have this possibility, ratios thus become more
relevant. Therefore, this study aimed to analyze the ratio normalized by body weight
and normalized by muscular mass in trunk strength, and to compare the trunk’s conven-
tional and functional ratios using different strength variables collected in isokinetic and
isometric conditions.

2. Materials and Methods
2.1. Participants

Twenty-seven physically active male student volunteers (age = 21.48 ± 2.08 years,
body mass = 70.22 ± 7.65 kg, height = 1.75 ± 0.72 m, muscle mass = 32.57 ± 4.33 kg,
and body mass index (BMI) = 22.99 ± 1.44 (kg/m2) without any experience in isokinetic
or dynamometers devices were recruited from the university community. Participants
were eligible for the study if they were (I) free from lower-back pain, with a maximum of
20% in the Oswestry Disability Index, and (II) free from musculoskeletal injury, especially
health conditions affecting the spine, such as scoliosis, radiculopathy, and lower-back
pain. All participants were informed regarding the nature, aims, and risks associated with
the experimental procedure before giving their written consent to participate. The study
protocol was approved by the Institutional Review Board of the University of Granada
(n◦ 350/CEIH/2017) and by the Declaration of Helsinki.

2.2. Anthropometrics Measurements

Anthropometric measurements were performed following the guidelines of the Inter-
national Society for the Advancement in Kinanthropometry (ISAK) [23], with the subjects
being barefoot and wearing their underwear. Measurements were taken during the morn-
ing and prior to the strength assessment. All of the assessments were performed twice
by an ISAK level 2 certified anthropometrist (W.R.-F.). Measurements included baseline
measurements (weight, and standing and sitting height), ten perimeters (head, relaxed arm,
flexed arm in tension, forearm, midsternal thorax, waist, hip, maximum thigh, mid-thigh,
and calf), six skinfolds (triceps, subscapular, suprascapular, abdominal, front thigh, and
medial leg), and six bone diameters (biacromial, transverse thorax, anteroposterior thorax,
biiliocrestal, humeral, and femoral). Height (cm) was measured using a SECA stadiometer
(SECA, Hamburg, Germany) with 0.1 mm precision, body weight (kg) using a SECA scale
(SECA, Hamburg, Germany) with 100 g precision, and skinfolds with a Harpenden caliper
(Harpenden, London, UK) with a precision of 0.2 mm. The rest of the measurements
were performed with the Rosscraft anthropometric kit. Body composition was determined
through Kerr’s equation using a Microsoft Office Excel spreadsheet [24].
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2.3. Procedures

Subjects first attended a familiarization session. All of the evaluations were conducted
by sports science researchers (Á.R.-P.) who had extensive experience performing muscle
strength testing and using the device. Participants completed three isokinetic velocities
(0.15 m·s−1 (V1), 0.30 m·s−1 (V2), and 0.45 m·s−1 (V3)), isometric conditions, and two range
of movement (R) protocols. R was established by measuring the distance between the
acromion and greater trochanter [25,26]. The order of the V and R was randomly established.
Isometric (0 m·s−1, 90◦ between the trunk and thigh) and isokinetic strength were evaluated
with a functional electromechanical dynamometer (FEMD) (Model Dynasystem, Granada,
Spain) [27]. The reliability of the FEMD for trunk strength assessment in healthy subjects
has been previously established [25,26].

2.4. Test Protocol

The participants were positioned in front of the FEMD to assess the extensor trunk
strength and behind the FEMD to evaluate the flexor trunk strength. Each participant sat
with their trunk at 90◦ on a bench, arms crossed on their chest, knees in flexion, and feet
on the floor (Figure 1). Participants were then stabilized in the test position using straps.
Sliding forward on the bench was avoided by using appropriate belts that pushed the
pelvis and the legs down and back, but that were not uncomfortable for the participants.

Figure 1. Protocol measurement of the trunk strength.

Participants first attended a familiarization session with the FEMD, and a researcher
explained the evaluation procedures. The familiarization consisted of a general warm-up
that included 5 min of jogging, 5 min of joint mobility, and three sets of 15 s of frontal planks
and glute bridges. The general warm-up was followed by four sets of five repetitions (two
submaximal repetitions and three maximum repetitions) at V1 and V3 with R1 and R2, at
25% and 50% of R, respectively. The rest between sets was 3 min.

For the evaluation, familiarization and warm-up were performed, followed by 5 min
of rest. The test consisted of one set of four maximum consecutive repetitions of trunk
flexors and extensors at V1R1 (0.15 m·s−1, 25% cm), V2R1 (0.30 m·s−1, 25% cm), V3R1
(0.45 m·s−1, 25% cm), V1R2 (0.15 m·s−1, 50% cm), V2R2 (0.30 m·s−1, 50% cm), and V3R2
(0.45 m·s−1, 50% cm). The rest between sets was 3 min. After that, a maximum isometric
contraction (0 m·s−1, 90 degrees) of 5 s in a seated position (formed 90 degrees between the
trunk and thigh) was performed.
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2.5. Muscle Quality and Trunk Ratios Strength

Muscle quality was measured through relative strength, i.e., trunk strength normalized
by total body weight and trunk strength normalized by lean body mass. The ratios, peak,
and mean strength were calculated using the average of both ranges of movement for
each velocity. The three highest mean and peak strength repetitions for the concentric
and eccentric contractions were taken to calculate the dynamic strength. Calculating the
isometric strength, the repetition’s peak and mean values were taken. The A/A ratios were
calculated for each velocity using both the peak and mean strength, with the following
equations [13]:

Conventional ratio (CR) = (trunk flexors concentric strength)/(trunk extensor concentric strength)

Functional flexor ratio (FFR) = (trunk flexors eccentric strength)/(trunk extensor concentric strength)

Functional extensor ratio (FER) = (trunk extensor eccentric strength)/(trunk flexor concentric strength).

2.6. Statistical Analysis

Descriptive data were presented as mean ± standard deviation (SD). The Shapiro–
Wilk normality test verified the normal distribution of the data. T-tests of the paired
samples assessed the difference between ratios with the Cohen’s d effect size. The follow-
ing scale was used for interpreting the magnitude of the effect size (ES): <0.20 = trivial,
0.20–0.59 = small, 0.60–1.19 = moderate, 1.20–2.00 = large, and >2.00 = very large [28]. A
repeated-measures analysis of variance (ANOVA) was conducted with Bonferroni post-hoc
analyses. The Greenhouse–Geisser correction was used when the Mauchly sphericity test
was violated. Omega square (ω2) was calculated for the ANOVA where values of the effect
size 0.01, 0.06, and above 0.14 were considered small, medium, and large, respectively [29].
A JASP software package (version 0.14.1, http://www.jasp-stats.org (accessed on 20 May
2022)) was used for all of the analyses. Statistical significance was set at p ≤ 0.05.

3. Results

The trunk extensors presented higher mean and peak strength values than the trunk
flexors in the different conditions evaluated in the isometric and isokinetic testing. The
highest strength value was recorded in the highest velocity in the eccentric contraction.
When considering the peak strength or mean strength, the ratio normalized by body weight
and the ratio by muscle mass was higher in V3 for both the extensors and flexors (Table 1).

There were no significant differences between the mean and peak strength of the
conventional trunk strength ratio (p > 0.05) in isometric and isokinetic testing, except in
the V2 condition (p = 0.02). On the other hand, both the functional flexor ratio and the
functional extensor ratio had significant differences when considering the peak or mean
strength in isokinetic conditions (p = 0.001), but not a significant difference in isometric
conditions (p > 0.05) (Table 2).

No significant differences existed between the conventional ratio at the different
velocities using peak strength (p = 0.145) or mean strength (p = 0.832). The conventional
ratio was similar in all conditions; the highest functional flexor ratios were observed in V3
for peak strength (0.72) and mean strength (0.92), and the highest functional extensor ratios
in V2 for peak strength (3.55) and V3 for mean strength (4.92) (Table 2).

http://www.jasp-stats.org
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Table 1. The absolute and relative strength of the trunk flexor and extensor muscles at different
velocities.

Peak Strength (n = 27) Mean Strength (n = 27)

Strength (kg) Normalized
by Weight

Normalized
by Muscular

Mass
Strength (kg) Normalized

by Weight

Normalized
by Muscular

Mass

Ex
te

ns
or

s

Concentric

0.15 m·s−1 (V1) 95.91 ± 19.70 1.37 ± 0.26 2.97 ± 0.64 63.38 ± 15.61 0.91 ± 0.22 1.96 ± 0.51
0.30 m·s−1 (V2) 95.87 ± 20.57 1.37 ± 0.28 2.98 ± 0.69 62.41 ± 16.94 0.89 ± 0.23 1.94 ± 0.55
0.45 m·s−1 (V3) 101.34 ± 21.66 1.45 ± 0.32 3.16 ± 0.78 60.25 ± 16.39 0.86 ± 0.24 1.88 ± 0.55

Eccentric

0.15 m·s−1 (V1) 136.30 ± 27.19 1.95 ± 0.36 4.23 ± 0.91 112.41 ± 24.25 1.61 ± 0.33 3.49 ± 0.80
0.30 m·s−1 (V2) 141.23 ± 25.35 2.02 ± 0.34 4.38 ± 0.84 114.03 ± 24.10 1.63 ± 0.31 3.53 ± 0.76
0.45 m·s−1 (V3) 149.26 ± 24.78 2.14 ± 0.37 4.64 ± 0.91 116.06 ± 25.19 1.66 ± 0.37 3.61 ± 0.88

Isometric 93.73 ± 21.86 1.34 ± 0.29 2.90 ± 0.68 76.03 ± 20.37 1.09 ± 0.27 2.35 ± 0.62

Fl
ex

or
s

Concentric

0.15 m·s−1 (V1) 39.40 ± 5.45 0.56 ± 0.84 1.22 ± 0.20 25.34 ± 4.40 0.36 ± 0.06 0.78 ± 0.13
0.30 m·s−1 (V2) 40.31 ± 6.45 0.58 ± 0.09 1.25 ± 0.22 24.64 ± 4.89 0.35 ± 0.06 0.76 ± 0.14
0.45 m·s−1 (V3) 43.25 ± 7.49 0.62 ± 0.11 1.34 ± 0.27 24.19 ± 4.68 0.34 ± 0.06 0.74 ± 0.13

Eccentric

0.15 m·s−1 (V1) 57.74 ± 7.49 0.83 ± 0.89 1.79 ± 0.23 46.93 ± 6.98 0.67 ± 0.09 1.45 ± 0.22
0.30 m·s−1 (V2) 62.81 ± 8.48 0.90 ± 0.11 1.95 ± 0.26 49.21 ± 7.52 0.70 ± 0.09 1.52 ± 0.20
0.45 m·s−1 (V3) 70.27 ± 9.51 1.01 ± 0.14 2.18 ± 0.35 51.95 ± 8.35 0.74 ± 0.10 1.61 ± 0.25

Isometric 37.00 ± 5.69 0.53 ± 0.06 1.14 ± 0.15 30.47 ± 5.64 0.43 ± 0.06 0.94 ± 0.13

Table 2. Behavior of trunk strength ratios at different velocities.

Ratio
V1

Mean (SD)
(n = 27)

V2
Mean (SD)

(n = 27)

V3
Mean (SD)

(n = 27)

ISO
Mean (SD)

(n = 27)
Repeated Measures ANOVA

CR—Peak 0.42 (0.09) 0.44 (0.10) 0.44 (0.09) 0.41 (0.10) F (2,60) = 1.94, p = 0.145 ω2 = 0.006
FFR—Peak 0.62 (0.12) 0.68 (0.15) 0.72 (0.16) 0.41 (0.09) F (2,59) = 121.16, p = 0.001 ω2 = 0.436
FER—Peak 3.49 (0.71) 3.55 (0.66) 3.51 (0.66) 2.55 (0.55) F (2,60) = 52.59, p = 0.001, ω2 = 0.292
CR—Mean 0.42 (0.12) 0.42 (0.11) 0.43 (0.13) 0.42 (0.11) F (2,54) = 0.19, p = 0.832 ω2 = 0.000
FFR—Mean 0.78 (0.21) 0.83 (0.21) 0.92 (0.27) 0.42 (0.11) F (2,64) = 92.21, p = 0.001, ω2 = 0.447
FER—Mean 4.51 (1.03) 4.73 (1.09) 4.92 (1.26) 2.53 (0.65) F (2,53) = 103.34, p = 0.001, ω2 = 0.461

V1 = 0.15 m·s−1; V2 = 0.30 m·s−1; V3 = 0.45 m·s−1; ISO = isometric; SD = standard deviation; CR = conventional
ratio; FFR = functional flexor ratio; FER = functional extensor ratio.

For the functional flexor ratio, there were significant differences with a large effect size
between velocities when considering the peak strength (p = 0.001; ω2 = 0.436) and mean
strength (p = 0.001; ω2 = 0.447). The post hoc analysis using Bonferroni’s correction revealed
significant differences between all three velocities compared with isometric conditions
(p = 0.001), and between the ratio at V1–V2 (mean difference = −0.058; p = 0.009) and
V1–V3 (mean difference = −0.099; p = 0.001) for peak strength. When considering the mean
strength, the post hoc analysis revealed significant differences between all three velocities
compared with the isometric conditions (p = 0.001), and between the ratio at V1–V3 (mean
difference = −0.139; p = 0.001) and V2–V3 (mean difference = −0.087; p = 0.047) (Table 2).

For the functional extensor ratio, there were significant differences with a large ef-
fect size (p = 0.001; ω2 = 0.292) between velocities when considering the peak strength
(p = 0.001; ω2 = 0.292) and mean strength (p = 0.001; ω2 = 0.461). The post hoc analysis
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revealed significant differences between all three velocities compared with the isometric
conditions when considering the peak (p = 0.001) and mean (p = 0.001) strength (Table 2).

4. Discussion

The study’s purpose was to analyze the ratio normalized by body weight and nor-
malized by muscular mass in trunk strength, and to compare the trunk’s conventional and
functional ratios using different strength variables collected in isokinetic and isometric
conditions. The main findings of this study were that (1) in all of the conditions studied, the
strength values of the trunk extensors were higher than for the flexors; the highest strength
value was recorded at the highest velocity in eccentric contraction. Thus, the strength
per total weight or strength per muscle mass ratio was higher in V3. (2) There were no
significant differences between the mean and peak manifestation of the conventional ratio,
except for V2. (3) The functional ratios behaved differently when considering the peak or
mean strength at all velocities, except in the isometric condition, but the conventional ratio
did not differ between the three velocities or isometric strength. These findings suggest that
the conventional and functional strength ratios behaved differently in the healthy subjects’
mean and peak manifestations.

Consistent with previous studies [9,21,30,31], the conventional ratio was below 1. The
evidence demonstrates that the extensor group was stronger than the flexor group [9,31,32],
which is consistent with this study’s findings. The highest absolute trunk strength was
found in the flexor and extensor’s eccentric strength at the highest velocity, which explains
why the highest relative strength was obtained in V3. Thus, according to the results, healthy
subjects had an eccentric extensor strength of about twice the body weight, while for the
flexors, it was about once the body weight when the peak strength was considered. This
data, despite being derived from a small sample, could be helpful in sports and clinical
settings, and an easy parameter to calculate. However, additional research is required in
this area in order to identify the reference values.

The functional ratio has been less explored in the literature concerning the trunk.
Considering the importance for joint stability, the eccentric to concentric relationship
between A/A has been examined in the shoulder, as a representation of the cocking
and spiking phases in volleyball players [7], and in the knee, in order to understand the
importance of eccentric hamstring strength concerning quadriceps concentric strength in
the prevention of anterior cruciate ligament injuries [8]. Considering the dynamic nature of
the movements, perhaps exploring this ratio is of greater importance for understanding
the functioning of the trunk musculature. Classically, the functional ratio accounts for the
eccentric strength of the flexors and the concentric strength of the extensors (functional
flexor ratio) [13], considering that the latter is responsible for initiating trunk extension from
the upright position, which must be controlled eccentrically by the abdominals [16]. In this
study, the functional flexor ratio ranged between 0.62 and 0.72 when considering the peak
strength, and 0.78 and 0.92 when considering the mean strength. A novelty of this study is
the incorporation of the functional extensor’s ratio. Let us consider that the extensors must
eccentrically control the bending forward in daily activities and sports [16]. Therefore, this
parameter should be considered, especially when we know that the extensor muscles are
weaker in subjects with lower-back pain [9]. According to our data on healthy subjects, the
eccentric strength of the extensor is up to four times the concentric strength of the flexors.
In the post hoc analysis, the functional flexion and extension ratio showed significant
differences for all velocities (V1, V2, and V3) compared with the isometric conditions.

Comparing the conventional ratios between different research is difficult because of
the various devices and parameters used (position, velocities, and range of motion) [14,30].
Moreover, some authors use strength as an absolute value [21], and others are normalized
by body weight [14]. Furthermore, this study used a linear device, so we did not express
the strength concerning a joint moment. On the other hand, comparing functional ratios
is even more difficult, as different authors measure different ratios, such as flexor eccen-
tric/flexor concentric (Fecc/Fcon) or extensor eccentric/extensor concentric (Eecc/Econ)



Int. J. Environ. Res. Public Health 2022, 19, 12673 7 of 9

ratios. For example, Müeller et al. [33] reported a Fecc/Fcon between 1.01 to 1.05 and
Eecc/Econ between 1.35 to 1.24 at 30◦/s in healthy adolescent athletes. On the other hand,
Dervisevic et al. [30] reported a Fecc/Fcon between 1.12 at 30◦/s and 1.22 at 60◦/s, and
Eecc/Econ between 1.18 at 30◦/s and 1.39 at 60◦/s in a population similar to this study, i.e.,
in healthy young men, using a classic isokinetic dynamometer. Understanding the behavior
of the antagonist and agonist muscles, i.e., co-contraction during trunk movements, is a
phenomenon that should be studied.

Finally, this study is not exempt from limitations. First, the sample was relatively small,
and we only evaluated male students without back pain or injury, so our data cannot be
extrapolated to the rest of the population. Second, as previously explained, using this new
generation of dynamometers that provide linear values made it challenging to compare our
results with other studies. Third, although the participants did not have scoliosis or any
other type of diagnosed postural alteration, we did not perform a formal assessment process
for postural alterations in the sagittal plane (radiographic or clinical as the plumb line).
However, during the assessment, we used a seated posture to minimize the influence of
lower extremity dysmetria on trunk function. For future studies, we suggest performing an
adequate postural assessment before evaluating trunk strength. Furthermore, we suggest
assessing these ratios in different populations, such as women, the elderly, and subjects with
lower-back pain, to establish the ratio behavior and to determine if there are differences
between these different populations. In addition, we can suggest evaluating the rest of the
core muscles in order to understand their synergistic role in the kinetics chains, and using
other methods of estimating body composition to quantify trunk muscle mass precisely.

5. Conclusions

In conclusion, trunk extensors are stronger than flexors muscles, resulting in a con-
ventional ratio lower than one. The normalized ratio per body weight or muscle mass is
higher when considering the eccentric strength and high velocity (V3). The conventional
ratio behaves similarly when considering the peak or mean strength, but the functional
ratio is different for all velocities, except in isometric conditions. This finding highlights
the need to explore the behavior of the functional ratio in diverse populations.
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