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SUMMARY

The causal effects of Apolipoprotein E ε4 allele (APOE) on late-onset Alzheimer’s disease (AD) and
death are complicated to define because AD may occur under one intervention but not under the other,
and because AD occurrence may affect age of death. In this article, this dual outcome scenario is studied
using the semi-competing risks framework for time-to-event data. Two event times are of interest: a
nonterminal event time (age at AD diagnosis), and a terminal event time (age at death). AD diagnosis time
is observed only if it precedes death, which may occur before or after AD. We propose new estimands
for capturing the causal effect of APOE on AD and death. Our proposal is based on a stratification of the
population with respect to the order of the two events. We present a novel assumption utilizing the time-
to-event nature of the data, which is more flexible than the often-invoked monotonicity assumption. We
derive results on partial identifiability, suggest a sensitivity analysis approach, and give conditions under
which full identification is possible. Finally, we present and implement nonparametric and semiparametric
estimation methods under right-censored semi-competing risks data for studying the complex effect of
APOE on AD and death.
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1. INTRODUCTION

Having at least one Apolipoprotein E ε4 allele (APOE) has been associated with a substantial increase
in risk of late-onset Alzheimer’s disease (AD) (Alzheimer’s Association, 2019). With the development of
clustered regularly interspaced short palindromic repeats (CRISPR) for possible gene editing, researchers
have begun contemplating gene editing on APOE as a preventive intervention against AD (Safieh and
others, 2019). However, the standard average causal effect on AD is ill-defined because some study
participants die without an AD diagnosis, and it is unknown whether APOE has a causal effect on survival
(Corder and others, 1993; Dal Forno and others, 2002). When considering the impact of intervening on
APOE, a holistic approach focusing on effects on both AD and death is desirable to help public health
officials to weigh potential benefits and risks and to conclude whether gene editing of APOE is a viable
intervention.

The semi-competing risks (SCR) framework have been used as a basis for studyingAD and death jointly
(Varadhan and others, 2014; Lee and others, 2017; Nevo and others, 2021a). More generally, SCR data
arise when times to two events of interest are studied, nonterminal (e.g., disease diagnosis) and terminal
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(e.g., death) events. The nonterminal event is observed only if it precedes the terminal event, which may
occur before or after the nonterminal event.

The illness-death model is often used for studying SCR data. It focuses on transition times between
three different states: An initial state (state “0,” healthy), a diseased state (“1,” AD), and an absorbing
state (“2,” death). Possible transitions are 0→1, 0→2, and 1→2. Various time-to-event models have been
suggested to analyze SCR data in this framework. Typically, inter-personal dependence between illness
and death times is modeled via a random effect, known as frailty (Xu and others, 2010; Lee and others,
2017; Gorfine and others, 2021).

In the causal inference paradigm, the related “truncation by death” problem has been studied (Zhang
and Rubin, 2003; Long and Hudgens, 2013; Tchetgen Tchetgen, 2014; Ding and Lu, 2017; Zehavi and
Nevo, 2021). This problem arises when researchers aspire to compare outcomes between the treated
and untreated groups at a fixed time point after the treatment was assigned, but some study participants
may die prior to outcome collection, hence the average causal effect is not well-defined. Using principal
stratification (Frangakis and Rubin, 2002), the survivor average causal effect (SACE) is the causal effect
within the stratum of people who would have survived under both treatment values. A similar problem
arises in vaccination studies, as vaccine effects on post-infection outcomes are well-defined only among
those who would have been infected with or without vaccinating (Shepherd and others, 2007). The SACE
is nonparametrically unidentifiable, unless strong assumptions are made. Therefore, researchers have
developed bounds (Zhang and Rubin, 2003; Long and Hudgens, 2013) and sensitivity analyses (Shepherd
and others, 2007). However, none of these papers apply to SCR data, where the time-to-event nature of
both AD diagnosis and death must be addressed.

Robins (1995) utilized additional assumptions to show the average causal effect (not SACE) is
identifiable when censoring time is always observed, and without distinguishing between censoring
due to death or other reasons. More recently, two papers have considered causal questions for SCR
data (Comment and others, 2019; Xu and others, 2020). These papers suggested Bayesian methods to
estimate the time-varying SACE (TV-SACE) and restricted mean SACE (RM-SACE). These papers pro-
vide major improvement towards causal reasoning for SCR data. One of the works rely on parametric
frailty-based illness-death models (Comment and others, 2019), while the other coupled a parametric
sensitivity copula-based analysis with a nonparametric Bayesian method under an additional identify-
ing assumption (Xu and others, 2020). Questions of nonparametric partial identifiability under weaker
assumptions, or sensitivity analyses without the copula model, as well as frequentist estimation were all not
addressed.

In this article, we define new causal estimands for capturing the causal effect of APOE on AD and death
times within the SCR framework. The general idea resembles principal stratification in that we propose
to stratify the population according to their potential outcomes. In Section 2, we propose new causal
estimands for SCR data, that focus on effects defined within a fixed, not time-varying, population. As with
principal stratification, membership status of this subpopulation is unobserved. In Section 3, we present
novel causal assumptions under the SCR data structure that are motivated by the study of APOE and AD.
Our new assumption termed order preservation is more flexible than the traditionally used monotonicity
assumption (Zhang and Rubin, 2003). Section 3 also provides partial identifiability results for the proposed
estimands under the new assumptions and full identifiability results under a bivariate frailty semiparametric
illness-death model. In Section 4, we propose kernel-based nonparametric methods and a sensitivity
analysis built upon a semiparametric illness-death frailty model. A fully reproducible simulation study is
described in Section 5, before turning to the study of APOE effects on AD and death, in length, in Section
6. Concluding remarks are given in Section 7. The R package CausalSemiComp implements all the
developed methodologies and is available from https://github.com/daniel258/CausalSemiComp and the
reproducibility materials are available from https://github.com/daniel258/CausalSemiCompReproduce.

https://github.com/daniel258/CausalSemiComp
https://github.com/daniel258/CausalSemiCompReproduce
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2. NOTATION AND CAUSAL ESTIMANDS

Let T1(a) and T2(a) be the times to AD diagnosis and death, respectively, had we set APOE level to A = a,
with A = 1 indicating having at least one APOE ε4 allele, and A = 0 indicating no APOE ε4 alleles.
Let fa(t1, t2) be the joint density function of {T1(a), T2(a)} on 0 < t1 ≤ t2 for a = 0, 1. Because death
may occur before AD diagnosis, Pr[T1(a) < ∞] = ∫ ∞

0

∫ t2
0 fa(t1, t2)dt1dt2 < 1. The event T1(a) = ∞ or,

stated differently, T1(a) > T2(a) corresponds to not having AD under A = a. We defer assumptions on
the joint distribution of {T1(0), T2(0)} and {T1(1), T2(1)} for later; these two pairs could never be observed
simultaneously.

Consider the average causal effect ofAPOE on the survival time E[T2(1)−T2(0)]. BecauseAPOE affects
AD incidence (Alzheimer’s Association, 2019), and because AD patients are likely to die earlier compared
to the scenario they did not have AD (Tom and others, 2015), we would expect E[T2(1) − T2(0)] < 0,
even if APOE does not carry an effect on age at death other than the effect resulting from earlier AD onset.
Additionally, when focus is on AD, E[T1(1) − T1(0)] is ill-defined, because T1(a) = ∞ for some study
units for either or both a = 0 and a = 1.

Therefore, causal inference for SCR data is entangled. Principal stratification effects suggested to
address this challenge are defined within a strata of the population created by the potential values of a
postrandomization variable, which is not the object of inquiry (Frangakis and Rubin, 2002). For SCR data,
principal stratification approaches can be divided into two types: time-fixed and time-varying estimands.
The time-fixed approach focuses on a single time point t, say age 80, and defines the binary potential
outcomes S(a) = I {T2(a) > t} and Y(a) = I {T1(a) ≤ t} as the survival status and AD status at time
t under APOE level A = a. The SACE E[Y(1) − Y(0)|S(1) = S(0) = 1] compares the population-
level risk of AD by age t with and without APOE only among those who would have survived until age
t under both APOE statuses. Typically, strong assumptions are needed for identifying the SACE. One
commonly made assumption is the monotonicity assumption S(1) ≤ S(0) (Zhang and Rubin, 2003; Ding
and Lu, 2017; Zehavi and Nevo, 2021). That is, those surviving beyond time t and have APOE would
also survive beyond t had they did not have APOE. A more recent approach (Comment and others, 2019;
Xu and others, 2020) focuses on the TV-SACE causal effect TV -SACE(t, r) = Pr[T1(1) < t|T2(1) > r,
T2(0) > r] − Pr[T1(0) < t|T2(1) > r, T2(0) > r] for t ≤ r. The TV -SACE has two major advantages over
the standard SACE: at each survival age r it compares nonterminal event rates in multiple time points, and
it respects that the population of always-survivors depends on the chosen time r. Of note is that because
the population changes with time, a change in TV -SACE(t, r) as a function of r may reflect a change in
the population or a change in the efficacy of the intervention.

2.1. Population stratification and alternative estimands

We propose alternative estimands, based on a single partition of the population. Unlike the partitions
defining the SACE and TV-SACE, this single partition is not defined with respect to a specific (possibly
varying) time point. Instead, we divide the population into four strata according to their AD and death
“order.” Because our partition involves the dual outcomes, we term it population stratification. Define the
following four subpopulations with respect to the order of T1(a), T2(a) for a = 0, 1. The “always-diseased”
(ad) will be diagnosed with AD at some point of their life, regardless of their APOE status (T1(a) ≤ T2(a)

for a = 0, 1); the “never-diseased” (nd) will die without having AD first, regardless of their APOE status
(T1(a) > T2(a) for a = 0, 1); the “harmed” (dh) would be diagnosed with AD prior to death only had they
had APOE (T1(0) > T2(0), T1(1) ≤ T2(1)); and the “protected” (dp) would be diagnosed with the disease
only without APOE (T1(0) ≤ T2(0), T1(1) > T2(1)). Let πad , πnd , πdh and πdp = 1 − πad − πnd − πdh be
the respective subpopulation proportions; see also Table 1.

Consider the stratum-specific causal estimands Pr[Tj(1) ≤ t | g] − Pr[Tj(0) ≤ t | g] for j = 1, 2
and g ∈ {ad, nd, dh, dp}. Of note is that Pr[T1(0) ≤ t | dh] = Pr[T1(1) ≤ t | dp] = 0. Furthermore,
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Table 1. Population stratification for semi-competing risks data

Name Stratum definition Stratum proportion

Always-diseased (ad) T1(0) ≤ T2(0) & T1(1) ≤ T2(1) πad

Never-diseased (nd) T1(0) > T2(0) & T1(1) > T2(1) πnd

Disease-harmed (dh) T1(0) > T2(0) & T1(1) ≤ T2(1) πdh

Disease-protected (dp) T1(0) ≤ T2(0) & T1(1) > T2(1) πdp

the contrast Pr[T2(1) ≤ t | dh] − Pr[T2(0) ≤ t | dh] is hard to interpret because under APOE, all dh
would have AD before their death, but none of them would have AD before death under no APOE. A
similar concern arise for the dp stratum. While πdh − πdp is the additional proportion of AD patients in
the population had the entire population had APOE versus had none of the population had APOE, this
quantity should be interpreted with care. The dh stratum may include people for whom APOE induces
early AD onset without affecting age of death and people for whom APOE prolongs survival long enough
to be diagnosed with AD. Therefore, we henceforth focus on the following effects defined in the ad and nd
strata

Pr[T2(1) ≤ t | ad] − Pr[T2(0) ≤ t | ad], (2.1)

Pr[T2(1) ≤ t | nd] − Pr[T2(0) ≤ t | nd], (2.2)

Pr[T1(1) ≤ t | ad] − Pr[T1(0) ≤ t | ad]. (2.3)

Causal effects that better summarize the impact of A could be based on the restricted mean survival time
(RMST). For a given time point t�, let Tj(a) = min[Tj(a), t�], a, j = 0, 1, and define

E[T2(1) − T2(0) | ad], (2.4)

E[T1(1) − T1(0) | ad], (2.5)

E{[T2(1) − T1(1)] − [T2(0) − T1(0)] | ad}, (2.6)

E[T2(1) − T2(0) | nd]. (2.7)

Each of the estimands characterizes a different causal effect of A on the outcomes within the ad or nd
stratum. Effect (2.4) is the mean (possibly negative) gain in life expectancy caused by APOE, (2.5) is
the effect of APOE on AD diagnosis age, and (2.6), which is obtained by subtracting (2.5) from (2.4),
is the effect on the residual lifetime with AD. If, for example, the latter equals zero, it means the same
life expectancy with AD is expected for those with and without APOE within the ad stratum. Effect (2.7)
is also of great interest, as it is the effect of APOE on life expectancy among the nd population, thus it
captures another form of APOE effect on survival. Other summary measures (e.g., median time-to-events)
can also be used to define causal effects.

2.2. Utility of proposed estimands and comparison to existing approaches

Had we ignored follow-up after AD diagnosis, we would have a classical competing risks setup with the
events AD diagnosis and AD-free death. Recently, there have been major advancements towards causal
inference in the presence of competing events (Young and others, 2020; Stensrud and others, 2020; Nevo
and others, 2021b). The total effect (Young and others, 2020) contrasts the proportion of AD patients
by age t under APOE and no APOE for the entire population. A total effect can be also defined for the
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APOE effect on survival. The total effects are useful to answer a multitude of research questions, but one
should be aware that interpretation can be complicated. For example, it may seems as if APOE protects
against AD-free death, simply because it induces earlier onset of AD. The direct effect (Young and others,
2020) of APOE on AD contrasts the counterfactual AD risk with and without APOE had we eliminated
the competing event for the entire population. To our knowledge, such intervention is not available for
either AD or death. Stensrud and others (2020) proposed alternative casual estimands for competing-
risks data, based on conceptual separation of the treatment into components such that each component
affects a different competing event. The SCR framework has been increasingly used for aging research;
see Varadhan and others (2014) for review and comparisons with competing risks. Unlike competing
risks, the SCR viewpoint additionally considers follow-up after the occurrence of the nonterminal event.
Therefore, the SCR framework presents an opportunity to study the dual outcomes of interest holistically,
while considering simultaneously benefits and risks with respect to both events. As we demonstrate below,
the proposed estimands can be used, for example, for studying the effect of APOE on AD age-of-onset
among those who would have AD regardless of APOE status, or the effect of APOE on survival, separately
for those would and would not have AD regardless of APOE status. The latter effect cannot be studied if
follow-up after AD is ignored. In addition, SCR data provide partial information about the dependence of
the two event times (conditionally on T1 ≤ T2), which is unidentifiable from competing-risks data, a fact
often leveraged in models for SCR data.

A second approach views AD diagnosis as a time-varying and possibly death-truncated mediator of
the effect of APOE on survival. Interventional direct and indirect effects are more appealing for such a
task, as the assumption of no common causes of AD and death affected by APOE seems too strong; see
Lin and others (2017). The mediation approach is desirable when the question of interest is the extent to
which AD mediates the effect of APOE on survival. In this work, we make no direct attempt to answer
such questions. Our approach does not specify the role of AD as a mediator. For example, APOE may
affect cognitive decline underpinning AD, and this cognitive decline may affect death not only through
earlier AD onset. Therefore, it is possible that AD is a proxy of an unmeasured mediator in addition to its
possible, though not necessary, own mediating role.

Nevertheless, a connection of the proposed estimands to the mediation literature can be made. Let
M (a) = I {T1(a) < T2(a)}. One may argue that estimands (2.4) and (2.7) resemble principal stratum
direct effects (PSDEs) under M (0) = M (1) = 1 and M (0) = M (1) = 0, respectively. As highlighted
by VanderWeele (2011), PSDEs are generally interpretable as direct effects. In our motivating example,
one may consider (2.4) as the effect of APOE on survival which is not mediated by the occurrence
of AD.

From a public health policy point of view, the decision whether CRISPR should be used to eliminate
APOE must consider the population effect on the dual outcomes of AD and death. Our proposed estimands
offer a number of information pieces needed when considering the population health and economic value of
such intervention. In Section 6, we estimate ad proportion to be 35% and the median gain in AD-free years
by age 100 (analog of estimand (2.5)) to be 2.01 years (95% CI 1.92–2.09). This means that eliminating
APOE would delay in at least 2 years AD diagnosis for at least half of those who would have AD under any
APOE status. To complement this quantity, (2.4) is the gain in survival in the same population; the median
gain is estimated to be 3.00 years (95% CI 2.93–3.07), meaning that eliminating APOE extends life for at
least half of those within the ad strata by at least 3 years. The APOE intervention effect is not limited to
the ad strata. In Section 6, we estimate the nd proportion to be 53%, and the median gain in survival by
age 100 to be 1.99 years (95% CI 1.90–2.08). Considered collectively, the results provide initial evidence
for desirable effects of eliminating APOE on both AD and survival in the population. A careful inspection
will help regulators and public health officials to weigh the consequences of APOE intervention at scale.
The TV-SACE and RM-SACE do not provide the above-described information, but they can complement
it by providing insight into heterogeneity of the effect across time.
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3. IDENTIFIABILITY

The focus of this section is on assumptions and identifiability. Methods for estimation and inference under
right censoring are developed in Section 4. Let (A, T1, T2) be the actual APOE and event times. Throughout
this article, we assume no interference between individuals and the following two standard assumptions.

Assumption 1 Consistency. T1 = T1(1)A + T1(0)(1 − A) and T2 = T2(1)A + T2(0)(1 − A).

Assumption 2 Weak Ignorability, A ⊥⊥ {T1(a), T2(a)} for a = 0, 1.

In many observational studies that lack randomization, a conditional version of Assumption 2,
conditionally on covariates, is more plausible; see also Section 3.4.

3.1. Bounds

Because principal stratum effects are not identified from the data unless additional assumptions are lever-
aged, researchers often develop bounds (Zhang and Rubin, 2003; Long and Hudgens, 2013). Here, we
present various bounds for the causal effects based on the identifiable distribution of (A, T1, T2), con-
structed differently depending on the assumptions a researcher is willing to make. First, we present a new
assumption, tailored for SCR data.

Assumption 3 Order preservation. If T1(0) ≤ T2(0), then T1(1) ≤ T2(1).

Under Assumption 3, anyone who would have been diagnosed with AD without having APOE, would
also haveAD had they hadAPOE, but not necessarily at the same age. It is consistent with the overwhelming
evidence that APOE significantly increases the risk of AD (Alzheimer’s Association, 2019). Assumption
3 is more flexible than the often-invoked monotonicity assumption, in that it acknowledges the realistic
scenario that A may impact survival time for either direction. Specifically, it allows that T2(0) − T2(1)

and T1(0) − T1(1) are of different signs at the unit level. To see this, observe that T1(1) ≤ T2(1) implies
T2(0) − T2(1) ≤ [T2(0) − T1(0)] + [T1(0) − T1(1)]. Figure 1 presents potential AD and death times
for seven hypothetical units, differing at the timing and order of the potential event times. The figure
depicts examples of units existing under both assumptions, and units that their existence violates one of
the assumptions (or both). Of note is that for a unit with no AD under either APOE status, Assumption 3
holds, while monotonicity would not hold if APOE prolongs the lifetime of that unit. Finally, Assumption
3 implies that the dp stratum is empty, that is, πdp = 0.

As is typically the case in truncation-by-death problems, even underAssumptions 1–3, none of the causal
effects (2.1)–(2.7) are nonparametrically identifiable. These effects are however partially identifiable, in
the sense that the data, coupled with the assumptions, provide bounds on these effects. For any event
Q, let Fj|Q(t) = Pr(Tj ≤ t|Q), Sj|Q(t) = 1 − Fj|Q(t) and ηQ = Pr(T1 ≤ T2|Q). Under Assumptions
1–3, Pr(T2(0) ≤ t | ad), Pr(T2(1) ≤ t | nd) and Pr(T1(0) ≤ t | ad) are identified, while Pr(T2(1) ≤
t | ad), Pr(T2(0) ≤ t | nd) and Pr(T1(1) ≤ t | ad) are only partially identified. The following proposition
establishes partial identifiability under Assumptions 1–3.

PROPOSITION 1 Under Assumptions 1–3, effects (2.1)–(2.3) are partially identified by

L2,ad(t) ≤ Pr[T2(1) ≤ t|ad] − Pr[T2(0) ≤ t|ad] ≤ U2,ad(t), (3.8)

L2,nd(t) ≤ Pr[T2(1) ≤ t|nd] − Pr[T2(0) ≤ t|nd] ≤ U2,nd(t), (3.9)

L1,ad(t) ≤ Pr[T1(1) ≤ t|ad] − Pr[T1(0) ≤ t|ad] ≤ U1,ad(t), (3.10)
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i = 1
t1 t2T1i(1) T2i(1) T1i(0) T2i(0)

i = 2
t1 t2T1i(0) T1i(1) T2i(1) T2i(0)

i = 3
t1 t2T1i(0) T1i(1) T2i(0) T2i(1)

i = 4
t1 t2T1i(0) T2i(0) T1i(1) T2i(1)

i = 5
t1 t2T2i(0) T2i(1)

i = 6
t1 t2T2i(1) T1i(0) T2i(0)

i = 7
t1 t2T1i(0) T2i(0) T2i(1)

Fig. 1. Illustration of Assumption 3 and its distinction compared to the monotonicity assumption using seven hypo-
thetical units. Units 1 and 2 are allowed under both assumptions, Assumption 3 and monotonicity. For unit 1, APOE
expedites both AD and death, but in a way that AD remains before death. For unit 2, APOE impedes AD but expedites
death. Nevertheless, unit 2 would live long enough under APOE for AD to occur. Similar protective effect occurs
for unit 3, however, this unit violates monotonicity at time t2 (as an example). Unit 4 also violates monotonicity
(at t1 and t2) but not Assumption 3. Unit 5 does not suffer from AD under any APOE value, hence it is allowed by
Assumption 3 but it does violate monotonicity (at t1 and t2) as AD carries a protective effect against death. Unit 6
violates Assumption 3 but not monotonicity. Arguably, for this unit the APOE effect on death is so strong the unit
would have died under APOE before getting the chance to have AD. Finally, unit 7 violates both assumptions.

where

L2,ad(t) = max
{

0 , 1 − S2|A=1(t)

ηA=0

}
− F2|A=0,T1≤T2(t),

U2,ad(t) = min
{

1 , F2|A=1(t)
ηA=1,T2≤t

ηA=0

}
− F2|A=0,T1≤T2(t),

L2,nd(t) = F2|A=1,T1>T2(t) − min
{

1 , F2|A=0(t)
1 − ηA=0,T2≤t

1 − ηA=1

}
,

U2,nd(t) = F2|A=1,T1>T2(t) − max
{

0 , 1 − S2|A=0(t)

1 − ηA=1

}
,

L1,ad(t) = max
{

0 , 1 − S1|A=1(t)

ηA=0

}
− F1|A=0,T1≤T2(t),

U1,ad(t) = min
{

1 ,
F1|A=1(t)

ηA=0

}
− F1|A=0,T1≤T2(t).

(3.11)

The proof is given in Section A.1 of the Supplementary material available at Biostatistics online. Under
Assumptions 1–3, the strata proportions are identified by πad = ηA=0, πdh = ηA=1 −ηA=0, πnd = 1 −ηA=1.
RMST effects (2.5)–(2.7) are (partially) identified by recalling that for any nonnegative random variable

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
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T and any fixed time t� > 0, we have E(min{T , t�}) = ∫ t�

0 [1 − Pr(T ≤ t)]dt. Had we had unlimited
uncensored data, we could have calculated the bounds using F2|A=a(t), F2|A=a,T1≤T2(t), ηA=a and ηA=a,T2≤t .
As for F1|A=a(t), we could have used F1|A=a(t) = ηA=aF1|A=a,T1≤T2(t).

Generally, bounds derived under additional assumptions might be narrower (Zhang and Rubin, 2003;
Long and Hudgens, 2013). Of course, these assumptions need to be plausible in the scientific problem at
hand for the bounds to be valid. One particular bound that may not be informative enough is L1,ad(t). As
t increases, the second term F1|A=0,T1≤T2(t) get closer to one while the first term is not, because Pr(T1 <

∞|A = 1) < 1.As a remedy for this problem, consider the following assumption and proposition providing
a more informative lower bound for (2.3).

Assumption 4 For a given t, Pr[T1(1) ≤ t|ad] ≥ Pr[T1(1) ≤ t|dh].

This assumption resembles the ranked average score assumption (Zhang and Rubin, 2003), but tailored
for time-to-event data. Assumption 4 reflects researcher belief that the ad are generally more frail (with
respect to AD), and hence are expected to be diagnosed at earlier ages than those in the dh stratum. For
example, if those in the ad stratum are more likely than those at the dh stratum to have other AD risk
factors. In practice, Assumption 4 can hold for some, all, or none of the values of t.

PROPOSITION 2 Under Assumptions 1–3, for any t for which Assumption 4 holds, Pr[T1(1) ≤ t|ad] −
Pr[T1(0) ≤ t|ad] is partially identified by L̃1,ad(t) ≤ Pr[T1(1) ≤ t|ad] − Pr[T1(0) ≤ t|ad] ≤ U1,ad(t),
where L̃1,ad(t) = F1|A=1,T1≤T2(t) − F1|A=0,T1≤T2(t) and U1,ad(t) is given in Proposition 1.

The proof is given in Section A.2 of the Supplementary material available at Biostatistics online. In
some studies, the obtained bounds, with or without additional assumptions, might be too wide to have
practical utility. Therefore, following Long and Hudgens (2013), we develop narrower bounds utilizing a
preintervention discrete covariate Z . In our study, Z can be, for example, gender. An adjusted version of
Proposition 1 can be obtained under the following assumption.

Assumption 5 A ⊥⊥ {Z , T1(a), T2(a)} for a = 0, 1.

For example, we show in Section A.3 of the Supplementary material available at Biostatistics online
that under Assumptions 1, 3, and 5, adjusted bounds for (2.1) are given by LZ

2,ad(t), UZ
2,ad(t), where

LZ
2,ad(t) =

∑
z

ν(z)

[
max

{
0 , 1 − S2|A=1,Z=z(t)

ηA=0,Z=z

}
− F2|A=0,T1≤T2,Z=z(t)

]
,

UZ
2,ad(t) =

∑
z

ν(z)

[
min

{
1 , F2|A=1,Z=z(t)

ηA=1,T2≤t,Z=z

ηA=0,Z=z

}
− F2|A=0,T1≤T2,Z=z(t)

]
,

(3.12)

and ν(z) = Pr(Z = z|A = 0, T1 ≤ T2). Similarly, adjusted bounds LZ
2,nd(t), UZ

2,nd(t) and LZ
1,ad(t), UZ

1,ad(t)
can be constructed. Furthermore, the following proposition establishes that the adjusted bounds are always
within the unadjusted bounds.

PROPOSITION 3 Under Assumptions 1, 3 and 5, L2,ad(t) ≤ LZ
2,ad(t) and U2,ad(t) ≥ UZ

2,ad(t).
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Fig. 2. True causal effects (2.1)–(2.3) and different bounds under three simulated scenarios. The bounds derived in
Proposition 1, {L1,ad(t), U1,ad(t)}, {L2,ad(t), U2,ad(t)}, and {L2,nd(t), U2,nd(t)}, are in pink shade. The blue dotted lines
are the adjusted bounds {LZ

1,ad(t), UZ
1,ad(t)}, {LZ

2,ad(t), UZ
2,ad(t)}, and {LZ

2,nd(t), UZ
2,nd(t)}. The green dashed lines are the

bounds {L̃1,ad(t), Ũ1,ad(t)}.

The proof is given in Section A.4 of the Supplementary material available at Biostatistics online.
Proposition 3 is the analog of Proposition 1 in Long and Hudgens (2013), who developed bounds for binary
outcomes. Of note is that due to finite-sample variation, Proposition 3 may not hold empirically. Therefore,
as suggested by Long and Hudgens (2013), the bounds max{L2,ad(t), LZ

2,ad(t)} and min{U2,ad(t), UZ
2,ad(t)}

can be used.
Figure 2 illustrates the various bounds under three different scenarios. The data-generating mechanism

(DGM) and the resulting per-stratum cumulative distribution functions are described in Section D.1 of
the Supplementary material available at Biostatistics online. Under Scenario (I) (top row), Assumptions
3 and 4 hold, and A = 1 shorten the ad time-to-disease and time-to-death, and nd die faster under A = 1.
The bounds {L1,ad(t), U1,ad(t)}, {L2,ad(t), U2,ad(t)}, and {L2,nd(t), U2,nd(t)} (in pink shade) are quite wide in
this scenario. The bound L̃1,ad(t) (dashed green line) is far more informative, being only slightly lower
than the true difference (black solid curve). The adjusted bounds (blue dotted lines) were narrower than
the unadjusted bounds, most notably for t values for which the unadjusted bounds are very wide. For
the causal effect on time-to-disease within the ad (top left corner) the narrower bound is obtained as
{L̃1,ad(t), UZ

1,ad(t)}. The bounds for time-to-death among the nd are quite wide. This is likely because
there is least information on this group from the observed data, as the true stratum probabilities were
(πad , πnd , πdh) = (0.49, 0.15, 0.36).

For further illustration of the latter point, consider the two bottom rows of Figure 2, both under
null effects. In Scenario (II), the nd stratum comprised most of the population, (πad , πnd , πdh) =
(0.13, 0.59, 0.28), and the bounds were quite narrow for the within nd effect (2.2), and less informa-
tive for the ad. In Scenario (III), πad was substantial, (πad , πnd , πdh) = (0.70, 0.07, 0.23), and the bounds
were quite narrow only for causal effects within the ad. In conclusion, if one of the proportions πad or πnd

is large enough, the bounds can be useful, and a covariate Z may help to create narrower bounds. Under
Assumption 4, the lower bound L̃1,ad(t) is quite informative.
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3.2. Identification by frailty assumptions

We turn to present stronger assumptions under which effects (2.1)–(2.3) are identified from the data. The
proposed overarching strategy formulates two illness-death models and tying them together via a bivariate
frailty random variable γ = (γ0, γ1). For a = 0, 1, let

λ01(t|a, γ ) = lim
	→0

	−1 Pr[T1 ∈ [t, t + 	)|A = a, T1 ≥ t, T2 ≥ t, γ ], t > 0,

λ02(t|a, γ ) = lim
	→0

	−1 Pr[T2 ∈ [t, t + 	)|A = a, T1 ≥ t, T2 ≥ t, γ ], t > 0,

λ12(t|a, t1, γ ) = lim
	→0

	−1 Pr[T2 ∈ [t, t + 	)|A = a, T1 = t1, T2 ≥ t, γ ], t > t1 > 0

be the three cause-specific hazard functions under the SCR setting (Xu and others, 2010), associated with
the transitions j → k , jk = 01, 02, 12 (0: healthy, 1: AD, 2: death); see Figure C.1 of the Supplementary
material available at Biostatistics online for illustration. The strategy of how to model the distribution
of γ dictates two forms of dependence, cross-world and within-world. A frailty-based approach with
parametric assumptions on the hazard functions, coupled with Bayesian estimation was considered by
Comment and others (2019). The authors assumed γ0 = γ1 leading to identifiability of the causal effects.
That γ0 = γ1 implies the same dependence between AD and death times in both worlds. However, it would
generally not hold unless all effect modifiers can be measured and correctly accounted for. We extend this
approach by incorporating a sensitivity parameter ρ that encapsulates the cross-world, and unidentifiable,
dependence.

Assumption 6 There exists a bivariate random variable γ = (γ0, γ1) such that

(i) A ⊥⊥ {T1(a), T2(a), γa} for a = 0, 1.
(ii) Given γ , the joint distribution of the potential event times can be factored as follows

f [T1(0), T2(0), T1(1), T2(1)|γ ] = f [T1(0), T2(0)|γ0]f [T1(1), T2(1)|γ1], (3.13)

where f (·) denotes a density function of a possibly multivariate random variable.
(iii) The frailty variable operates multiplicatively on the hazard function λjk(t|a, γ ) = γãλjk(t|a) for

jk = 01, 02 and λ12(t|a, t1, γ ) = γãλ12(t|a, t1) for a = 0, 1, for some λ̃jk functions.
(iv) The probability density function of γ , fθ (γ ), is known up to a finite dimensional parameter θ that

is identifiable from the observed data distribution.

Part (i) of Assumption 6 adapts Assumption 2 for the frailty. Part (ii) implies a cross-world inde-
pendence conditionally on the unobserved γ . That is, the inclusion of the frailty represents a model for
the collection of unobserved covariates governing the cross-world dependence. This model induces mar-
ginal (with respect to γ ) complex dependence and conditional independence between {T1(0), T2(0)} and
{T1(1), T2(1)}. Parts (iii) and (iv) guarantee identification of the observed data distribution. As with any
parametric model, one cannot expect the model to hold exactly. Nevertheless, it is well-known that usually
misspecification of the frailty distribution leads to only small bias in the estimated cumulative incidence
function (of the observed data distribution), integrated over the frailty distribution; see Gorfine and others
(2021) and references therein.

While other specifications are possible, we assume that (γ0, γ1) are correlated Gamma variables, with
mean one, variances θ0 and θ1, and correlation ρ. The frailty variances θ0 and θ1 are identifiable from
the data, while ρ is unidentifiable and is supplied by the researcher. Taking ρ = 1 is analogous to the
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approach of Comment and others (2019), and results in point identification. The following proposition
provides identification as a function of ρ, thus allowing a more flexible consideration of the unidentifiable
cross-world dependence.

PROPOSITION 4 Under Assumptions 1 and 6, the causal effects (2.1)–(2.3) are identified by

Pr[T2(1) ≤ t|ad] − Pr[T2(0) ≤ t|ad]

=
∫ ∞

0

∫ ∞

0
[F2|T1≤T2,A=1,γ1(t) − F2|T1≤T2,A=0,γ0(t)}]

ηA=0,γ0ηA=1,γ1 fθ (γ )dγ∫ ∞
0

∫ ∞
0 ηA=0,γ ′

0
ηA=1,γ ′

1
fθ (γ ′)dγ ′ ,

Pr[T2(1) ≤ t|nd] − Pr[T2(0) ≤ t|nd]

=
∫ ∞

0

∫ ∞

0
[F2|T1>T2,A=1,γ1(t) − F2|T1>T2,A=0,γ0(t)]

(1 − ηA=0,γ0)(1 − ηA=1,γ1)fθ (γ )dγ∫ ∞
0

∫ ∞
0 (1 − ηA=0,γ ′

0
)(1 − ηA=1,γ ′

1
)fθ (γ ′)dγ ′ ,

Pr[T1(1) ≤ t|ad] − Pr[T1(0) ≤ t|ad]

=
∫ ∞

0

∫ ∞

0
[F1|T1≤T2,A=1,γ1(t) − F1|T1≤T2,A=0,γ0(t)}]

ηA=0,γ0ηA=1,γ1 fθ (γ )dγ∫ ∞
0

∫ ∞
0 ηA=0,γ ′

0
ηA=1,γ ′

1
fθ (γ ′)dγ ′ ,

where for any event Q, Fj|Q,γ (t) = Pr(Tj ≤ t|Q, γ ), j = 1, 2.

The proof is given in Section A.5 of the Supplementary material available at Biostatistics online.
RMST-like estimands (2.4)–(2.7) are identified by suitable integration over t. Figure 3 illustrates the
RMST effects (2.4), (2.5), and (2.7) under the DGM described in Section 4 and Section D.1 of the
Supplementary material available at Biostatistics online, with equal variances θ = θ0 = θ1 and as a
function of ρ. Stratum proportions varied between 41–45% for ad stratum and 8–12% for the nd stratum.
The causal RMST effects, calculated at t� = 15, were sensitive to ρ when the stratum proportion was very
small and the frailty variance was large and were otherwise quite robust to ρ.

3.3. Right censoring

Time-to-event outcome data are often not fully observed for all individuals due to right censoring. Two
issues arise when considering right censoring. The first is identification of the causal estimand, considered
in this section, and the second is how to estimate the different quantities and provide inference, which
is embedded in the nonparametric and semiparametric methods presented in Section 4. Let C(a) be the
right-censoring time under A = a. Assumption 2 is adjusted for the case of censoring by assuming
A ⊥⊥ {T1(a), T2(a), C(a)} for a = 0, 1. We also assume within-world independent censoring, namely
that {T1(a), T2(a)} ⊥⊥ C(a) for a = 0, 1. In our study, this assumption asserts that, under each APOE
value, the two event times and censoring time are independent. We also assume that Pr(Tj(a) > c) > 0
for j = 1, 2 with c being the end of follow-up time. Combining the weak ignorability and within-world
independent-censoring assumptions together, and by Assumption 1, we get the standard independent
censoring assumption for SCR data T1, T2 ⊥⊥ C, with C being the censoring time under A.

3.4. Covariates inclusion

Often the ignorability and independent censoring assumptions are more plausible when made condition-
ally on covariates X . Assumption 6 is also more plausible when made conditionally on covariates. For
simplicity, we use the same vector X for all assumptions to hold. In Section A.6 of the Supplementary
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Fig. 3. Causal restricted mean and median survival time effects at t� = 15 as a function of the frailty variance
θ = θ0 = θ1 = 2/3, 1, 2, (corresponding to Kendall’s τ = 1/4, 1/3, 1/2) as a function of the correlation between the
frailty variables ρ ∈ [0, 1].

material available at Biostatistics online, we adapt Propositions 1 and 4 to include covariates.An additional
reason to include covariates is to improve estimators’ efficiency. In our study (Section 6), we use gender
and race as covariates. Note that the role of X is different from the role of the covariate Z we utilized in
Section 3.1.

While a variety of statistical models have been used for SCR data, how to elucidate information on
causal effects is typically overlooked and, in practice, focus is often on specific regression coefficients.
Therefore, our work enables translation of existing model results into knowledge on causal effects. With
this is mind, we focus on frequentist estimation of causal effects (2.4)–(2.7) under semiparametric frailty
models that align with Assumption 6.

4. ESTIMATION AND INFERENCE

We now turn to estimation and inference from right-censored SCR data. We first propose nonparametric
estimators, before considering semiparametric models. For the nonparametric estimators, the quantities of
interest are the building blocks of the bounds, namely ηA=a, ηA=a,T2≤t , S1|A=a, S2|A=a, S1|A=a,T1≤T2 , S2|A=a,T1≤T2 ,
and S2|A=a,T1>T2 (for a = 0, 1). For the semiparametric estimation, we focus on a frailty-based proportional-
hazard model that allows estimation of causal effects utilizing Proposition 4.

For each participant i = 1, ..., n denote by Zi a covariate that is used for obtaining sharper bounds (when
available), by X i a vector of baseline covariates (when available), by Ai ∈ {0, 1}, the APOE value, and
by Tij the AD (j = 1) and death (j = 2) times. Let also Ci be the censoring time. The data for each unit
are (Zi, X i, Ai, T̃i1, δi1, T̃i2, δi2) where T̃i1 = min(Ti1, Ti2, Ci) and T̃i2 = min(Ti2, Ci) are the observed times,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
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and δi1 = I {T̃i1 = Ti1} and δi2 = I {T̃i2 = Ti2} are the indicators of AD and death, respectively. Finally,
Yij(t) = I {t ≤ T̃ij} are the at-risk processes.

4.1. Nonparametric estimation

We suggest to estimate S2|A=a(t) by the Kaplan–Meier (KM) estimator. Regarding S1|A=a(t),

S1|A=a(t) = Pr(T1 > t|A = a) = −
∫ ∞

0
S1|A=a,T2=s[min(t, s)]dS2|A=a(s), (4.14)

because for t > s, S1|A=a,T2=s(t) = S1|A=a,T2=s(s), that is, among those who die at time s, no new dis-
ease cases are possible later than s. The function S1|A=a,T2=s is well-defined, and thus can be estimated
nonparametrically.

We propose to estimate S1|A=a,T2=s(t) by a kernel-smoothed KM estimator (Beran, 1981) within the
{A = a, δ2 = 1} group. Let K(·) be a kernel function (K(t) ≥ 0,

∫
K(t)dt = 1), and let hn → 0 be a

sequence of bandwidths. In practice, one might consider a separate bandwidth for each level of A. For
simplicity of presentation, we assume hn is the same for both a = 0, 1. Let Q(s, a; hn) = ∑n

i=1 I {Ai =
a}δi2K[(s − Ti2)/hn], and Wi(s, a; hn) = I {Ai = a}δi2K[(s − Ti2)/hn]/Q(s, a; hn). The kernel-smoothed
KM estimator for S1|A=a,T2=s(t) is then defined by

Ŝ1|A=a,T2=s(t) =
n∏

i=1

[
1 − Wi(s, a; hn)∑n

j=1 Y1j(T̃i1)Wj(s, a; hn)

]δi1δi2I {Ai=a,T̃i1≤t}
. (4.15)

We propose to estimate ηA=a in similar fashion utilizing that

ηA=a = Pr(T1 ≤ T2|A = a) = −
∫ ∞

0
F1|A=a,T2=t(t)dS2|A=a(t). (4.16)

In Section C.1 of the Supplementary material available at Biostatistics online, we give similar explicit
formulas for ηA=a,T2≤t , S1|A=a,T1≤T2(t), S2|A=a,T1≤T2(t), and S2|A=a,T1>T2(t). Covariate-adjusted bounds (3.12)
are estimated at each level of Z and averaged by ν̂(z) = P̂r(Z = z)̂ηZ=z/P̂r(T1 ≤ T2). A sketch of the
proof for the asymptotic properties of the proposed estimators using existing results for the KM estimator
and kernel-smoothed KM estimator is provided in Section C.2 of the Supplementary material available at
Biostatistics online; see also Akritas and Van Keilegom (2003).

4.2. Semiparametric frailty models

Under Assumption 6, we propose to use the following proportional hazard specification

λ01(t|a, X , γ ) = γaλ
0
01(t|a) exp(X Tβa

01) , t > 0

λ02(t|a, X , γ ) = γaλ
0
02(t|a) exp(X Tβa

02) , t > 0

λ12(t|t1, a, X , γ ) = γaλ
0
12(t|a) exp(X Tβa

12) , t > t1 > 0 ,

(4.17)

where λ0
jk(t|a), jk = 01, 02, 12, a = 0, 1 are unspecified baseline hazard functions. Define also the cumu-

lative baseline hazard functions, �0
jk(t|a) = ∫ t

0 λ0
jk(u|a)du, and let β = (β0T

01 ,β0T
02 ,β0T

12 ,β1T
01 ,β1T

02 ,β1T
12 )T ,

and �0 = (�0
01(·|a), �0

02(·|a), �0
12(·|a)) for a = 0, 1. Finally, let ψ = (�0,β, θ) be the collection of
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parameters to be estimated from the data. For prospectively collected data with all participants being
AD-free at study starting time, the likelihood function is proportional to

L(ψ) =
n∏

i=1

{
[λ0

01(T̃i1|Ai)]δi1 [λ0
02(T̃i1|Ai)](1−δi1)δi2[λ0

12(T̃i2|Ai)]δi1δi2 (4.18)

exp
[
δi1X T

i β
Ai
01 + (1 − δi1)δi2X T

i β
Ai
02 + δi1δi2X T

i β
Ai
12

]
(−1)δi1+δi2φ

(δi1+δi2)

Ai
(si)

}
,

where φ(0)
a (s) = E {exp{−sγa}}, φ(q)

a is the qth derivative of φ(0)
a (s) with respect to s, q = 1, 2, and

si = ∑2
j=1 exp(X T

i β
Ai
0j )�

0
0j(T̃i1|Ai)+δi1 exp(X T

i β
Ai
12)

[
�0

12(T̃i2|Ai)−�0
12(T̃i1|Ai)

]
. The likelihood derivation

follows from SM3 of Gorfine and others (2021). In Section C.3 of the Supplementary material available at
Biostatistics online, we present an EM algorithm for maximizing (4.18). The estimation phase ignores the
unidentifiable component ρ. Assumptions on the joint distribution of (γ0, γ1) are used to map the estimator
ψ̂ into estimates of causal effects. Upon estimating ψ̂ , the quantities in the identifying formulas from
Proposition 4 can be calculated by numerical integration or Monte Carlo simulations, as we do in Section 5.

5. SIMULATIONS

To assess the finite-sample properties of the proposed estimators, we conducted simulations under various
scenarios with 1,000 simulation iterations per scenario. Sample size was n = 2000 and different censoring
rates were considered. The DGM initially followed (4.17) with Weibull baseline hazards, two covariates,
and Gamma frailty as described in Section 3.2 with θ0 = θ1 for simplicity. Treatment was randomized
with Pr(A = 1) = 0.5 and observed event times (pre censoring) were created by Assumption 1. Details on
the different DGMs, analyses and comprehensive results are presented in Section D of the Supplementary
material available at Biostatistics online and described briefly here.

For the nonparametric estimation, we considered the scenarios previously used in Figure 2.Assumption
3 was imposed by re-simulating those initially at the dh stratum. For the smoothed KM estimator, default
choices of the R packageprodlimwere used (Gerds, 2019). Standard errors were estimated by bootstrap
(sampling at the unit level) with 100 repetitions. For all parameters considered, bias was negligible,
standard errors were well estimated and 95% Wald-type confidence intervals had satisfactory empirical
coverage rate.

For the semiparametric estimation, data was generated under model (4.17) and was not restricted to fol-
low Assumption 3. Gamma frailties were simulated with ρ = 0, 0.5, 1 and equal variances θ = 2/3, 1, 2,
corresponding to Kendall’s τ = 1/4, 1/3, 1/2 between T1(a) and T2(a). For each simulated dataset, we fit-
ted two illness-death frailty models for A = 0, 1 using the EM algorithm (Section C.3 of the Supplementary
material available at Biostatistics online). Frailty variances were estimated separately and then combined
(Section D.2.2 of the Supplementary material available at Biostatistics online). RMST causal effects were
estimated by a Monte Carlo integration using the estimated baseline hazards �̂, coefficients β̂ and θ̂

(Section D.2 of the Supplementary material available at Biostatistics online). Standard errors were esti-
mated using bootstrap with 100 repetitions. Generally, the empirical bias of the estimated mean and median
RMST effects was relatively negligible, standard errors were well estimated, and coverage provabilities
were satisfactory. The regression coefficients, baseline hazard functions, and frailty variance were all also
well estimated (Section D.3 of the Supplementary material available at Biostatistics online).

6. DATA ANALYSIS

The Adult Changes in Thought (ACT) Study is a prospective cohort study focused on dementia in the
elderly. Starting from 1994, AD-free participants of age 65 and older from the Seattle metropolitan area

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab049#supplementary-data
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Fig. 4. Bounds for principal effects of APOE on AD and death based on the ACT data. In pink shade the simple
bounds, in blue bounds adjusted for gender, and in green bounds based on Assumption 4.

have been recruited (Kukull and others, 2002). Our analyses include the binary variables gender and race
(white/nonwhite). Other available covariates (e.g., years of education) were not used as they are determined
post-intervention. Out of 4453 participants, 1783 (40%) were censored prior to any event, 211 (5%) were
diagnosed with AD and then censored, 1635 (37%) died without an AD diagnosis, and 824 (19%) were
diagnosed with AD and died during follow-up. APOE was present for 1073 (24%) study participants.
Because APOE is inherited and independent of other inherited traits, the ignorability assumptions seem
plausible in this study.

Figure 4 presents the estimated bounds for causal effects (2.1)–(2.3) under Assumption 3 (pink shade),
utilizing gender as an additional covariate (blue), and under the additional Assumption 4 (green, for (2.3)
only). Assumptions 3 and 4 seem reasonably plausible in this application, because APOE is a well-known
strong predictor of AD. The ad proportion πad was estimated to be 35% (95% CI 32%–37%). The bounds
[L̃1,ad(t), UZ

1,ad(t)] (bottom green and top blue) demonstrate that APOE induces earlier AD onset within
the ad stratum. The bounds do not allow for definite conclusions regarding the effect of APOE on death,
and the inclusion of the variable gender had only minor effect. Focusing on the nd stratum, its proportion
was estimated to be 53% (95% CI 49%–58%), meaning the two stratum of interest together comprise the
vast majority of the population. Whether APOE had a positive or negative effect on survival in the nd
is unclear, although the lower bound was larger than zero for early ages. The dh stratum proportion was
estimated to be 12% (95% CI 7%–17%), meaning that had the entire population had APOE, we would
have expect a 12% increase of in the proportion of people with AD diagnosis sometime in their lifetime,
compared to the scenario that none of the population had APOE.

In the semiparametric analysis under Assumption 6, two illness-death models (4.17) were fitted using
the EM algorithm, and included gender and race as covariates X (SM Table E.15 presents the estimated
coefficients). Because participants in the ACT were recruited in varying ages, data were left truncated.
We followed the approximation of Nielsen and others (1992), by replacing all risk indicators I {t ≤ T̃ij}
with I {Ri ≤ t ≤ T̃ij}, where Ri is the age at recruitment. The estimated frailty variance was θ̂ = 0.042
(SE: 0.005), corresponding to Kendall’s τ of 0.02. Turning to causal effects (Table 2), significant long-
term negative effects of APOE on AD onset within the ad stratum were estimated; those with APOE
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Table 2. Estimated RMST causal effects of APOE on AD and death times within the ad and nd strata.
Effects presented are mean (ATE) and median (MTE) differences. Results presented for ρ = 0.5. The
empirical distribution of gender and race in the data was used for calculating RMST effects

AD Death
Stratum t� ÂTE (95% CI) ̂MTE (95% CI) ÂTE (95% CI) ̂MTE (95% CI)

ad 15 −0.04 (−0.12 to 0.04) 0.00 (−0.07 to 0.07) −0.61 (−0.7 to −0.52) −1.00 (−1.09 to −0.91)
25 −1.28 (−1.35 to −1.20) −2.00 (−2.07 to −1.92) −2.52 (−2.61 to −2.43) −3.00 (−3.08 to −2.92)
35 −1.82 (−1.89 to −1.74) −2.01 (−2.09 to −1.92) −2.42 (−2.5 to −2.35) −3.00 (−3.07 to −2.93)

nd 15 −0.13 (−0.22 to −0.05) 0.00 (−0.08 to 0.08)
25 −0.56 (−0.65 to −0.48) −1.00 (−1.08 to −0.92)
35 −1.75 (−1.84 to −1.67) −1.99 (−2.08 to −1.90)

are expected to receive an AD diagnosis approximately 2 years earlier. Additionally, death at earlier age
was expected in both strata under APOE. For t� = 15 (age 80), effects were zero for the nd stratum and
negative though small for the ad. For t� = 25, 35 (ages 90,100), effects were negative in both strata, but
stronger for the ad. The estimated effects did not change substantially as a function of ρ.

To summarize the findings,APOE was found to expediteAD development within the ad stratum.APOE
was shown to have harmful effect on long-term age at death in both strata only under Assumption 6 and
the semiparametric modeling.

7. DISCUSSION

It has been increasingly acknowledged that considering dual outcomes may provide unique information
about the scientific problem in hand, especially in the presence of death as a competing event. While the
SCR framework allows for consideration of dual outcomes, questions of causality under this framework
were only recently began to be studied. To study causal effects of APOE on AD and death, we proposed
new estimands built upon a population stratification approach.

Population stratification may suffer from similar disadvantages to principal stratification - that one
cannot know the stratum a unit belongs to at baseline, and that the ad and nd strata may be small or
irregular subsets of the population. When the ad and/or the nd strata comprise small part of the population,
the TV-SACE and TV-RMST can be more informative. The TV-SACE and RM- SACE are also attractive
when heterogeneity in treatment effect across time is of interest. When the goal is to assess the extent
to which an intervention effect is mediated through a disease, a mediation approach should be preferred.
Finally, when interest lies in the disease event only, causal estimands from the competing events literature
might be more appealing.

We presented two overarching strategies towards studying the proposed causal estimands. The large-
sample bounds we developed are built upon a set of assumptions a researcher is willing to make explicitly
on the relation between potential outcomes under two different interventions. The frailty-based approach
models cross-world dependence via semiparametric assumptions and carries out a sensitivity analysis as
a function of the sensitivity parameter. One disadvantage of the latter is that the exact restrictions imposed
on the potential outcomes beyond the conditional independence are implicit. Our sensitivity analysis
strategy resembles the approach of Xu and others (2020) in that a correlation parameter for the cross-
world dependence is introduced together with a distribution assumption. We used a frailty approach, while
Xu and others (2020) assumed a Gaussian copula model for the joint distribution function of (T1(a), T2(a))

conditionally on X . Xu and others (2020) then considered a flexible Bayesian regression model.
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8. SOFTWARE

Our R package CausalSemiComp (Version 1.0.0) implements the proposed methodology and is
available from https://github.com/daniel258/CausalSemiComp.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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