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Abstract: The present study describes a cheap, safe, and stable chemical process for the formation
of nickel sulphide (NiS) with the use of mixed and single molecular precursors. The production
pathway is uncomplicated, energy-efficient, quick, and toxic-free, with large-scale commercialization
potential. The obtained results show the effect of tri-N-octylphosphine oxide (TOPO) as a coordinating
solvent on the reaction chemistry, size distributions, morphology, and optical properties of both
precursors. Ni[N,N-benz-N-p-anisldtc] as NiSa, Ni[N,N-benzldtc] as NiSb, and Ni[N-p-anisldtc] as
NiSc thermally decompose in a single step at 333–334 ◦C. The X-ray diffraction peaks for NiSa, NiSb,
and NiSc matched well with the cubic NiS nanoparticles and corresponded to planes of (111), (220),
and (311). The extrapolated linear part from the Tauc plots reveals band gap values of 3.12 eV, 2.95 eV,
and 2.5 eV, which confirms the three samples as potential materials for solar cell applications. The
transmission electron microscopy (TEM) technique affirmed the quantum dot size distribution at
19.69–28.19 nm for NISa, 9.08–16.63 nm for NISb, and 9.37–10.49 nm for NISc, respectively. NiSa and
NiSc show a clearly distinguishable flower/star like morphology, while NiSb displays a compact
nano-rod shape. To the best of the authors’ knowledge, very few studies have been reported on the
flower/star like and nano-rod shapes, but none with the dithiocarbamate molecular precursor for
NiS nanoparticles.

Keywords: molecular precursor; nickel sulphide; quantum dots; particles size; morphology

1. Introduction

The current situation between Russia and most of the developed western countries,
namely their sore dependence on Russian coal, fuels, and gas products, is having a seri-
ous impact on their economies. The only possible solution to these geometrical political
constraints is a change to a renewable energy that is cost-effective, easy to generate, and en-
vironmentally friendly, such as solar energy. The most promising next-generation solar cells
in the last two decades have been quantum dot-sensitized solar cells (QDSCs), which have
reasonable efficiency and future-enhancement prospects. These future expectations are
linked to their ability to optimize quantum dots (QDs) particle sizes, their cost friendliness,
easy fabrication, and different wavelength ranges that will cover the visible light spectrum.
Furthermore, a single photon can greatly enhance the conversion output of QDSCs through
multiple-exciton excitons, making QDs a potential candidate in applications, such as solar
cells [1–7]. Replacing the dye molecules in the dye-sensitized solar cell structure principle
with QD semiconductors will increase conversion efficiency [8–10].

QDs semiconductors from metal chalcogenides (selenides, sulphides, tellurides) have
been employed in QDSCs as photosensitizers, displaying remarkable performance, as
well as in other applications such as optical conductors, IR detectors, coatings, and many
more [11,12]. Nickel sulphide (NiS) has a phase structure that is more intricate than the
lanthanide sulphides [13]. NiS has distinct properties, with similarities in its two crystalline
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formulas and formation but differences in molecular packing [12]. At lower tempera-
tures, rhombohedral phase (millerite) NiS was observed, while NiAs-type “symmetry”
was shown at higher temperatures. The rhombohedral structure has a tetragonal pyrami-
dal coordination of Ni atoms surrounded by five sulphur atoms, whereas NiAs displays
an octahedral structure of Ni atoms coordinated with every sulphur atom. Furthermore,
rhombohedral NiS exhibits temperature-independent paramagnetism-sami-metallic be-
haviour, whereas hexagonal NiS exhibits an antiferromagnetic semiconducting metallic
phase [12]. NiS is a p-type semiconductor material with a 0.5 eV band gap and has been
applied in applications such as solar cells, sensors, IR detectors, photoelectrochemical
catalysts, and lithium batteries [12–17].

These attractions are sorely linked to their size, phase, surface properties, morphol-
ogy, and crystal structure through the choice of preparation techniques adopted. Various
approaches have been used to fabricate NiS, such as solution-processing, hydrothermal,
laser ablation, and successive ionic-layer adsorption reaction methods [12,17–20]. The
single-source precursors technique (SSPs) is cheap, safe, and stable with the use of one
precursor. This is usually achieved through metal dithiocarbamate complexes as molec-
ular precursors, which decompose by heating to produce QD metal sulphide materials,
as reported by many research groups [21–23]. Changes in the dithiocarbamate organic
moiety at the N-bond can give QD metal sulphide the desired morphology, size dis-
tribution, and phases [22]. Furthermore, metal dithiocarbamate complexes have better
conductivity, magnetic, structural diversity, thermal, and electrochemical properties with
huge potential in industrial, analytical, and biological applications [1,24,25]. The current
work focuses on the optical, morphological, thermal, and structural properties of NiS
prepared from N,N-dibenzyldithiocarbamate and N-p-anisidineldithiocarbamate ligands
with nickel(II) complexes.

2. Experimental Section
2.1. Materials and Methods

All chemicals were of analytical grade, received from SigmaAldrich (Johannes-
burg, South Africa), and used without further purification. We synthesized ammonium,
nickel(II) chloride hexahydrate (NiCl2*6H2O), Tri-n-octylphosphine oxide (TOPO),
oleic acid, methanol, diethyl ester, carbon disulphide, N,N-dibenzyldithiocarbamate,
and N-p-anisidineldithiocarbamate by slit modification of the previously published liter-
ature [23]. [N,N-dibenzldtc]. Colour: olive green; yield: 6.88 g 66%, mp 228–230 ◦C. 1H
NMR (DMSO) δ 6.8–7.1 (m, 8H-C6H5), 3.3 (s, 2H-NH), 1.3 (t, 2H-CH2), 2.5 (s, 1H-SH).
13C NMR (DMSO) δ40 (-NH2), 51.0 (-S-C), 129 (-8H-C6H5), 207 (-CS2). Selected IR (cm−1)
1412 v(C-N), 1218 v(C-S), 3289 v(N-H). UV–Vis (CH3OH solution, nm): 315. [N-p-anisldtc].
Colour: olive green; yield: 20.20 g 93.87%, mp 228–230 ◦C. 1H NMR (DMSO) δ 9.42 (m,
8H-C6H5), 3.37 (s, 2H –NH), 6.89 (s, O-C6H5), 2.5 (s, 1H-SH). 13C NMR (DMSO) δ40 (-NH2),
55.8 (-S-C), 180.7 (s, O-C6H5), 124.3 (-8H-C6H5), 206 (-CS2). Selected IR (cm−1) 1412 v(C-N),
1218 v(C-S), 3391 v(N-H). UV–Vis (CH3OH solution, nm): 327.

2.2. Synthesis of Complexes
Synthesis of Bis(N,N-Benzyl-N-p-Asnisidineldithiocarbamato)Nickel(II) (Complex 1)

We dissolved 2.5 mmol of N,N-dibenzyldithiocarbamate and N-p-anisidineldithiocarbamate
(0.7262 g and 0.5409 g) in 15 mL of distilled water. We mixed these solutions at a ratio of 1:1:1
with (0.5939 g, 2.5 mmol) of NiCl2*6H2O dissolved in 15 mL of distilled water and stirred
for 2 h at room temperature. A solid bright green precipitate was formed, washed several
times with distilled water, and air dried in a calcium vacuum to yield the following end
product as seen in Scheme 1: [Ni[N,N-benz-N-p-anisldtc]. Colour: bright green; yield:
68%, mp 232–234 ◦C. 1H NMR (DMSO) δ 7.47–9.46 (m, 8H-C6H5), 4.04–5.05 (s, 2H-NH),
6.86 (s, O-C6H5), 2.51 (s, 1H-SH). 13C NMR (DMSO) δ40 (-NH2), 51.3–55.7 (-S-C), 181.9 (s,
O-C6H5), 126.5–157 (-8H-C6H5), 210 (-CS2). Selected IR (cm−1) 1428 v(C-N), 1140 v(C-S),
3215 v(N-H), 518 v(M-S). UV–Vis (CH3OH solution, nm): 265. We followed same path
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for the synthesis of N,N-dibenzyldithiocarbamate with nickel(II) complex at ratio (2:1)
labelled as [Ni[N,N-benzldtc] and N-p-anisidineldithiocarbamate with nickel(II) complex
at ratio (2:1) labelled as [Ni[N-p-anisldtc]. [Ni[N,N-benzldtc]. Colour: bright green; yield:
74%, mp 234–236 ◦C. 1H NMR (DMSO) δ 7.47–9.46 (m, 8H-C6H5) 3.7 (s, 2H –NH), 1.32 (t,
3H-CH2), 3.30 (s, 1H-SH). 13C NMR (DMSO) δ 126–143 (-C6H5), 40 (-CH2), 203 (-CS2), 52
(-C–NH). Selected IR (cm−1) 1495 v(C-N), 1228 v(C-S), 3028 v(N-H), 518 v(M-S). UV–Vis
(CH3OH solution, nm): 259. [Ni[N-p-anisldtc]. Colour: green; yield: 78%, mp 234–236
◦C. 1H NMR (DMSO) δ 6.82–9.43 (m, 8H-C6H5), 3.6 (s, 2H –NH), 3.32 (t, 3H-CH2), 2.5 (s,
1H-SH). 13C NMR (DMSO) δ 137–146 (-C6H5)40 (-CH2), 206 (-CS2), 55.9 (-C–NH). Selected
IR (cm−1) 1467 v(C-N), 1030 v(C-S), 3166 v(N-H), 520 v(M-S). UV–Vis (CH3OH solution,
nm): 277.
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2.3. Synthesis of Nickel Sulfide Nanoparticles

In a neck-bottom flask, we dissolved 0.2 g of bis(N,N-dibenzyl-N-p-anisidineldithiocarbamato)
nickel(II) as Ni[N,N-benz-N-p-anisidineldtc] [2] in 4 mL of oleic acid mixed with 3 g of hot
coordinating solvent TOPO. We observed the 20–30 ◦C initial heating of the TOPO in the
bottom flask for about 20 min. We heated the reaction to 260 degrees Celsius and held there
for one hour. We took the dark aqueous solution from the flask at a reduced temperature of
around 70 ◦C. We added an additional 50 mL of methanol to remove the excess capping
agent and toxic solvent by centrifugation at 2000 rpm for 30 min, followed by drying with
an air vacuum. We labelled the prepared NiS as NiSa, while we used Ni[N,N-benzldtc] and
Ni[N-p-anisldtc] to fabricate NiSb and NiSc under similar conditions and procedures.

2.4. Characterization

We elevated the optical properties, surface morphology, thermal stability, elemental
compositions, and thickness of the NiS nanoparticles through the following techniques:
field emission scanning electron microscope (FE-SEM, S-4200, Hitachi, Munich, Germany)
coupled with energy dispersive X-ray spectroscopy (EDS) on-system, operating at a voltage
of 15 kV. We identified the size distributions of the three samples using JEOL JEM 2100
(Pleasanton, CA, USA) Transmission Electron Microscope (TEM) operating at 200 kV. We es-
tablished their structural patterns using X-ray diffraction (XRD) analysis by Cu Ka radiation
run at 40 mA and 40 kV. We obtained surface roughness using an atomic force microscope
(JPK NanoWizard II AFM, JPK Instruments, Berlin, Germany) at a scan rate of 0.8 Hz. We
carried out TGA analysis at temperatures ranging from 30 to 600 degrees Celsius at a rate of
10 degrees Celsius per min−1. We achieved Fourier transform infrared spectroscopy (FTIR)
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analysis through the aid of Bruker Platinum ATR Model Alpha (Waltham, MA, USA). We
used the PerkinElmer instrument of the model LAMBDA 365 and LS 45 fluorimeters to
understand the optical properties (UV-Vis and PL analysis) of the three samples. We carried
out NMR analysis using a Bruker AV-400 spectrometer (Waltham, MA, USA) working at
400.13 MHz, 300 K, and a spinning rate of 4 kHz.

3. Results and Discussion
3.1. TGA and FTIR Analysis

The thermal decomposition of Ni[N,N-benz-N-p-anisldtc], Ni[N,N-benzldtc], and
Ni[N-p-anisldtc] is shown in Figure 1a–c. The onset decomposition heat for Ni[N,N-benz-N-
p-anisldtc] and Ni[N-p-anisldtc] complexes is 275 ◦C, while the final decomposition heat is
333–334 ◦C, resulting in NiSa and NiSc conversion. Ni[N,N-benzldtc] has a decomposition
profile onset at 270 ◦C and a single-step decomposition at 348 ◦C for the formation of NiSb.
The three samples revealed a complete loss in their final mass residual. This occurrence is
consistent with the reports by Ref. [26] on the thermolysis of Ni complexes. An FTIR spectra
analysis was taken (see Figure 1d), which affirmed the presence of typical constituents of
dithiocarbamates and Ni-S compounds. The absorption bands of N-H at 3324 cm−1 and
the vibration modes of C-S and C-N bands at 972–729 cm−1 and 1479–1643 cm−1 revealed
the interface between the aromatic precursors and metal ion substances. The presence of
the vibration frequencies at 587 and 423 cm−1 correlates to the metal with sulphur atoms
M-S coordination, which agrees with the report in Ref. [27].
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Figure 1. TGA (a–c) of [Ni[N,N-benz-N-p-anisldtc], [Ni[N,N-benzldtc], and [Ni[N-p-anisldtc] com-
plexes as NiSa, NiSb, and NiSc and FTIR spectras (d) of NiSa, NiSb, and NiSc nanoparticles.

3.2. XRD

Figure 2a and the inset Figure 2b show the patterns with the presence of one-phase
nickel sulphide nanoparticles. The diffraction peaks for NiSa and NiSc at 19.82◦, 21.68◦, and



Nanomaterials 2022, 12, 3409 5 of 12

37.02◦ and for NiSb at 19.82◦, 22.52◦, and 37.02◦ exhibited by the three samples correspond
to the (111), (220), and (311) planes of cubic NiS nanoparticles (ICDD card number 043-1469).
The XRD pattern illustrates the polycrystalline nature of the samples, with some impurities
from the coordinating solvent around 19◦ to 24◦ being observed. The small peak observed
at 43.64◦ is ascribed to pure nickel, which is similar to the observation by Ref. [27] for cubic
NiS nanoparticles. The results of this study on the formation of NiS with a dithiocarbamate
complex via thermolysis at high temperatures are consistent with previous research [28,29].
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3.3. UV-Vis

The optical spectra along with the estimated Tauc plots for the NiSa, NiSb, and
NiSc nanoparticles synthesized from mixed and single molecular precursors with TOPO
coordinating solvent are shown in Figure 3a,b. The optical spectra for NiSa and NiSc
nanoparticles have an absorbance response in the blue-shifted regions at 482 nm and
446 nm. The obtained optical properties for both nanoparticles have better size distributions
as a result of the quantum confinement effect, which is better than the previous studies
using HDA capping agents [30]. The absorption properties of NiSb show a lower response
wavelength at 388 nm, 629 nm, and 758 nm. The optical characteristics from this study
suggest that the prepared nanoparticles have strong potential for solar cell applications
due to their absorption in the blue shift regions. By extrapolating the linear part of the data
in the Tauc plots, optical band gap values of 3.12 eV, 2.95 eV, and 2.5 eV were obtained for
NiSa, NiSb, and NiSc, respectively.

3.4. PL Analysis

The PL spectra of NiSa, NiSb, and NiSc nanoparticles with an excitation wavelength
of 350 nm are seen in Figure 4. The emission peaks at 447 nm and 488 nm for NiSa and
NiSc are due to defects. The corresponding emission peaks at 625 nm and 684 nm for NiSc,
and 612 nm and 662 nm for NiSb, are attributed to the red shift. These emission peaks
are a strong indication of a larger size distribution or anisotropic particles. The observed
emission in this study is similar to that in the literature [27,31].

3.5. TEM

The TEM technique was used to obtain a detailed analysis of the particle structure. The
size distribution of the three nanoparticles was found to be between 19.69 and 28.19 nm for
NISa, 9.08 and 16.63 nm for NISb, and 9.37 and 10.49 nm for NISc. The TEM image further



Nanomaterials 2022, 12, 3409 6 of 12

verifies the uniformity of NiSa nanoparticles with a large number of mesopores and less
aggregation, as seen in Figure 5b,d. The lattice d-spacing of 0.30 nm is in correlation with the
(111) plane of cubic NiS [32], as seen in the inserted Figure 5b, which is in agreement with
the report by Ref. [33]. The porous and loose structure of NiSa has been shown to improve
electrocatalytic activity by increasing electrolyte contact [33]. The compact nature of NiSb
agglomerates was demonstrated in Figure 5f,h. Figure 5f,h reveal the spherical structure
of NiSb nanoparticles through the aid of TOPO coordinating solvent surface passivation,
leading to the fabrication of nanopores. The lattice spacing of 0.25 nm corresponds to the
(111) plane of NiS (as shown in the inserted Figure 5g), which is in good agreement with
the literature [34]. TEM images of NISc display spherically shaped particles (see Figure 5j,l
and the inset in Figure 5i,k) due to coalescence, which involves the interaction between the
particle–particle with several neighbouring nanospheres. This phenomenon is associated
with the reduction of surface energy in nanoparticles as a result of their small dimensions,
which results in a high reactive surface energy and unstable nanoparticles [30,35,36]. The
lattice d-spacing of 0.30 nm correlates to the plane (111) of cubic NiS nanoparticles, while
the SAED image reveals bright spots and the crystallinity nature of NiSc nanoparticles. This
study further affirmed the report by Ref. [30] on the role of long alkyl chains in changing the
shape and thermal stability of nanoparticles. The summary of the three samples prepared
by the SSPs method is found in Table 1.
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Table 1. Summary of NiSa, NiSb, and NiSc nanoparticles prepared by SSPs approach.

Samples Particle Size (TEM
Images (nm))

d-Spacing (nm) PL Emission
(nm)

Band Gap from
Taucs Plot (eV)

Surface
Roughness from

AFM (nm)

Atomic Percentage from EDS

Ni S

NiSa 19.69–24.32 0.30 447 3.12 46.8 14.12 1.37
NiSb 9.08–16.63 0.25 662 2.95 49.1 6.42 0.83
NiSc 9.37–10.49 0.30 488 2.5 334 12.81 1.93

3.6. AFM

The surface roughness of NiSa, NiSb, and NiSc nanoparticles was studied using AFM,
as shown in Figure 6a,d,g. The quantitative details of the surface profile, such as average
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roughness (Ra), 3D dimensional simulation, and root mean square roughness (Rq), were
obtained from the samples. The topographical view confirms that three metal sulphides
are characterized by indentations and irregular surfaces. The Rq was found at 93.8, 75.7,
and 425 nm for NiSa, NiSb, and NiSc, respectively, while the Ra for NiSa, NiSb, and NiSc
was found at 46.8, 49.1, and 334 nm, respectively. The slight difference in surface roughness
corresponds to the relative changes in particle size. The particle size can influence the
electron transfer speed and current density [37,38]. The AFM measurements correspond
with results obtained from the TEM.
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(h,i) nanoparticles.

3.7. FE-SEM

Figure 6b,c,e,f,h,i illustrate the morphological evolution of the as-prepared NiS for the
three samples. The images in Figure 6b,c,e,f,h,i reveal a clearly distinguishable flower/star-
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like morphology for NiSa and NiSc with some clustered nanoparticles. The formation of
an irregular flower/star finer morphology for NiSa and NiSc is linked to their larger surface
area, which promotes higher reducibility, better size distribution, and superior catalytic
reactions [39,40]. On the other hand, NiSb reveals compact nanorod-shaped nanoparti-
cles, as seen in Figure 6e,f, which supports the TEM results. The predominant nanorods
observed in NiSb are vital aspects of materials that can enhance electrolyte transport, pho-
toactivity, and the optimization of light absorbance. To the best of our knowledge, very few
studies on the flower/star-like and nanorod shapes have been reported, and none with
dithiocarbamate as a molecular precursor for NiS nanoparticles [41–43].

3.8. EDS

Figure 7a–c confirm the elemental composition and purity of the synthesized NiS
nanoparticles through EDS. The annealed nanoparticles reveal the presence of strong Ni
and S in the three samples. The organic elements of Ni and S observed from the profiles of
the three samples originated from the molecular precursors, which indicates the successful
synthesis of NiS and affirms the FTIR results [44].
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4. Conclusions

In conclusion, the SSP route is a risk-free, low-cost, and simple method of synthesizing
quantum dot nickel sulphide using a molecular precursor. The TOPO-capped agent with
the mixed and single precursor influences the novel flower/star-like and nanorod nickel
sulphide NiS quantum dot nanostructures. This has a significant impact on particle sizes,
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surface roughness, morphologies, and optical properties. Surface roughness and size
distribution can influence the electron transfer speed and the current density for solar cell
applications. The emission peaks in the blue and red shift regions are strong indications that
these materials can absorb the entire solar spectrum, giving rise to better efficiency in solar
cell applications, such as quantum dot-sensitized solar cells. Moreover, flower/star-like
and nanorod materials are vital aspects that can enhance electrolyte transport, photoactivity,
and light-absorbance optimization.
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