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A B S T R A C T

Purpose: There is increasing interest in using automatic speech recognition
(ASR) systems to evaluate impairment severity or speech intelligibility in
speakers with dysarthria. We assessed the clinical validity of one currently avail-
able off-the-shelf (OTS) ASR system (i.e., a Google Cloud ASR API) for indexing
sentence-level speech intelligibility and impairment severity in individuals with
amyotrophic lateral sclerosis (ALS), and we provided guidance for potential users
of such systems in research and clinic.
Method: Using speech samples collected from 52 individuals with ALS and 20
healthy control speakers, we compared word recognition rate (WRR) from the
commercially available Google Cloud ASR API (Machine WRR) to clinician-
provided judgments of impairment severity, as well as sentence intelligibility
(Human WRR). We assessed the internal reliability of Machine and Human WRR
by comparing the standard deviation of WRR across sentences to the minimally
detectable change (MDC), a clinical benchmark that indicates whether results are
within measurement error. We also evaluated Machine and Human WRR diagnos-
tic accuracy for classifying speakers into clinically established categories.
Results: Human WRR achieved better accuracy than Machine WRR when
indexing speech severity, and, although related, Human and Machine WRR
were not strongly correlated. When the speech signal was mixed with noise
(noise-augmented ASR) to reduce a ceiling effect, Machine WRR performance
improved. Internal reliability metrics were worse for Machine than Human WRR,
particularly for typical and mildly impaired severity groups, although sentence
length significantly impacted both Machine and Human WRRs.
Conclusions: Results indicated that the OTS ASR system was inadequate for
early detection of speech impairment and grading overall speech severity. While
Machine and Human WRR were correlated, ASR should not be used as a one-to-
one proxy for transcription speech intelligibility or clinician severity ratings. Overall,
findings suggested that the tested OTS ASR system, Google Cloud ASR, has lim-
ited utility for grading clinical speech impairment in speakers with ALS.
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The demand for automated speech analysis systems
is increasing due to their potential value as biomarkers for
a variety of mental and physical health conditions (Low
et al., 2020; Toth et al., 2018). The current standard for
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assessing speech impairment severity requires licensed
speech-language pathologists (SLPs), who use ordinal
descriptors (e.g., mild, moderate, and severe; King et al.,
2012; Tjaden & Liss, 1995). While found to be reliable
(Stipancic et al., 2021), this assessment requires experi-
enced listeners, can be time intensive and costly, and can
be biased by the assessor’s familiarity with the speaker,
speech disorder, and subject matter (King et al., 2012;
Tjaden & Liss, 1995). The need for more objective and
automatic methods for assessing speech severity in motor
speech disorders is widely recognized for a variety of
research and clinical applications, including improved
diagnosis, symptom monitoring, and intervention design
(King et al., 2012; Tjaden & Liss, 1995).

Off-the-shelf automatic speech recognition (OTS
ASR) systems are an attractive candidate for this applica-
tion, because they are low cost, simple to implement, and
widely available. The proportion of words incorrectly rec-
ognized by these systems, or word error rate (WER), could
presumably serve as a quantitative index of overall speech
impairment. Because OTS ASR platforms are trained on
typical speech, recognition accuracy degrades as speech
becomes more atypical or less intelligible (De Russis &
Corno, 2019; Mustafa et al., 2015). Prior research in people
both with and without speech impairment has linked ASR
accuracy to speech intelligibility (Ferrier et al., 1995; Jacks
et al., 2019; McHenry & Laconte, 2010; Riedhammer
et al., 2007), with correlations reported between .80 and .98
(Ferrier et al., 1995; Jacks et al., 2019; Riedhammer et al.,
2007). Similarly, Tu et al. (2016) found a strong correlation
between ASR WER and perceptually rated severity WER
(Pearson r = .80).

Despite these advantages, the efficacy of ASR has
been understudied for speech severity grading. Moreover,
previous work has identified several threats to ASR valid-
ity, including biases from language models. For example,
language models can boost accuracy by aiding word pre-
diction, or they can decrease accuracy when errors lower
the probability of correctly selecting nearby words
(Keshet, 2018). The word-level transcription of most OTS
ASR systems could further obfuscate subtle differences at
the phone level, as a mild distortion and a major articula-
tory deviation could lead to the selection of the same
incorrect word (Keshet, 2018). There is also evidence that
some speech deviations affect ASR accuracy more than
others (Benzeghiba et al., 2007; Goldwater et al., 2010;
Keshet, 2018; Tu et al., 2016), such that speakers with cer-
tain dysarthria etiologies or subsystem impairments could
be erroneously classified as more or less severe regardless
of actual dysarthria severity. Moreover, reports that
humans and ASR systems produce different errors when
transcribing speech limit the reliability of ASR for track-
ing functional speech changes (Mulholland et al., 2016).
These limitations suggest that ASR may be unpredictable
when indexing severity and problematic for judging clini-
cally relevant speech differences.

In the current project, we tested the clinical validity of
a widely available OTS ASR system (Google Cloud ASR)
for grading speech severity in persons with ALS (Goldsack
et al., 2020; Google LLC, 2020). Clinical validation is
defined as whether a measure “acceptably identifies, measures,
or predicts a meaningful clinical, physical, functional state, or
experience, in the stated context of use” (Goldsack et al., 2020).
Other groups have made inroads in clinically validating ASR
for dysarthria by investigating the relationship between percep-
tual severity measures and ASR transcription (Tu et al., 2016).
For example, comparing human transcription and ASR tran-
scription, Jacks et al. (2019) found very high correlations
(Spearman ρ = .96–.98) using IBM Watson for speakers with
aphasia and/or apraxia of speech (AOS) following a stroke;
Maier et al. (2010) reported Spearman rho between −.88 and
−.90 for a hidden Markov model (HMM)—based ASR sys-
tem used on head and neck cancer patients with dysglossia
and dysphonia; and Ballard et al. (2019) found agreement
of 75.7% between human and ASR (using CMU Pocket-
Sphinx) judgments of word-level productions by people with
aphasia and AOS following stroke. Looking at the relation-
ship between Google ASR accuracy and clinician-rated
severity, Tu et al. (2016) found a moderate correlation
(Pearson r = .69) for speakers with dysarthria when using
the Google ASR engine. Still, the evidence for clinical valid-
ity of ASR—as applied to a specific clinical population—
remains scant and has primarily been evaluated for aphasia
and AOS (e.g., Ballard et al., 2019; Jacks et al., 2019).

We focused on the Google Cloud Speech ASR sys-
tem as it is a top-performing freely available ASR system,
with a low WER for healthy speakers and a documented
gradient for speakers with dysarthria: WER of 3.95% for
healthy speakers, 16.11% for mildly or unimpaired speakers
with ALS or cerebral palsy (CP), and 78.21% for severely
impaired speakers with ALS or CP (De Russis & Corno,
2019). Furthermore, Google Cloud Speech Recognition is
accessible through several coding languages and platforms,
such as MATLAB and python (e.g., MathWorks Audio
Toolbox Team, 2022; Zhang, 2017) as well as consumer-
accessible programs like the Google search function. Thus,
although Google Cloud ASR was not developed for clinical
purposes, it is a functional system that researchers and cli-
nicians alike can easily use (e.g., De Russis & Corno, 2019;
Tu et al., 2016). Throughout this article, we refer to the
results from Google Cloud Speech Recognition simply as
“ASR” or “Machine WRR” (see below).

We addressed the limitations of previous work by
using a relatively large (N = 72 speakers) data set encompass-
ing neurologically healthy control (HC) speakers and the full
speech severity range in patients with just one dysarthria etiol-
ogy, amyotrophic lateral sclerosis (ALS). We focused on clini-
cally validating ASR in people with dysarthria secondary to
Gutz et al.: ASR Validity for ALS Speech Assessment 2129



ALS—a disease characterized by the progressive degeneration
of upper and lower motor neurons (resulting in spastic, flac-
cid, or mixed spastic–flaccid dysarthria; Tomik & Guiloff,
2010)—because speech severity is a common metric of bulbar
disease progression in ALS (Green et al., 2013). We closely
considered ASR’s relationship with speech intelligibility due
to intelligibility’s strong relationship with severity (Rong,
Yunusova, Wang, et al., 2015) and because it is commonly
used as a severity proxy or stratification tool in research
(Gutz et al., 2019; Rong, Yunusova, & Green, 2015; Stipancic
et al., 2018, 2021). Speech intelligibility is measured as the per-
centage of spoken words that a listener can correctly tran-
scribe (Miller, 2013). While intelligibility is a component of
impairment severity, many factors influence severity, includ-
ing resonance, articulation, respiration, phonation, prosody,
and intelligibility (Darley et al., 1969). Thus, the two measures
allow distinct insights into the clinical validity of ASR.

Clinicians and researchers use other metrics to assess
dysarthria as well. For example, standardized assessments
such as the Frenchay Dysarthria Assessment (Enderby,
1980) and patient report measures such as the Revised
Amyotrophic Lateral Sclerosis Functional Rating Scale
(ALSFRS-R) (Cedarbaum et al., 1999) are often used to
determine the presence or severity of dysarthria. Clinicians
and researchers may also use acoustic and kinematic measures
such as rate, consistency, and lip movement on diadochokin-
esis tasks (DDK) to assess dysarthria and AOS in Parkinson’s
disease, multiple sclerosis, stroke, traumatic brain injury, and
ALS (Rowe et al., 2020; Tjaden & Watling, 2003; Ziegler,
2002). Speaking rate, which degrades before intelligibility in
ALS, has also been used to rate speech severity in people with
dysarthria, including those with ALS (Rong, Yunusova,
Wang, et al., 2015). Additionally, while some work indicates
that many features that influence severity are redundant to
human listeners and therefore add little beyond intelligibility
(Weismer et al., 2001), a growing body of work suggests that
features independent of intelligibility, such as comprehensibil-
ity and naturalness, impact clinical measures of speech sever-
ity (Hustad, 2008; Sussman & Tjaden, 2012). However,
because our aim was to evaluate ASR as a measure of speech
impairment severity, and not to characterize said impairment,
we focused on clinician-rated severity and speech intelligibil-
ity, measures that have already been associated with ASR per-
formance, as mentioned above.

To contextualize ASR’s performance, we compared
ASR with transcription intelligibility for all measures under
consideration. Additionally, the data set was well curated
in terms of clinical speech labels and ground-truth human
orthographic transcriptions, completed by 10 experienced
SLPs and previously reported in Stipancic et al. (2021).

Our study was designed to address the following
three research questions: (RQ1) Is the OTS ASR system
output a valid representation of transcription speech intel-
ligibility (convergent validity)? (RQ2) Is the OTS ASR
2130 Journal of Speech, Language, and Hearing Research • Vol. 65 •
system output a valid proxy for clinician-rated severity
groupings (known-groups validity)? and (RQ3) Is the OTS
ASR system accuracy reliable across sentences of varying
length and content (internal reliability)?
Method

Procedure

This project used data collected as part of the same
data set used by Stipancic et al. (2021), who previously
reported data for the speakers, listeners, and the reliability
of human transcription intelligibility used in this study.

Participants—speakers. We collected audio samples
from 72 speakers (see Table 1), who participated in a
larger study on bulbar motor involvement in ALS (Green
et al., 2013). Our sample included both HC speakers and
speakers with ALS. Of the participants with ALS, 25 had
spinal onset, 21 had bulbar onset, three had mixed onset,
and three had unknown onset. The mean ALSFRS-R
score was 31 (SD = 9.62).

Participants—listeners. Ten SLPs served as clinician
listeners. All listeners had a master’s degree in speech-
language pathology and had been practicing for a mean
of 6.6 years (range: 2–14 years, SD = 5.1 years) and had
experience working with patients with dysarthria (M =
6.25 years, range: .5–.14 years, SD = 5.2 years). SLP lis-
teners rated the speech samples remotely through the
online survey platform REDCap (Harris et al., 2009). Lis-
teners could listen to each sample recording twice, using
headphones. Listeners completed an online hearing screening
tool before completing the REDCap survey to control for
individual listening volume (Miracle Ear, 2018). Listener
participants and data collection protocol (described below)
were previously reported in Stipancic et al. (2021).

Speech sample. Speech samples were collected from
the Speech Intelligibility Test (SIT; Yorkston et al., 2007).
Each speaker read a set of 11 randomly selected sentences
increasing incrementally in length from five to 15 words.
Audio (32-bit, mono, 44.1 kHz) was recorded with a head-
fixed microphone 1 in. from the speaker’s mouth.

ASR Measures

Machine word recognition rate (WRR) was calculated
as 1 minus the WER and then multiplied by 100. WER, a
common metric for evaluating ASR accuracy, is presented
as the rate of transcription errors (insertions, deletions,
and substitutions) relative to the sentence length and was
calculated as the Levenshtein distance (Levenshtein, 1966)
between the target SIT text and the text transcribed by the
Google Cloud Speech API (Google LLC, 2020). We accessed
Google Cloud Speech through the python library Speech
2128–2143 • June 2022



Table 1. Participant stratification and demographic information, as well as onset site, ALSFRS-R score, Human word recognition rate (WRR),
and Machine WRR.

Group

Clinician-
rated

severity

n
Age (years)

M (SD)

Onset site (n)
ALSFRS-R
M (SD)

M (SD; %)

All F M Sp. Bul. Mix. Un. Human WRR Machine WRR

ALS & HC Normal 23 12 11 62.87 (9.31) n/a n/a n/a n/a n/a 97.82 (2.29) 83.12 (14.04)
HC Normal 20 11 9 63.22 (9.37) n/a n/a n/a n/a n/a 98.10 (1.99) 85.45 (13.46)
ALS Normal 3 1 2 60.59 (10.55) 2 0 1 0 38.00 (2.83) 95.96 (3.71) 67.59 (5.60)
ALS Mild 11 4 7 58.59 (8.36) 6 3 1 1 25.78 (10.60) 92.83 (3.41) 76.40 (10.74)
ALS Moderate 11 3 8 58.64 (12.12) 8 2 0 1 30.75 (8.75) 77.13 (17.00) 48.02 (26.09)
ALS Severe 14 4 10 56.28 (11.28) 4 9 1 0 33.22 (9.15) 58.41 (19.62) 17.70 (12.60)
ALS Profound 13 10 3 61.61 (8.14) 5 7 0 1 32.25 (9.94) 18.09 (18.87) 2.86 (4.94)

Overall 72 33 39 60.01 (9.93) 25 21 3 3 31.00 (9.62) 71.84 (32.1) 49.52 (35.81)

Note. F = female; M = male; Sp. = spinal; Bul. = bulbar; Mix. = mixed; Un. = unknown; ALS = participants with ALS diagnosis; HC =
healthy controls; n/a = data not collected for HC participants.
Recognition (Zhang, 2017) and used it to transcribe each
recorded sentence individually. We evaluated the efficacy of
the Google Cloud API, because it is freely available (Zhang,
2017) and has been used in prior work to evaluate speech
intelligibility (Dimauro et al., 2017; Vásquez-Correa et al.,
2018). Although we focused on the Google Cloud Speech
API, validation of other systems (e.g., IBM Watson, Micro-
soft, Amazon) is warranted for similar reasons.

Clinical Measures

Clinician-rated severity was our main standard of com-
parison. Clinician-provided perceptual severity ratings reflected
expert opinion on speech based on the listener’s total per-
cept, which would account for factors such as naturalness
and subsystem involvement in addition to intelligibility. Cli-
nician raters were instructed to “Please indicate the severity
of the speech for this individual” as normal, mild, moder-
ate, severe, or profound. These data and methods were pre-
viously reported in Stipancic et al. (2021), who found high
intrarater reliability (% agreement = .94) and high interra-
ter reliability (weighted κ = .91) for the current sample. The
clinician ratings were averaged across the two clinician listeners
and rounded up to the nearest whole number (i.e., the more
severe rating). Two listeners provided ratings to allow for inter-
rater reliability calculation. Although we had data for HCs
and people with ALS whom clinicians rated as “normal,” we
combined speakers from both groups into the clinician-rated
“normal” category for analyses. This approach was in keep-
ing with our aim of evaluating ASR relative to clinician-
rated severity, rather than distinguishing the speech of HCs
from people with ALS with “normal” speech.

Human WRR (sentence-level speech intelligibility)
was derived at the sentence level using the SIT. Two SLP
listeners orthographically transcribed each sample, writing
word for word what they heard the speaker say. Each lis-
tener transcribed 24 unique SIT samples and two reliabil-
ity samples. Accuracy for each sentence was calculated as
the number of correctly identified words divided by the
number of target words and then multiplied by 100 to
obtain percent intelligibility. Average sentence intelligibil-
ity for each speaker was calculated as the mean sentence
intelligibility of the 11 SIT sentences, averaged across the
two listeners. For the sentence-level transcriptions of these
data, Stipancic et al. (2021) found high intrarater reliabil-
ity (average ICC = .91, p < .001) and high interrater reli-
ability (ICC = .94, p < .001).

Statistical Methods

(RQ1) Convergent validity. To assess the convergent
validity of Machine WRR with Human WRR, we com-
puted Pearson correlation between Machine WRR and
Human WRR. We tested the fit of linear and quadratic
equations to assess if Machine WRR could be considered
a one-to-one equivalent of Human WRR, or if their rela-
tionship was nonlinear.

To test how well Machine WRR tracks Human
WRR for high and low intelligibility speakers, we com-
pared Machine WRR between groups stratified by Human
WRR. We stratified speakers by Human WRR using SIT
upper limits reported in prior work; cutoffs for Human
WRR Intelligibility Groups 1–5 were, respectively, 100%,
96%, 90%, 80%, and 50% (Stipancic et al., 2018, Table 2).
In prior work, these groups have been labeled as having
normal, mild, moderate, severe, and profound intelligibility
impairment (Stipancic et al., 2018); however, we report
them here as Groups 1–5 to distinguish them from the
clinician-rated severity groups. Participants are often strati-
fied by intelligibility as a proxy for severity (e.g., Blaney &
Hewlett, 2007; Connaghan & Patel, 2017); thus, there is
value in assessing the ability of Machine WRR to match
intelligibility stratification independent of clinician-rated
severity. We conducted pairwise t-test comparisons of
Machine WRR between all Human WRR groups using
Bonferroni correction for 10 comparisons, α = .005 (.05/10).
Gutz et al.: ASR Validity for ALS Speech Assessment 2131



Table 2. Human word recognition rate (WRR) stratification (RQ1).

Intelligibility
group

Human WRR
range (%)

Human
WRR (%)

Machine
WRR (%)

M SD M SD

1 96 ≤ WRR ≤ 100 98.76 1.04 82.09 13.06
2 90 ≤ WRR < 96 93.66 1.58 76.79 18.91
3 80 ≤ WRR < 90 83.43 1.81 48.84 21.72
4 50 ≤ WRR < 80 63.72 7.88 23.54 12.83
5 WRR < 50 21.14 16.81 3.99 4.84

Note. Mean and SD of Human WRR and of Machine WRR for
each intelligibility group, as well as the range of Human WRR used
to define the intelligibility group.
(RQ2) Known-groups validity. To assess known-
groups validity, we compared Human WRR and Machine
WRR between clinician-rated severity groups. We first used
clinician-rated severity to group participants into normal,
mild, moderate, severe, and profound severity groups (see
Table 1). Then, we compared Machine WRR scores
between each pair of clinician-rated severity groups using t-
test comparisons with Bonferroni correction, α = .005 (.05/
10). Similarly, we compared Human WRR scores between
clinician-rated severity groups with Bonferroni correction,
α = .005 (.05/10). Additionally, we used receiver operating
characteristic (ROC) analyses through the pROC package
(Robin et al., 2011) to determine optimal diagnosis thresh-
olds between adjacent clinician-rated severity groups for
both measures; we computed sensitivity, specificity, and
accuracy of Machine WRR and Human WRR for classifi-
cation. We further used classification and regression trees
(CARTs) to compare the utility of using of Machine WRR
or Human WRR for classifying speakers with different
impairment severity levels and to test the diagnostic utility
of both measures. For the CART decision trees, we used
the package rpart (Therneau & Atkinson, 2019) and pruned
the trees using the least cross-validated error. To address a
possible ceiling effect in Machine WRR, we created CART
for noise-augmented ASR (nASR; described below).

nASR was employed to counter a ceiling effect observed
for the normal and mild severity groups for Machine WRR
CART classification (speakers with Machine WRR ≥ 52%).
We used nASR to explore how ASR could be modified to
better stratify speakers with dysarthria. For nASR, we mixed
speech samples with multitalker babble at integer signal-to-
noise ratios (SNRs) from −5 to +10 dB, using a custom
MATLAB script. We then input these noise-mixed signals
through the ASR system, as reported in previous work from
our laboratory (Gutz et al., 2021). We tested the ASR tran-
scriptions at each SNR using the CART method described
above. Here, we only report results for nASR with an SNR
of 0 dB, because these CARTs had the highest accuracy of
the tested SNRs. Even though ASR is trained on noise-
perturbed samples (Park et al., 2020), a noisy speech signal
2132 Journal of Speech, Language, and Hearing Research • Vol. 65 •
can degrade ASR performance (Krishna et al., 2019), which
could separate Machine WRRs for normal and mild groups.

(RQ3) Internal reliability. Because each SIT sentence
is a different length, we assessed whether sentence length
impacted WRR for Human and Machine intelligibility. We
used mixed-effects models with participant as a random
intercept, and we controlled for clinician-rated severity by
including it as a fixed effect in the equation lmer(WRR ~
sentence + severity + [1|participant]; Bates et al., 2015).

We further assessed intraspeaker reliability by com-
paring Machine WRR variation (standard deviation [SD])
across SIT sentences within a given speaker to the mini-
mally detectable change (MDC), a clinical benchmark spe-
cific to each severity group. A change greater than or
equal to the MDC indicates a change outside the measure-
ment error (Stratford & Riddle, 2012). In other words, an
SD larger than the MDC would indicate variation within
the SIT sentence set that cannot be explained by measure-
ment error or the speaker alone.

Stipancic et al. (2018) found that the MDC varied
with a speaker’s speech intelligibility and calculated the MDC
as 1.96 × √2 × the standard error of measurement for intel-
ligibility, for a set of 196 speakers (147 with ALS and 49
HCs). Stipancic et al. (2018) calculated MDCs for groups
that were stratified by intelligibility. However, in keeping
with our aim of clinically validating ASR according to
clinician-rated severity groups, we stratified participants
by their clinician-rated severity groups. We then assigned each
severity group an MDC from the corresponding intelligibility
group from Stipancic et al. (2018); for example, we used the
MDC calculated for the moderately impaired intelligibility
group for the moderate clinician-rated severity group. We
compared the SDs of Human and Machine WRRs with the
MDC for each severity group. We also compared the SDs of
Human WRR with those of Machine WRR. To test whether
speakers’ intelligibility varied across sentences more or less
than the MDC benchmark, we conducted t tests using
Bonferroni correction, α = .01 (05/5) for each family of tests
and α = .05 for tests conducted for the full set of participants.
Results

(RQ1) Convergent Validity: Relationship
Between Machine WRR and Human WRR

Human WRR and Machine WRR were strongly cor-
related, Pearson r(70) = .87, p < .001. Linear and quadratic
models fit to the Machine WRR and Human WRR relation-
ship demonstrated that the quadratic fit, F(2, 69) = 207.4,
p < .001, r2 = .86, was stronger than the linear fit, F(1, 70) =
226.4, p < .001, r2 = .76. AIC for the quadratic model (AIC =
586.38) was less than the AIC for the linear model (AIC =
620.70), indicating that the relationship between Machine
2128–2143 • June 2022



Table 3. Model fits for Machine and Human word recognition rate
(WRR; RQ1).

Model for Machine WRR and
Human WRR df F r2

Linear 70 226.37 .76
Quadratic 69 207.39 .85

Note. Degrees of freedom (df), F-statistic (F), and adjusted r2 for
linear and quadratic models fit to Machine WRR (response variable)
and Human WRR (predictor). p < .0001 for both models, with het-
eroskedasticity correction for the quadratic model. An analysis of
variance comparing the two models showed a statistically signifi-
cant difference between models, F(1) = 45.26, p < .001.

Figure 2. Machine word recognition rate (WRR) compared with
Human WRR stratification groups (RQ1). Machine WRR (%) as a
function of Human WRR groups. A lower group number indicates
less impaired intelligibility. The Speech Intelligibility Test (SIT) score
upper limits for Human WRR Groups 1–5 were, respectively,
100%, 96%, 90%, 80%, and 50%. Human WRR thresholds are
listed below each stratification group. Except for Group 1—for
which both numbers are included in the range—the lower number
is inclusive, and the upper limit is exclusive, for example, Group 3
is defined as 90% > WRR ≥ 80%. Brackets indicate nonsignificant
pairwise comparisons; all other pairwise comparisons were signifi-
cant, α = .005 (.05/10).
WRR and Human WRR was nonlinear (see Table 3 and
Figure 1). Results from an analysis of variance indicated that
the quadratic model was a significantly better fit than the linear
model, F(1) = 45.26, p < .001. The quadratic model indi-
cated a slope close to zero for low-intelligibility speakers
and an increasing slope starting around Human WRR of
40%–60% (see Figure 1). Furthermore, while t tests showed
that Machine WRR differed among most Human WRR
stratification groups at the α = .005 (.05/10) level, it did not
differ between the two groups (Groups 1 and 2) with the
highest Human WRRs (p = .256; see Figure 2 and Table 4).

(RQ2) Known-Groups Validity: Evaluating the
Relationship of Machine WRR and Human
WRR With Clinician-Rated Severity Groups

Summary statistics for Human WRR and Machine
WRR showed generally higher Human WRR and Machine
Figure 1. Machine and Human word recognition rate (WRR) linear
and quadratic models (RQ1). Machine WRR plotted against Human
WRR with linear (dashed line) and quadratic (solid line) models.
WRR for groups rated as less impaired by clinicians (see
Table 1). Human WRR was different among most
clinician-rated severity groups at the α = .005 (.05/10)
level using t tests, except between normal and mild (p =
.321) and between mild and moderate (p = .009; see
Figure 3 and Table 5). Machine WRR differed between
Table 4. Human word recognition rate (WRR) stratification pairwise
comparisons (RQ1).

Human WRR groups compared t p

1 & 2 1.15 .256
1 & 3 4.74 < .001
1 & 4 11.71 < .001
1 & 5 16.87 < .001
2 & 3 3.91 < .001
2 & 4 10.30 < .001
2 & 5 15.12 < .001
3 & 4 3.42 .001
3 & 5 6.28 < .001
4 & 5 3.78 < .001

Note. t statistic (t) and p value (p) for each t test between pairs of
intelligibility groups. All comparisons were evaluated at the α = .005
(.05/10) level, df = 67.

Gutz et al.: ASR Validity for ALS Speech Assessment 2133



Figure 3. Human word recognition rate (WRR) and Machine WRR by clinician-rate severity group (RQ2). Human WRR (left) and Machine
WRR (right) by clinician-rated severity group. Brackets indicate nonsignificant pairwise comparisons; all other pairwise comparisons were
significant, α = .005 (.05/10).
most clinician-rated severity groups except between normal
and mild (p = .220) and between severe and profound (p =
.011; see Figure 3 and Table 5).

(RQ2) Known-Groups Validity: ROC Curves
Used to Determine the Utility of Machine
WRR and Human WRR for Classifying
Clinician-Rated Severity Groups

Human WRR ROC curves showed high accuracy
(accuracy ≥ .90; see Table 6) for all severity group
Table 5. Clinician-rated severity group pairwise comparisons (RQ2).

Severity groups
compared

Human WRR Machine WRR

t p t p

Normal & mild 1.00 .321 1.24 .220
Normal & moderate 4.15 < .001 6.48 < .001
Normal & severe 8.54 < .001 13.05 < .001
Normal & profound 16.89 < .001 15.64 < .001
Mild & moderate 2.71 .009 4.50 < .001
Mild & severe 6.28 < .001 9.85 < .001
Mild & profound 13.41 < .001 12.14 < .001
Moderate & severe 3.42 .001 5.09 < .001
Moderate & profound 10.59 < .001 7.45 < .001
Severe & profound 7.70 < .001 2.61 .011

Note. t statistic (t) and p value (p) for each t test between pairs of
clinician-rated severity groups. One set of t tests compared Human
word recognition rate (WRR; left), and another compared Machine
WRR (right) between each pair of clinician-rated severity groups. All
comparisons were evaluated at the α = .005 (.05/10) level, df = 67.
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cutoffs; Machine WRR ROC curves had high accuracy
(accuracy ≥ .90; see Table 6) for nearly all group cutoffs,
except the cutoff between the normal and mild groups,
which was slightly lower (accuracy = .81; see Table 6).
While the Machine WRR ROC curve classifying the
normal and mild groups had high sensitivity (1.00), it
had lower specificity (.71). The cutoff for the severe and
profound groups was 44.97% for Human WRR and
9.37% for Machine WRR; the cutoff point between the
normal and mild groups was 94.17% for Human WRR
and 55.80% for Machine WRR. Thus, the dynamic range
for optimal thresholds for the Human WRR ROC curves
was about 37% points higher than the dynamic range
for the Machine WRR ROC curve thresholds (see
Table 6).
(RQ2) Known-Groups Validity: Decision Tree
Classification Using CART

The unpruned Machine WRR tree had six branches,
which were pruned to three; the unpruned Human WRR
tree had five branches, pruned to four. The pruned
Machine WRR tree (see Figure 4, middle) acted as a
three-class classifier and sorted speakers into three groups:
normal, severe, and profound, which resulted in an accu-
racy of 0 for both the mild and moderate groups. The
pruned Human WRR tree (see Figure 4, left) classified
speakers into four groups: normal, mild, severe, and pro-
found. The Machine WRR decision tree had an overall
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Table 6. Results from receiver operating characteristic (ROC) curves (RQ2).

Measure Cutoff point between Threshold Specificity Sensitivity Accuracy AUC

Human Normal & mild 94.17 .90 .96 .92 .97
Human Mild & moderate 84.18 .87 1.00 .93 .96
Human Moderate & severe 81.66 .96 .89 .92 .96
Human Severe & profound 44.97 .92 .93 .93 .98
Machine Normal & mild 55.80 .71 1.00 .81 .90
Machine Mild & moderate 52.47 .89 1.00 .94 .96
Machine Moderate & severe 48.57 1.00 .89 .93 .98
Machine Severe & profound 9.37 .92 .93 .93 .98

Note. Optimal threshold, specificity, sensitivity, and accuracy for each threshold, as well as area under the curve (AUC), for ROC curves
created to classify each of the pairs of two groups listed, for Human word recognition rate (WRR; Human) and Machine WRR (Machine). For
specificity and sensitivity, classification as the more severely impaired group is considered a positive classification.
accuracy of .67, and the Human WRR decision tree had
an overall accuracy of .74 (see Table 7).

The highest performing nASR tree had speech
mixed with noise at an SNR of 0 dB (see Figure 4, right).
The pruned and unpruned nASR tree both had two
branches. This nASR tree had an accuracy of .91 for the
normal group and .73 for the mild group. Overall accu-
racy was .75 when predicted values for normal and mild
from the nASR tree were combined with predicted values
Figure 4. Decision Trees for Human word recognition rate (WRR), Ma
(nASR). Pruned decision trees using classification and regression tree (C
a 0 dB signal-to-noise ratio (SNR) for normal/mild classification. Divisio
WRR tree had 74% accuracy; the Machine WRR tree had 67% accuracy
For the nASR tree, samples were chosen for classification using the noise
(Machine WRR ≥ 52). Each box displays the predicted severity group wi
for that group (normal, mild, moderate, severe, and profound) for the Hum
the nASR tree.
for moderate, severe, and profound from the unaltered
Machine WRR tree (see Table 7).

(RQ3) Internal Reliability: Effect of Sentence
Length on WRR

When controlling for clinician-rated severity, sen-
tence length had a significant effect on Human WRR,
F(1, 719) = 29.46, p < .001, and Machine WRR, F(1, 719) =
chine WRR, and noise-augmented automatic speech recognition
ART) for Human WRR (left), Machine WRR (middle), and nASR with
ns show decision thresholds for group classification. The Human
; the nASR tree had 76% accuracy for the normal and mild groups.
-mixed signal if the Machine WRR CART classified them as normal
th the number of actual speakers in each severity group predicted
an WRR and Machine WRR trees; (normal, mild, and moderate) for

Gutz et al.: ASR Validity for ALS Speech Assessment 2135



Table 7. Decision tree output and accuracy (RQ2).

Pruned Human WRR decision tree

Predicted

AccuracyNormal Mild Moderate Severe Profound

Actual Normal 22 1 0 0 0 .96
Mild 3 8 0 0 0 .73
Moderate 1 3 0 7 0 .00
Severe 1 0 0 12 1 .86
Profound 0 0 0 2 11 .85

Overall .74

Pruned Machine WRR decision tree

Predicted

Normal Mild Moderate Severe Profound Accuracy

Actual Normal 23 0 0 0 0 1.00
Mild 11 0 0 0 0 .00
Moderate 4 0 0 7 0 .00
Severe 0 0 0 14 0 1.00
Profound 0 0 0 2 11 .85

Overall .67

Combined ASR (Machine WRR) & nASR decision trees

Predicted

Normal Mild Moderate Severe Profound Accuracy

Actual Normal 21 2 0 0 0 .91
Mild 3 8 0 0 0 .73
Moderate 2 2 0 7 0 .00
Severe 0 0 0 14 0 1.00
Profound 0 0 0 2 11 .85

Overall .75

Note. Classification and regression trees (CARTs). Confusion matrices for pruned decision trees for Human word recognition rate (WRR;
top), Machine WRR (middle), and combined noise-augmented automatic speech recognition (nASR) with ASR (bottom). Actual group dis-
played in rows, predicted in columns. For combined trees (bottom), predicted values from the 0 dB signal-to-noise ratio (SNR) nASR deci-
sion tree are between dashed vertical lines. All other values are from the baseline ASR (Machine WRR) decision tree. Accuracy for the nASR
tree alone classifying normal and mild groups was .76.
11.11, p < .001 (see Figure 5). For Machine WRR, there
was no interaction between sentence and clinician-rated
severity, F(4, 715) = 1.32, p = .260. However, for Human
WRR, there was an interaction between sentence and
clinician-rated severity, F(4, 715) = 6.36, p < .0001, such
that the more severe groups (moderate, severe, and pro-
found) showed overall greater decline in WRR as sentence
length increased. Even controlling for this interaction,
there was still a significant effect of sentence length on
Human WRR, F(4, 715) = 30.38, p < .001. We observed a
ceiling effect across all sentences in the normal group for
Human WRR and a floor effect in the profound group for
Machine WRR across all sentences.

(RQ3) Internal Reliability: Standard Deviation
Compared With the MDC

Overall, intraspeaker variability (SD) was greater
for Machine WRR (SD = 19.58%) than Human WRR
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(SD = 11.41%; see Table 8). When compared by individ-
ual severity group, Machine WRR SD was greater than
that of Human WRR for the normal, mild, and moderate
severity groups (see Figure 6 and Table 8). This difference
was significant at the α = .05 level when all severity groups
were considered and at the α = .01 (.05/5) level for the normal
and mild groups (see Figure 6, right, and Table 8). Machine
WRR SD was significantly less than Human WRR SD for
the profound group (see Figure 6 and Table 8).

Comparing measures to the MDC, we found that the
SD of Human WRR was significantly less than the MDC
for the mild, severe, and profound severity groups, α = .01
(.05/5; see Figure 6, left, and Table 8). At the α = .01 (.05/
5) level, the SD of Machine WRR for normal, mild, and
moderate severity groups was significantly greater than the
MDC (see Figure 6, right, and Table 8); Machine WRR
SD for severe and profound was significantly less than the
MDC (see Figure 6, right, and Table 8). However, due to
a floor effect for Machine WRR scores in the profound
2128–2143 • June 2022



Figure 5. Human and Machine word recognition rate (WRR) scores across the Speech Intelligibility Test (SIT) sentence set (RQ3). Line plots
of Human WRR (left) and Machine WRR (right) by sentence, grouped by clinician-rated severity. Error bars indicate standard error. WRR in
both models differed significantly by sentence and clinician-rated severity (p < .001).
group (Machine WRR at or near 0% for most speakers),
SD is not a meaningful measure for this group.
Discussion

Summary

In this study, we investigated the adequacy of an OTS
ASR system trained on typical speech, for the clinical grading
of impaired speech due to ALS. ASR estimates of speech
intelligibility and severity were moderately correlated with
those made by human raters, specifically experienced SLPs.
The dynamic range of ASR was reduced relative to that of
the clinician transcription intelligibility, defined by poor
responsiveness to severity on the bottom end (floor effect)
and dispersion on the top end, such that poor performance
Table 8. Within-subject standard deviation of Human word recognition ra
sentences (RQ3).

Clinician-rated
severity group MDC

Human WRR SD
vs. MDC

M (SD) t p

ALL 12.07 11.41 (9.33) −0.60 .55
Normal 3.55 2.67 (2.77) −1.53 .14
Mild 12.16 9.11 (4.27) −2.37 .04a

Moderate 17.51 17.64 (7.43) 0.06 .95
Severe 41.12 22.21 (6.81) −10.39 < .01a

Profound 24.82 11.92 (9.33) −0.60 < .01a

Note. Superscripts indicate a statistically significant difference betwee
standard deviation for Human and Machine WRR across SIT sentences. M
aSD < MDC. bSD > MDC. cHuman WRR SD < Machine WRR SD. dHum
family-wise comparisons (normal, mild, moderate, severe, and profound) α
was observed even for participants with no or mild speech
impairments. Accuracy and stability in Machine WRR perfor-
mance were particularly poor for typical and mildly impaired
severity groups, decreasing its utility as an early indicator of
neurologic involvement. These findings suggest that the tested
OTS ASR system, Google Cloud Speech, has limited utility
for grading speech impairments and may indicate the need
for ASR systems more generally to be trained on dysarthric
speakers specifically for clinical purposes (see Table 9).

(RQ1) Convergent Validity: There Is a
Nonlinear Association Between Machine
WRR and Human WRR

We found a strong correlation between Machine
and Human WRR, which was weaker than that found by
some previous work, for example, Jacks et al. (2019) who
te (WRR) and Machine WRR across Speech Intelligibility Test (SIT)

Machine WRR SD
vs. MDC

Human vs.
Machine SD

M (SD) t p t p

19.58 (12.73) 4.54 < .01b 4.05 < .01c

22.66 (16.34) 5.49 < .01b 5.66 < .01c

24.22 (7.64) 5.24 < .01b 5.73 < .01c

23.64 (7.09) 2.74 .01b 1.89 .07
19.47 (12.73) −12.43 < .01a −1.09 .29
4.82 (16.34) −12.68 < .01a −2.58 .02d

n the groups considered. Mean and SD (%) of the within-subject
DC = minimally detectable change.

an WRR SD > Machine WRR SD. For “ALL” α = .05. For all other
= .01 (.05/5).
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Figure 6. Variability of Human word recognition rate (WRR) and Machine WRR across the Speech Intelligibility Test (SIT) sentence set (RQ3).
Variability (SD) across the SIT sentence set for Machine WRR (light blue, left) and Human WRR (dark blue, right) for each participant,
grouped by clinician-rated severity. Minimally detectable change (MDC) for each severity group is labeled with a red bar.
found r = .9 for IBM Watson used for speakers with apha-
sia and/or AOS. However, our results aligned with other
works that found a similar relationship, for example, Maier
et al. (2010) reported r ≥ .8 for an HMM-based model for
speakers with dysglossia and/or dysphonia. Similarly, prior
work found that for speakers with either ALS or CP, rec-
ognition by Google Speech, IBM Watson, and Microsoft
Azure was worse for speakers with “severely distorted”
speech (Google WER: 78.21%; IBM WER: 89.08%; Micro-
soft WER: 78.59%) than for those with “no abnormalities”
in their speech (Google WER: 16.11%; IBM WER:
14.89%; Microsoft WER: 23.16%) and the control group
(Google WER: 3.95%; IBM WER: 5.26%; Microsoft
WER: 6.94%; De Russis & Corno, 2019).

We also found a moderate linear relationship and a
stronger quadratic relationship between Machine and
Human WRRs. The association was weaker for speakers
with poorer intelligibility than for speakers with better intel-
ligibility, indicating a measurement floor for Machine
WRR. Such a measurement floor is consistent with prior
work that has found low accuracy for severely impaired
speakers with ALS or CP (De Russis & Corno, 2019).
Human WRR detects signs of dysarthria later than other
measures of speech severity, including speaking rate (Rong,
Yunusova, & Green, 2015). Therefore, speakers with normal
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speech intelligibility do not necessarily have typical speech.
Machine WRR was not significantly different between speakers
with normal and mildly impaired Human WRR (Groups 1–
2), indicating that this OTS Machine WRR might be an
even poorer detector of early speech decline than Human
WRR. Overall, these results suggested that while Machine
WRR and Human WRR are correlated, the tested OTS
Machine WRR is a weak linear proxy for Human WRR.

(RQ2) Known-Groups Validity: Machine WRR
Cannot Detect Mild Dysarthria Without
Modification

Human WRR was different between nearly all
severity groups, except between mild and moderate and
between mild and normal. However, decision trees indi-
cated that Human WRR could be used to successfully
classify speakers in all severity groups except the moderate
group. Machine WRR differed among most severity
groups, except the two least and the two most severe
groups. Decision tree analyses supported these results, as
the tree that used Machine WRR classified speakers into
just three groups: normal, severe, and profound, and per-
formed more poorly than Human WRR (see Table 7).
These results suggested that this OTS Machine WRR is not
2128–2143 • June 2022



Table 9. Summary of study findings.

Question Conclusion Recommendations

(RQ1) Convergent validity: Is the
Off-the-Shelf Automatic Speech
Recognition (OTS ASR) system
output a valid representation of
transcription speech intelligibility?

-There is a moderately strong correlation
between Machine word recognition rate
(WRR) and Human WRR.

-Machine WRR is related, but not identical,
to Human WRR.

-Machine WRR and Human WRR have a
quadratic, nonlinear relationship.

ASR as intelligibility proxy: One should not
consider the tested Machine WRR a
one-to-one substitute for Human WRR.

(RQ2) Known-groups validity: Is the
OTS ASR output a valid proxy for
clinician-rated severity groupings?

-Machine WRR has poor performance
when discriminating between more mildly
impaired groups.

-While neither Human WRR nor Machine WRR
could differentiate the moderate severity
group, Human WRR outperformed
Machine WRR for early detection.

-When speech samples were first mixed
with noise, Machine WRR improved at
differentiating mild and normal severity
groups.

ASR as a measure of clinician-rated
severity: This OTS ASR system may
work for coarse stratification, but not for
fine-grained stratification, diagnosis, or
early identification of speech changes.

-With modification (i.e., adding noise
to the signal), nASR may be used to
differentiate normal and mild severities.

(RQ3) Internal reliability: Is the OTS
ASR accuracy reliable across
sentences of varying length and
content?

-Increased sentence length was associated
with decreased Human WRR and Machine
WRR.

-Machine WRR showed high variability for
normal and mild speakers, indicating
poor internal reliability.

-Internal reliability was higher for Human
WRR.

ASR for assessment: Poor internal reliability
necessitates using the tested ASR on many
samples for each speaker, which is unrealistic
and might counter the benefits of ASR as a
more time-efficient method than Human WRR.

-Weak reliability especially for normal and
mild speakers bodes poorly for ASR as
a reliable early diagnosis tool.

-High variability may render the tested ASR
a poor tool for tracking precise speech
changes, e.g., in response to medication
or behavioral therapy.

-Sentence length may impact both
Human and Machine WRR.
appropriate for evaluating severity progression or early diag-
nosis. Prior work relating Google Speech recognition to
clinician-rated severity for dysarthric speakers found a mod-
erate relationship between the two (Pearson r = .69), which
seems to generally align with our results (Tu et al., 2016).
However, Machine WRR improved when the audio of nor-
mal and mild speakers was mixed with noise before speech
recognition, thereby reducing an ASR ceiling effect and sug-
gesting a possible route toward improved clinical applica-
tions of ASR (see Table 7). Notably, neither the Human
WRR tree nor the Machine WRR tree correctly classified
moderately impaired speech. It is possible that speech com-
ponents that do not affect intelligibility influenced clinician
severity ratings for this cohort; however, these findings may
cast doubt on five-tiered severity stratification.

Overall, we observed results that corroborate prior
work that Human WRR does not differ between mild and
normal dysarthria severity groups (Allison et al., 2017; Rong,
Yunusova, & Green, 2015; Stipancic et al., 2021). Crucially,
while it is well known that Human WRR is an imperfect
measure of clinician-rated speech severity, Machine WRR
was no better in this study. Furthermore, our results sug-
gested that noise augmentation (nASR) can mitigate a ceiling
effect for Machine WRR, potentially enabling Machine
WRR detection of early speech impairment. Additionally,
thresholds provided in Table 6 demonstrate that Machine
WRR has a dynamic range—or range of values over which
a change can distinguish severity groups—of about 9.37%–

55.80% (a 46.43%-wide interval), much lower than the
Human WRR dynamic range 44.97%–94.17% (a 49.2%-
wide interval). Although the magnitudes of the dynamic
ranges are similar, the Machine WRR range is about 37
percentage points less than the Human WRR range. The
similar magnitude of each measure’s dynamic range may
suggest that one could add 37% to a Machine WRR score
to obtain a Human WRR. However, because we found a
nonlinear relationship between Machine WRR and Human
WRR, this linear transformation would not result in an
accurate perceptual intelligibility score. These results fur-
ther underscored that one should not directly substitute
Machine WRR for Human WRR and that this OTS ASR
cannot detect mild speech impairment in ALS.

(RQ3) Internal Reliability: Machine WRR Has
High Intraspeaker Variability and Degrades
on Longer Sentences

Our results indicated that a longer sentence length
resulted in lower WRRs in our corpus. Only Human
WRR, however, showed an interaction between sentence
Gutz et al.: ASR Validity for ALS Speech Assessment 2139



length and severity, such that more severe groups had lower
Human WRR for longer sentences. However, the floor
effect for Machine WRR could be obscuring an effect of
sentence length in these more impaired groups. It is notable
that even in the normal group, Machine WER declined as
a function of sentence length, suggesting that sentence
length may be a confounding factor when using OTS ASR
to grade severity. Because sentence length impacted both
Human and Machine WRR, and earlier work has docu-
mented its effects on intelligibility (Allison et al., 2019), it
seems likely that sentence length was impacting speaker
production rather than the tools used to measure intellig-
ibility. Moreover, we might expect the ASR language
model to boost the recognition accuracy of longer sen-
tences, because there would be more context to inform rec-
ognition; that we saw an opposite trend further indicated
that sentence length was affecting the speaker’s production.

While sentence length affected both Human and
Machine WRR, intraspeaker variability analyses indicated
that such variability had a limited functional impact on
Human WRR, especially when compared with Machine
WRR. Intraspeaker variability (SD) was greater for
Machine WRR than for Human WRR for all speakers and
for the normal and mild severity groups. In the profoundly
impaired group, accuracy was near 0% for Machine WRR;
thus, SD could not be accurately assessed.

Human WRR intraspeaker variations were within the
measurement error, as the SD was lower than or equal to
the MDC in all groups. Machine WRR intraspeaker varia-
tions, however, were outside the measurement error, as the
SD was higher than the MDC in all groups except for the
two most severe groups. The two most severe groups had
the highest MDCs as well as a measurement floor for
Machine WRR, possibly invalidating the use of SD. Wide
variation in performance across sentences suggested that
ASR performance is inconsistent and should be taken over
many sentences to account for expected variation across
sentences. Because variation across sentences was not
observed for Human WRR scores, the variation seen in
Machine WRR was likely due in large part to unreliable
ASR performance. However, it may be that sentence length
and content (including lexical characteristics like word fre-
quency and neighborhood density) affect speech production
in ways that influence ASR performance more than they
do Human WRR (Goldwater et al., 2010).

These results do not preclude the use of a subset of
sentences to assess with Machine WRR, but they do indicate
that such a subset should be constructed carefully. Perfor-
mances on sentences of different lengths cannot be consid-
ered interchangeable, as we found a significant effect of sen-
tence length on both Human and Machine WRR. Further-
more, our findings showed that Machine WRR is imprecise
and has large variability across sentences. In terms of
Machine WRR applications, these results imply that
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multiple sentences should be used, and scores taken from
varying stimuli should be considered with caution. Poor
internal reliability might limit the interpretation of an OTS
Machine WRR score for a single sentence, indicating that it
is unreliable, or influenced by sentence length and content.
OTS Machine WRR, notably, had an SD greater than the
MDC for the two least impaired groups, indicating that it
is unreliable for early stages of ALS dysarthria.

Limitations

For this study, we tested a single OTS ASR system,
Google Cloud ASR. Because ASR systems use different
underlying frameworks and test sets, we cannot necessarily
generalize these findings to other OTS ASR systems.

Additionally, OTS ASR systems are constantly being
updated. Therefore, even the performance of the system
under consideration could change with respect to dysarthria
ratings. Moreover, the development of dysarthria-specific
ASR to boost recognition has become an active and promis-
ing area of research (Christensen et al., 2012; Green et al.,
2021; Gupta et al., 2016; Keshet, 2018). Although such
advancements would improve the usability of ASR systems
for people with dysarthria, they could negatively impact their
utility as diagnostic or treatment tools by reducing the perfor-
mance differential among speakers with disordered speech.

Because this study tested clinical validations in
speakers with ALS, we do not know how this ASR system
may perform on other clinical populations. For example,
Parkinson’s disease is characterized by decreased vocal
intensity and increased speaking rate, which have been
shown to adversely affected ASR accuracy even in healthy
speakers (Goldwater et al., 2010). We found that Machine
WRR was not a linear proxy for Human WRR; therefore,
its relationships to Human WRR and clinician-rated severity
may need to be verified for each population and ASR sys-
tem. Additionally, because our data set was cross-sectional,
these findings cannot be directly applied to progress moni-
toring applications. Furthermore, our corpus did not enable
us to compare the direct effects of linguistic content (e.g.,
syntactic complexity and word frequency) on either Human
or Machine WRR. Additionally, due to limited research into
MDC, we used values determined for speaking intelligibility
groups rather than perceptual severity groups in particular.
Finally, we considered sentence intelligibility only; OTS
Machine WRR may perform differently at the word or dis-
course level, or when compared with alternate measures of
speech severity, such as comprehensibility.
Conclusions

We conducted analyses to test the clinical validity of
Google Cloud Speech Recognition, an OTS ASR system,
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for evaluating dysarthria in people with ALS. Overall, our
analyses indicated limited utility for OTS ASR within a clin-
ical context for this population. OTS ASR (Machine WRR)
performed well for coarser severity stratification (e.g.,
normal–mild, moderate, and severe–profound). However,
Machine WRR differentiated typical and mildly impaired
speakers only when noise was added to the speech signal
(nASR), indicating that it is poorly suited for early speech
impairment detection. Our analyses revealed shortcomings in
the reliability of ASR across sentences, as we found signifi-
cant intraspeaker variation in ASR performance. Both
Human and Machine WRRs degraded with increased sen-
tence length. However, overall intraspeaker variability was
higher for Machine WRR than for Human WRR; intraspea-
ker variability in Machine WRR was especially high for the
normal and mildly impaired severity groups. These results
suggested that OTS Machine WRR measurements should be
taken over multiple sentences, with scores derived from vary-
ing sentence sets considered cautiously. When comparing
Machine and Human WRRs, we noted a floor effect for the
ASR system in which WRR was consistently at 0% across
sentences for the profoundly impaired group. Finally,
while correlated with Human WRR, OTS Machine WRR
did not provide a one-to-one mapping of Human WRR.
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