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ABSTRACT

Purpose: Voice disorders are best assessed by examining vocal fold dynamics
in connected speech. This can be achieved using flexible laryngeal high-speed
videoendoscopy (HSV), which enables us to study vocal fold mechanics with
high temporal details. Analysis of vocal fold vibration using HSV requires accu-
rate segmentation of the vocal fold edges. This article presents an automated
deep-learning scheme to segment the glottal area in HSV from which the glottal
edges are derived during connected speech.

Method: Using a custom-built HSV system, data were obtained from a vocally
healthy participant reciting the “Rainbow Passage.” A deep neural network was
designed for glottal area segmentation in the HSV data. A recently introduced
hybrid approach by the authors was utilized as an automated labeling tool to
train the network on a set of HSV frames, where the glottis region was automat-
ically annotated during vocal fold vibrations. The network was then tested
against manually segmented frames using different metrics, intersection over
union (loU), and Boundary F1 (BF) score, and its performance was assessed on
various phonatory events on the HSV sequence.

Results: The designed network was successfully trained using the hybrid
approach, without the need for manual labeling, and tested on the manually
labeled data. The performance metrics showed a mean loU of 0.82 and a mean
BF score of 0.96. In addition, the evaluation assessment of the network’s per-
formance demonstrated an accurate segmentation of the glottal edges/area
even during complex nonstationary phonatory events and when vocal folds
were not vibrating, thus overcoming the limitations of the previous hybrid
approach that could only be applied to the vibrating vocal folds.

Conclusions: The introduced automated scheme guarantees accurate glottis
representation in challenging color HSV data with lower image quality and exces-
sive laryngeal maneuvers during all instances of connected speech. This facili-
tates the future development of HSV-based measures to assess the running vibra-
tory characteristics of the vocal folds in speakers with and without voice disorder.
Supplemental Material: https://doi.org/10.23641/asha.19798864

Voice disorders are typically observed in connected
speech (Halberstam, 2004; Lowell, 2012; Maryn et al.,
2010; Morrison & Rammage, 1993; Roy et al., 2005; Yiu
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era, is the primary tool used in clinical settings to visualize
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and assess vocal fold vibration (Bless et al., 1987; Kitzing,
1985; Woo et al., 1994). Despite the widespread clinical
use of videostroboscopy (Mafee et al., 2005; Slonimsky,
2019; Uloza et al., 2005; Verikas et al., 2009), it fails to
capture the details of the intracycle vibratory characteris-
tics of the vocal folds in running speech and during irregu-
lar vocal fold oscillations (Aronson & Bless, 2011; Mehta
& Hillman, 2008; Stemple et al., 2000; Stojadinovic et al.,
2002). This is because the strobe light is unable to pre-
cisely be synchronized to the acoustic signal. This is cru-
cial when evaluating voice disorders, where it is essential
to observe the detailed cycle-to-cycle vibrations of vocal
folds due to aperiodic vocal fold vibrations (Patel et al.,
2008; Zacharias et al., 2016).

Laryngeal high-speed videoendoscopy (HSV) is an
advanced endoscopy technique that overcomes video-
stroboscopy’s restrictions (Deliyski, 2010; Deliyski &
Petrushev, 2003; Echternach et al.,, 2013; Patel et al.,
2008; Zacharias et al., 2016). The high HSV frame rates
allow visualization of the detailed motion of the vocal
folds providing the opportunity to develop new tools to
objectively analyze the entire vibratory cycles during pho-
nation (Mehta et al., 2015; Naghibolhosseini et al., 2017,
2018a; Yousef et al., 2020, 2022; Zanartu et al., 2011).
HSV offers the capability of studying connected speech
including nonstationary phonation events during normal
voice production (Naghibolhosseini et al., 2018b, 2018c;
Popolo, 2018; Yousef et al., 2020, 2021a, 2021b; Yousef,
Deliyski, Zacharias, & Naghibolhosseini, 2021), as well as
aperiodic vibration (Brown et al., 2019; Deliyski et al.,
2015; Mehta et al., 2011; Naghibolhosseini et al., 2021;
Zenas et al., 2021) and singing (Echternach et al., 2013). A
myriad of studies showed the usefulness of HSV as a pow-
erful tool, particularly for the objective analysis of vocal
fold vibrations—which can contribute to our understand-
ing of complex voice production mechanisms (Deliyski,
2007; Deliyski & Hillman, 2010; Deliyski et al., 2008;
Woo, 2020; Yousef et al.,, 2021b, Yousef, Deliyski,
Zacharias, & Naghibolhosseini, 2021). However, using
HSV remains a daunting task for clinicians since they
must visually navigate through thousands of HSV
frames. Clinical assessment of vocal fold vibration using
videoendoscopic images is performed subjectively with
visual inspection of the data. Several approaches have
been proposed to overcome this evaluation challenge
through providing more compact representations of the
data; approaches such as kymograms (Svec & Schutte,
2012), phonovibrograms (Lohscheller & Eysholdt, 2008),
glottovibrograms, and phasegrams (Ddllinger et al., 2011;
Herbst et al., 2013). Employing efficient quantitative
methods for voice analysis using HSV would be valuable for
clinical voice examination (Olthoff et al., 2007). Hence,
extracting useful, quantitative measurements of the dynamic
motion of the vocal folds in HSV recordings could allow

the clinicians to obtain clinically relevant characteristics of
the vocal fold oscillation during connected speech. There-
fore, it is crucial to develop techniques to automatically
analyze vocal fold vibration through segmenting vocal fold
edges and glottal area.

Spatial segmentation methods of glottal edges/area
were proposed for analysis of vocal fold vibrations mainly
during isolated sustained vowels (Karakozoglou et al.,
2012; Ko¢ & Ciloglu, 2014; Lohscheller et al., 2007,
Mehta et al., 2011; Moukalled et al., 2009); methods such
as threshold-based region growing technique (Lohscheller
et al., 2007; Yan et al., 2006, 2007), histogram threshold-
ing (Larsson et al., 2000; Mehta et al., 2010, 2011), active-
contour modeling (ACM; Karakozoglou et al., 2012;
Manfredi et al.,, 2006; Moukalled et al., 2009; Schenk
et al., 2015), watershed transform (Osma-Ruiz et al.,
2008), and level-set methods (Demeyer et al., 2009; Shi
et al., 2015). More recently, we have developed an ACM-
based glottal edge representation for HSV analysis in con-
nected speech (Yousef et al., 2020). This method was
applied to detect the glottal edges on kymograms, which
were automatically extracted at different intersections of
the vocal folds in the HSV data. This approach was based
on deformation of an active contour to capture the edges
of interest in the image through an iterative energy mini-
mization procedure (Kass et al., 1988). This method not
only has been able to address the sensitivity of prior tech-
niques to image noise and intensity inhomogeneity, but
also could tackle more challenging video quality in HSV
data in connected speech (Yousef et al., 2020). However,
the ACM method was still vulnerable to the excessive
laryngeal maneuvers and inferior image quality (dim light-
ing) in some HSV frames. This issue occurred due to the
high sensitivity of the active contours toward their initiali-
zation, creating a challenge to accurately localize the con-
tours near the glottal edges.

We enhanced the ACM method for connected
speech by coupling the ACM method with an unsuper-
vised machine learning method and introduced a hybrid
approach (Yousef et al., 2021a). In the hybrid technique,
a k-means clustering method was used to accurately local-
ize the initialized active contours of the ACM method in
the HSV kymograms — facilitating the deformation of these
contours to efficiently capture the glottal edges. The unsu-
pervised machine learning was specifically selected in
order to have a fully automated hybrid method (Yousef
et al., 2021a). This combination provided an advantage
over most image processing techniques which, in con-
trast, showed difficulty in automatically segmenting the
glottal area, requiring different degrees of manual interac-
tion and visual inspection (Fehling et al., 2020; Kist &
Dollinger, 2020).

Despite the high accuracy and robustness of our
hybrid scheme over the ACM approach, it required a

Yousef et al.: Deep Learning for Quantifying Vocal Fold Dynamics 2099



relatively high computational cost. Apart from the compu-
tational cost, the hybrid technique only worked during
vocal fold vibrations but not during all nonstationary pho-
natory events nor when the vocal folds were not vibrating.
Analyzing these nonstationary events and the vocal folds
motion during all instances of connected speech would
allow for studying different phenomena such as prephona-
tory adjustments, glottal offset, and attack times for norm
and disorder (Naghibolhosseini et al., 2018b, 2018c, 2021).

To address the drawbacks of the hybrid method, in
this study, we propose a deep learning-based approach as
a more general and flexible tool to capture glottis area/
edges during any phonatory events of connected speech.
Deep learning has been shown to be a promising tech-
nique to detect the glottal edges/area in HSV data during
sustained vocalization in several studies (Fehling et al.,
2020; Gomez et al., 2020; Kist & Dollinger, 2020; Kist
et al., 2020, 2021). These approaches used deep neural
networks in the segmentation task and required manual
labeling/annotation of the glottal edges/area in HSV
frames to train the neural networks. Keeping in view that
these previous studies used sustained phonation as their
data set, expanding this to connected speech is an impor-
tant next step. This study aims to build upon the hybrid
method, previously proposed by the authors, and intro-
duces a cost-effective and robust scheme based on deep
neural networks. The scheme is developed as the first deep
learning-based technique to automatically segment the
glottal edge/area in the entire HSV data during connected
speech, which also does not require manual labeling for
the model training. This method is applicable to the vari-
ous events that exist during running speech: stationary
events as in sustained vocal fold vibrations and nonsta-
tionary events as in onsets/offsets of phonation and voice
breaks, and even during no vibrations of the vocal folds.
The proposed scheme is a combination of the hybrid
method and a deep neural network. That is, since the
hybrid method was accurate when applied to the HSV
data during sustained portions of the connected speech, in
this study, the hybrid method is being utilized as an auto-
mated labeling tool. The hybrid method is used accord-
ingly to segment the vocal fold edges of a set of HSV
frames. These segmented images serve as automated,
labeled data for the purpose of training a deep neural net-
work instead of manual labeling that can be a cumber-
some and subjective task. The network is trained so that it
can segment HSV frames in different complex phonatory
events during connected speech even with inferior image
quality.

The objectives of this work are to (a) develop an auto-
mated labeling technique based on our recently developed
hybrid method, (b) design and train a deep neural network
using the automated labeling tool, and (c) show the capabil-
ity of the trained network in glottal edge/area representation

in challenging color HSV data recorded during all instances
of running speech.

Materials and Method
Data Collection

A vocally normal 38-year-old female participated in
this study. The participant was examined at the Center for
Pediatric Voice Disorders, Cincinnati Children’s Hospital
Medical Center, Cincinnati, Ohio, United States. The
examination was approved by the institutional review
board. The experimental setup was designed using a custom-
built color HSV system that captured video recordings at
4,000 frames per second (with 249-us integration time) and
spatial resolution of 256 x 256 pixels. The system was uti-
lized to record the subject during reading of the “Rainbow
Passage,” which took 29.14 s. The recorded HSV sequence
comprised of 116,543 frames in total, which was saved as
an uncompressed 24-bit RGB in AVI format. The designed
system utilized a FASTCAM SA-Z color high-speed
camera (Photron Inc.) with a cache memory of 64 GB and
12-bit color image sensor. The camera was coupled with a
300-W xenon light source (model 7152A: PENTAX Medi-
cal Company) along with a 3.6-mm Olympus ENF-GP
Fiber Rhinolaryngoscope (Olympus Corporation).

Automated Labeling Tool

This section provides information about developing
the automated labeling tool. Here is an overview of why
and how the automated labeling tool was implemented.
An image segmentation tool was implemented to provide
an adequate estimate of the glottal area in a set of HSV
frames during vocal fold vibration (Yousef et al., 2021a).
This set of segmented frames formed a training data set
on which a deep neural network was trained to accurately
segment the glottal area during connected speech in differ-
ent phonatory events. That is, instead of using manual
labeling to create the training data, an automated labeling
tool was utilized. Regarding how the labeling tool was
developed, the automated hybrid technique we previously
introduced (Yousef et al., 2021a) served as the labeling
tool. The hybrid image segmentation method consisted of
several integrated algorithms, which can be divided into
two main stages as shown in Figure 1: A data preprocess-
ing step (including temporal segmentation, motion compen-
sation, and kymograms extraction) and an image segmenta-
tion step (including k-means clustering and ACM). Each of
the aforementioned stages will be discussed in detail in the
following subsections. All the algorithms were developed
and implemented using 64-bit MATLAB R2019b (Math-
Works Inc.).
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Figure 1. Workflow chart of the automated labeling tool. The gray boxes indicate the input (high-speed videoendoscopy [HSV] video data)
and the output (labeled HSV frames with segmented glottal area), the green boxes show the data preprocessing steps, and the blue boxes
represent the image segmentation steps. ACM = active-contour modeling.
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Image Segmentation Step

Data Preprocessing

The first step before proceeding to segmenting the
glottal area was to preprocess the video data automatically
as shown in Figure 1. The temporal segmentation algorithm
(Naghibolhosseini et al., 2018a) was first utilized to automat-
ically extract the timestamps of the vocalized segments (pho-
nation onsets and offsets) in the entire HSV recording with
an unobstructed view of the vocal folds. Therefore, HSV
frames with a visually obstructed view of the vocal folds
were excluded from further processing in the automated
labeling tool. Next, a motion compensation was applied to
the vocalized segments. This was done using a gradient-
based approach (Deliyski, 2005; Naghibolhosseini et al.,
2017) to track the location of vibrating vocal folds. The loca-
tion of the vocal folds was captured in a bounding box
across frames. The frames were cropped to only enclose the
vocal folds to eliminate any irrelevant tissues or image noise.
For different vocalized segments in the video data, HSV
kymograms were then extracted at various cross sections of
the vocal folds, along the anteroposterior length. Therefore,
onset, sustained phonation, and offset were included in the
kymograms, ensuring that the full phonatory phases were
obtained. For more details of each preprocessing step, please
refer to Yousef et al. (2020).

Hybrid Method for Image Segmentation and
Automated Labeling

After the automated preprocessing of the HSV
recording and extracting the kymograms (see Figure 1),
an automated labeling method was implemented as a
hybrid technique (Yousef et al., 2021a). The hybrid approach
was a combination of an unsupervised machine learning
(k-means clustering) and ACM. The k-means method was
initially used to segment the glottal area and classify each
pixel as a glottal or a nonglottal pixel, and afterwards the
ACM was used to locate the glottal edges. The hybrid

technique (also known as k-means ACM) allowed for ana-
lytic representation of the glottal edges in the extracted
kymograms. A set of features (i.e., pixel intensities of the
red and green channels and the image gradient) were
extracted from the HSV kymogram images. The blue chan-
nel was excluded due to high levels of image noise. The
unsupervised clustering technique was then utilized based
on the well-known k-means method (Jain et al., 1999) to
cluster all pixels of the kymogram images into glottal and
nonglottal pixels. All the glottal pixels were highlighted by
a spline and formed the glottal area. This spline acted as an
initialized contour for the ACM method (see Yousef et al.,
2020, for complete description of the ACM approach). The
ACM method was implemented on the kymograms to
accurately locate the glottal edges at different cross sections
along the vocal fold length. That is, instead of directly seg-
menting the vocal fold edges from the HSV frames, the
glottal edges were first segmented in the kymograms and
then the detected edges were registered back to the HSV
frames. These segmented HSV frames during vocal fold
vibration were utilized as automated, labeled data for the
purpose of training a deep neural network. The network
was trained such that it could also segment frames in com-
plex nonstationary phonatory events, also frames with
more challenging image quality.

Deep Neural Network

Network Architecture

In the present work, the deep learning network (U-Net)
architecture was used, which is a fully convolutional neural
network architecture. U-Net was introduced by Ronneberger
et al. (2015) as an image segmentation tool, particularly in
the biomedical imaging field (Ronneberger et al., 2015).
This network is a U-shaped network comprising of two
parts: encoder and decoder. Figure 2 illustrates a schematic
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diagram of the deep neural network used in this work,
which shows the proposed U-Net architecture based on the
work of Ronneberger et al. The network was implemented
using 64-bit MATLAB R2019b (MathWorks Inc.) on a
CPU. As seen in Figure 2, Panel a, the input HSV frame is
provided to the encoder as a 256 x 256 RGB color image.
The encoder then encodes the input HSV frame into feature
representations by extracting the main spatial features and
the context of the input image. The encoder (i.e., contract-
ing path) was designed as a typical fully convoluted neural
network (Long et al., 2015) encompassing repeated 3 x 3
convolutions. Each convolution was followed by a rectified
linear unit (ReLU), which converts numerical values of less
than zero in the convolution input to a value of zero while
keeping the values above zero the same (Petersen et al.,
2018). Hence, the ReLU accelerates the computations and
enhances the model performance. The feature maps were
then kept in the memory for latter concatenation before
performing a down sampling step. The down sampling was
done to reduce the size of the input frames such that most
of the unique features in the input image were preserved;
therefore, this step decreased the number of redundant fea-
tures in the image and lowered the number of the para-
meters for training the network. For the down sampling,
a 2 x 2 max pooling with a stride of 2 was used such that
the number of feature maps was doubled at each down

sampling stage. Max pooling is a method to reduce the
dimensions of the input images while retaining the most
predominant image features (Lee et al., 2009). This was
done by a sliding window with a size of 2 x 2 pixels, where
only the pixels with the maximum value in this sliding win-
dow were considered. After four stages of down sampling
at the end of the contracting path, dropout was applied,
where it discarded contiguous regions in the feature map
(rather than dropping random areas) in order to avoid
overfitting during the training (Ronneberger et al., 2015).
As shown in Figure 2, the decoder (i.e., the expan-
sive path) had a similar path as of the encoder but
inverted. The decoder semantically projects the features
extracted by the encoder onto the pixel space—allowing
for reconstructing the output image. Instead of pooling,
each decoding stage encompassed an upsampling tech-
nique of the feature map using a transposed 2 x 2 convo-
lution (up-convolution) that halved the number of feature
maps. The upsampling was done to recover the size of the
feature maps and to make the output image have the same
dimensions as of the input through compensating for the
reduction of the resolution caused by the pooling (Wu et al.,
2009). Each up-convolution was followed by a ReLU. The
upsampling convolution was concatenated with the corre-
sponding feature map in the encoder path, which was previ-
ously stored. In the original architecture of Ronneberger

Figure 2. Schematic diagram for the deep neural network in this work. Panel a shows the general encoder—decoder architecture of the
U-Net. Panel b illustrates the detailed structure of the network. The HSV frames serve as the input. The input images are downsampled dur-
ing the contracting path (the encoder) through multiple layers of 3 x 3 convolutions along with rectified linear unit (ReLU) layers (in green),
followed by several 2 x 2 max pooling layers (in red). The extracted features from the encoder are then propagated and upsampled during
an expansive path (the decoder) using multiple layers of both 3 x 3 convolution besides ReLU in green and 2 x 2 up-convolution besides
ReLU in blue. The last layer involves a 1 x 1 final convolution followed by a soft-max layer (in purple). The dimensions of the feature maps
are also included in the figure. Residuals are propagated from encoder to decoder via concatenation (shown in gray arrows). The segmenta-
tion results return an output of binary images, where the bright area represents the segmented glottal area.
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et al. (2015), the feature map was cropped to match the cor-
responding up-sampled convolution; however, in this work,
a padding of 1 for the convolutions was utilized to have a
matched input and output dimensions. After concatenation,
repeated 3 x 3 convolution along with ReLU were applied.
This encoder—decoder structure made the network architec-
ture symmetric. The final layer consisted of a 1 x 1 convo-
lution with two filters (corresponding to the number of clas-
ses in the present work) followed by a pixel-wise soft-max
layer (Kouretas & Paliouras, 2019). The soft-max layer is
an activation function that assigned decimal probabilities
(0-1) to each pixel in the image representing the probability
of each pixel to be either a glottal or nonglottal pixel
(Kouretas & Paliouras, 2019). The soft-max layer was then
followed by a pixel classification layer, classifying each
pixel in the input image as either glottal or nonglottal/
background, which was the final outcome of the network.

Network Training

To train a deep neural network, an optimization
technique is used to tune the network parameters that
yield the minimum difference between the predicted out-
come (by the developed network) and the expected out-
come (by the ground-truth data). Adam optimizer was
considered in the present work to train the developed net-
work as an iterative stochastic gradient descent optimizer
(see Kingma & Ba, 2014, for the complete description and
details of implementing Adam optimizer). The initial
learning rate was chosen to be 0.001 during the training
process; the learning rate is the amount by which the net-
work parameters are updated or tuned during the training.
Three parameters were considered as the hyper-parameters
of the optimizer (B1, B2, and Epsilon); noting that the
hyper-parameters are parameters whose values are utilized
to control the learning/training process. The decay rates of
the first- and second-order moments were set to pl = 0.9
and B2 = 0.999. The Epsilon was set to 10, which refers
to an extremely small number to prevent any division by
zero during the implementation. The U-Net was trained
on the training data set, which was created using the auto-
mated labeling tool (the hybrid method). The training
data set was composed of 2,050 automatically segmented
frames. These segmented frames were evaluated through
visual inspection to validate the accuracy of the auto-
mated glottal area segmentation prior to training of the
neural network. Twenty percent of the training data were
used as a validation data set to evaluate the performance
of the network during the training process and, accord-
ingly, tune the network parameters to enhance its perfor-
mance. Noting that these validation frames were ran-
domly chosen from the training data set. A testing data
set was also created using manually segmented frames to
assess the network performance, which is discussed in
detail in the following subsection.

In connected speech, there are excessive laryngeal
maneuvers across frames that could shift and alter the
location of the vocal folds in the three-dimensional space.
Therefore, different data augmentation techniques were
applied to the training data set to enhance the generaliza-
tion ability of the trained neural network. This augmented
data was used for training the model. To do so, the train-
ing frames were randomly rotated between —30° and +30°,
translated along the horizontal and vertical directions with
a range between —64 and +64 pixels, and upscaled and
downscaled by a factor ranging from 0.5 up to 2. In addi-
tion, other augmentation methods were performed via alter-
ing the contrast/brightness (by adding and scaling random
amount of brightness between —0.2-—0.08 and 0.5-1.5,
respectively), adding random Gaussian noise with zero mean
and variance of 0-0.01, and applying random Gaussian
blurring with the standard deviation of 0-1.5. The final
ratio of the augmented frames to the original frames in
the modified training data set was 1:3.

The constructed network was trained using the mod-
ified training data set, including the augmented frames,
with a batch size of 10 for a maximum of 20 epochs. Dur-
ing the training process, the training data set was shuffled
before each epoch and similarly, the validation data was
shuffled before each network validation. Early stopping of
the training process was used when noticing a plateau in
the validation accuracy. The predicted output of the trained
network returned an image, where each pixel was classified
into either a “glottal pixel,” located inside the glottal area,
or a “background pixel,” which was outside the glottal
region. Those pixels labeled “glottal pixels” were assigned
a value of one while the remaining pixels (“background
pixels”) were assigned values of zero. That is, a binary
image was constructed as a segmentation mask.

Network Testing and Evaluation

Sixteen different networks were trained. The U-Net
architecture of these networks were altered with respect to
the number of the encoder—decoder depth levels ranging
from 3 to 6 levels, the level refers to the number of times
the input frames were downsampled or upsampled during
processing. Different batch sizes of 4, 10, 16, and 32 were
considered during the training of these networks. The seg-
mentation performance of each of the trained networks
was evaluated against a testing data set, where the best-
performing network (the proposed one in this work) was
determined based on the highest segmentation accuracy
scores. In this comparison, the intersection over union
(IoU) score was mainly used as a segmentation accuracy
measure to compare between the different networks, which
will be discussed later in this section along with the other
evaluation metrics used in this study.

The testing data set was comprised of manually
labeled HSV frames. This data set was created using 600
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HSV frames from different phonation events including
sustained vocal fold vibration, onsets/offsets of phonation,
and when vocal folds were not vibrating. These frames
were selected randomly and were different from the train-
ing data set. The glottal edges in these frames were manu-
ally segmented to serve as ground truth by an expert.
After creating the testing data set, a quantitative evalua-
tion of the developed segmentation method was carried
out—in addition to the visual inspection of the method’s
segmentation performance. This assessment step was done
as the final performance evaluation of the proposed
approach.

To assess the performance of the best-performing
network using the test data set, an area-based metric (class
accuracy score and IoU) and a boundary-based metric
(Boundary F1) were used. The area-based metrics were
considered to evaluate the accuracy of the developed net-
work in segmenting the glottal area whereas the boundary-
based metric was utilized to evaluate the accuracy in detect-
ing the glottal edges. Evaluating both the glottal area and
its edges was useful to assess the overall performance, par-
ticularly, in cases where the glottal boundary was accu-
rately detected but some pixels in the glottal area were
misclassified.

The class accuracy score determined the percentage
of the correctly predicted pixels for a specific class (e.g.,
the “glottal class”). The accuracy score is the ratio
between the correctly classified pixels and the total num-
ber of pixels in a specific class as identified by the ground
truth data (Estrada & Jepson, 2009). The accuracy was
calculated as:

TP

Accuracy = TP+ EN’

(M

where TP (true positive pixels) was the number of cor-
rectly classified pixels as glottal area by the network and
FN (false negative pixels) referred to the incorrectly classi-
fied pixels as nonglottal pixels. Since this accuracy metric
cannot give a complete evaluation of the proposed method
performance, IoU metric was used as another area-based
metric for a more rigorous performance assessment. This
is because, accuracy can be a misleading measure since it
can excessively present false positive cases (referred to the
incorrectly classified pixels as glottal pixels), whereas IoU
metric penalizes false positive pixels. [oU metric also pro-
vides a statistical measurement of the segmentation accu-
racy and is commonly used in related literature for evalu-
ating segmentation performance (Gomez et al., 2020; Kist
& Dollinger, 2020; Kist et al., 2021). It can take a value
from zero (no similarity/overlap) to one (perfect similarity/
overlap) so, the larger the ToU, the better the network per-
formance. IoU was computed using the following (Csurka
et al., 2013):

TP

oU=——
U= Tp 1 PP FN

2
where FP is the false positive pixels. In addition, the dice
coefficient (DC; Dice, 1945) was computed as an extra met-
ric to evaluate the overall match between the ground truth
and the automatically segmented glottal area. DC is similar
to IoU and both are positively correlated. The main reason
to calculate DC is for comparison of this study with the lit-
erature that also used DC as a verification metric. DC was
calculated using the following equation:

2x TP

DC = TP PP EN

(€)

Although the area-based metrics allowed for evalua-
tion of the segmented glottal area, these metrics did not
evaluate the precision of the glottal area boundaries (i.e.,
vocal fold edges). Therefore, the Boundary F1 (BF) score
was included in the analysis as a contour-based metric to
evaluate the accuracy of the segmented glottal area
boundaries (glottal edges). BF score refers to the weighted
average of the accuracy and precision. This boundary score
allowed for the measurement of F1 accuracy between the
predicted glottal boundary using the proposed segmentation
method against the ground truth boundary. The BF score
was considered as a measure of how the estimated glottal
boundary using the proposed approach was close to the
spatial location of the ground-truth boundary. BF (F1)
score was computed according to the following equation
(Csurka et al., 2013):

2 x Precision x Accuracy

BF 4
Precision 4+ Accuracy @
where
TP
Precision —
recision = 755 Q)
Results

Figure 3 shows the results of each preprocessing step
at four different vocalized segments between frame num-
bers 4,261-5,551 (Panel a), 42,999-43,774 (Panel D),
84,900-86,118 (Panel c), and 98,162-98,542 (Panel d). In
each panel, the outcome of applying the temporal segmen-
tation, motion compensation, and kymogram extraction
for a vocalization is illustrated. As shown, the utilized
motion compensation specifies the true location of the
vocal folds in the cropped frames. The stacked frames/
cropped images refer to the sequence of image sections
during the vocalized segments of the connected speech.
These frames were used to generate multiple kymograms
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Figure 3. Results of applying temporal segmentation, motion compensation, and kymograms extraction at four different vocalized segments
between frames: 4,261-5,551 (Panel a), 42,999-43,774 (Panel b), 84,900-86,118 (Panel c), and 98,162—98,542 (Panel d). The stacked
frames/image sections refer to the sequence of the frames and the cropped images during each vocalized segment. The stacked kymo-
grams, at each vocalized segment, represent the multiple kymograms extracted at different cross sections of the vibrating vocal folds.

-v\\yq‘-‘j
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at different cross sections of the vibrating vocal folds (rep-
resented by a stacked kymograms in the figure). Examples
of the extracted kymograms at the medial intersection of
the vocal folds showing the variation in the glottal region
across the frames can be seen in the right side of the figure.
The kymograms span through the entire vocalization—
clearly representing the vibratory patterns and behavior,
namely, phonation onset, the sustained vibration of vocal
folds, and phonation offset.

For each kymogram, the hybrid method (also
known as k-means ACM) was applied to segment and
detect the glottal edges during vocalizations. Figure 4
illustrates the results of implementing the k-means ACM
algorithm at various kymograms of Figure 3 that were
extracted from different vocalizations. As illustrated in
Figure 4, the k-means ACM technique was able to accu-
rately segment the edges of right and left vocal folds,
shown in solid white lines in the kymograms (left panels
of the figure). The glottal edges were then registered back
to each HSV frame in the cropped images (see the mid
panels in Figure 4) and the original HSV frames (shown
in the right-side panels). This was done to segment the
glottal area in each image; the glottal areas are shown in
cyan in mid and right-side panels.

Figure 5 shows the results of training the proposed
deep neural network for two different vocalizations
(Panels a and b). Each panel shows the result for four
frames, extracted from a different vocalization. The results
in Figure 5 are displayed for the following frames:
#41,658, #41,738, #41,880, and #41,986 in Panel a and
frame #104,061, #104,162, #104,311, and #104,460 in

Panel b. For each frame, the original HSV frame along
with the associated binary segmentation masks are
depicted for both k-means ACM (the automated labeling
tool) and the proposed deep neural network. The seg-
mented glottal areas using the k-means ACM (in cyan
color) and NN (in yellow color) are overlaid on top of
each other (in the right-side panels of Figure 5) to demon-
strate their differences. The DC and the BF scores that
are associated with evaluating the similarities between the
two segmented areas are included in the figure as well. As
shown in the segmented frames and by the scores, the NN
demonstrates a relatively similar performance to the
k-means ACM on most of the presented frames in accu-
rately segmenting the glottal regions. Most of the frames
in the figure show that DC > 0.80 and BF > 0.9. In addi-
tion, it can be seen that the introduced network can even
outperform the k-means ACM in some frames (e.g., frame
#41,658, #104,311, and #104,460) providing smoother
glottal edges.

Figure 6 illustrates the performance of the proposed
deep neural network on HSV frames extracted from three
different vocalized segments (Panels a—c): frame numbers
40,505-41,204 (Panel a), 98,732-99.451 (Panel b), and
106,118-108,084 (Panel c¢). These frames were selected
among those that were not used for training or testing the
network, showing the performance of the network for new
frames. The network was implemented on the entire frame
sequence of each vocalization—segmenting the glottal
regions across frames. The glottal area of each frame in
the sequence was computed and plotted in the figure dur-
ing each vocalized segment to see how the algorithm can
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Figure 4. Results of applying k-means active-contour modeling at four different vocalized segments between frames: 4,261-5,551 (Panel a),
42,999-43,774 (Panel b), 84,900-86,118 (Panel c), and 98,162—-98,542 (Panel d).

capture the glottal area variations at the onsets and off-
sets. The HSV frames in Figure 6 (indicated by red dots
in the glottal area waveforms) were selected during differ-
ent behaviors of the vocal folds. As such, for the two
vocalizations in Panels a and b, the segmented frames are
extracted near the voicing offset and onset at 138-172.5
ms and 14-33.5 ms, respectively. The segmented frames
shown in Panel ¢ were extracted during the sustained
oscillation of vocal folds between 222.5 and 229.5 ms—
representing sudden larger degree of vocal folds abduction
during the sustained vibration.

See Supplemental Material S1 displays the perfor-
mance of the introduced network during multiple, consec-
utive vocalized segments in the HSV data during running
speech. The top figure in the video shows a sequence of
6,115 HSV frames, where the glottal area is segmented (in
cyan color) using the deep neural network. The associated
glottal area waveform is depicted in the bottom two fig-
ures of the video; the moving red star refers to the com-
puted glottal area value, synchronized with the displayed
frame in the top figure. The middle panel shows the varia-
tion in the glottal area (computed in pixels) of the last 50
frames in the running video. The bottom panel illustrates
the glottal area calculated during the entire video
sequence. This video demonstrates the successful perfor-
mance of our approach on the 6,115 subsequent frames,
selected arbitrarily. The video also shows the result of seg-
mentation during different phases of glottal closure and
opening. In addition, the video displays the accurate seg-
mentation of the glottal area in different phonation events:

voicing onsets, voicing offsets, irregular vocal fold vibra-
tions, voice breaks, and instances where the vocal folds
are obstructed by the epiglottis.

Besides the visual inspection, the network was also
tested against manually labeled frames (testing data set) in
order to provide a quantitative evaluation of the segmen-
tation performance. When the proposed network was
applied to the testing data set, the results revealed promis-
ing accuracy scores and a good match between the pre-
dicted glottal area in comparison with the manually seg-
mented glottal area in the testing frames. As such, the
results demonstrated that the mean IoU and DC of the
segmented glottal region were 0.82 (SD = 0.26) and 0.88
(SD = 0.25), respectively; SD refers to the standard of
deviation. In addition, the contour-based evaluation met-
ric (BF score) showed a mean value of 0.96 (SD = 0.12)
in terms of detecting the glottal area boundary.

Discussion

We have recently developed two spatial segmenta-
tion approaches to represent the vocal fold edges/areas
during connected speech in HSV data. The first approach
was implemented using ACM and showed promising per-
formance, but it was vulnerable to excessive image noise
and very dim lighting conditions in connected speech data
(Yousef et al., 2020). This technique can be best used for
HSV data collected using rigid videoendoscopy due to
higher image quality. The second technique was designed
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Figure 5. Results of implementing the k-means active-contour modeling (ACM) and the trained deep neural network (NN); the segmented
HSV frames along with the associated binary segmentation mask are shown for eight different frames extracted from two different vocaliza-
tions (a and b). (a) for Frame #41,658, #41,738, #41,880, and #41,986. (b) for Frame #104,061, #104,162, #104,311, and #104,460. The seg-
mented glottal areas using the k-means ACM and NN are shown in cyan and yellow color, respectively. The DC and the BF scores associ-
ated with the two segmented areas, overlaid on each other, are included at the lower right corner of the images. HSV = high-speed

videoendoscopy.
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as a spatiotemporal hybrid method employing the devel-
oped ACM method and combining it with an unsuper-
vised machine learning approach, k-means clustering
(Yousef et al., 2021a). The approach was robust against
inferior image quality and showed effective capability,
particularly in segmenting the glottal edges during vocal
fold vibrations but encountered challenges in presence of
excessive laryngeal movements during nonstationary pho-
nation tasks like onsets/offsets of phonation. The hybrid
method has the benefit of extracting the edges of vocal
folds from the spatiotemporal information in HSV data.
This method would provide accurate edges of the vocal
folds mainly during the more sustained portions of phona-
tion. The present technique uses the power of the devel-
oped hybrid method and deep learning to overcome the

Yousef et al.: Deep Learning for Quantifying Vocal Fold Dynamics

challenges of the hybrid method in terms of detecting the
glottal area during all phonatory tasks (including nonsta-
tionary portions) and when vocal folds are not vibrating.
Hence, the proposed approach can be used as a robust
and cost-effective tool for segmenting the glottal edges—
regardless of the image quality and the phonatory tasks
during running speech.

The present work showed the successful utilization
of the previously developed hybrid segmentation technique
as an automated labeling tool to form a training data set.
In the hybrid method, k-means clustering technique was
successfully applied to cluster the kymogram’s pixels into
two clusters (glottal area and nonglottal area). The edges
of the glottal area cluster were roughly segmented as ini-
tialized contours for the ACM method, which was then

2107



Figure 6. The glottal area waveform as well as five segmented high-speed videoendoscopy frames after applying the trained neural network
at three different vocalized segments between frames: 40,505-41,204 (Panel a), 98,732-99,451 (Panel b), and 106,118-108,084 (Panel c).
The selected frames are marked by red dots on the glottal area waveforms.
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implemented to accurately segment the edges of the
vibrating vocal folds in the kymograms. The combination
of k-means and ACM yielded a precise detection of the
vocal fold edges (Yousef et al., 2021a), which were regis-
tered back to the original HSV frames to segment the
glottal area. The hybrid method showed an accurate per-
formance but mainly during vocal folds sustained oscilla-
tion. Hence, the hybrid method was applied to segment a
set of frames during those instances of sustained vocaliza-
tions in the HSV data. This allowed for automatic label-
ing of a huge number of HSV frames. A subset of these
segmented/labeled frames were sufficient to create a train-
ing data set to train a deep neural network as a more
robust segmentation technique that can work during dif-
ferent phonatory events other than the sustained vibra-
tions. Using the hybrid method as an automated labeling
tool offered a huge advantage over the manual labeling,

which is commonly used in the literature (Fehling et al.,
2020; Gomez et al., 2020; Kist & Dollinger, 2020; Kist
et al., 2020, 2021). That is, our proposed deep neural net-
work was trained using only automatically segmented
frames (utilizing the hybrid approach) without the need
for any manual labeling. So, one advantage of this
method is that larger training data sets can be formed
using the developed automated labeling tool in a cost-
effective and objective manner, which is favorable for
training deep-learning techniques (Yousef et al., 2021a).
The deep neural network was built based on the U-Net
architecture. Several networks with different configurations
were successfully trained on the automatically labeled data
set. Since the quality and performance of the automated
labeling tool was evaluated in our previous work (Yousef
et al., 2021a), the automatically labeled data set was suffi-
cient to successfully train the networks. In addition, to
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ensure the training process using the automatic labeling was
appropriate, we have evaluated the automatically segmented
frames via visual assessment before the training; further-
more, the trained networks were assessed against manually
labeled frames (ground truth data). Among the trained net-
works, we found that the network, which was trained using a
batch size of 10 and built with encoder—decoder depth of
four had the best performance on the testing data set (the
ground truth data) with the highest mean IoU (0.82). The
other networks with different encoder—-decoder depths and
batch sizes showed poorer performance and lower IoUs.

The visual evaluation of the HSV data of the female
subject showed that the best trained network (the pro-
posed one) outperformed the automated labeling tool (the
hybrid method)—demonstrating better accuracy in seg-
menting the glottal edges and area, and higher robustness
toward image noise based on what we found in our visual
assessment. In addition, the developed network showed a
considerably lower complexity because it did not depend
on several image processing steps to achieve the segmenta-
tion task as in the hybrid approach. Overall, the visual
inspection of the performance of the introduced network
showed a successful segmentation when implemented on
the video frames. The accurate representation of the glot-
tal area using the developed network enabled the precise
measurement of the variation of the glottal area over time
(glottal area waveform). While the glottal area might be
influenced due to relative motion of the endoscope and
tissues during phonation in connected speech, it is still an
important measure, which allows to evaluate the oscilla-
tion of vocal folds in the HSV data (Deliyski et al., 2008).

Although the network was trained on frames seg-
mented during sustained vocal fold vibration, it was gen-
eralizable and was able to correctly segment frames during
more complex nonstationary events such as in onsets/
offsets of phonation, voice breaks, irregular vocal fold
vibrations, and when vocal folds were not vibrating—
overcoming our previous method’s limitation. Also, we
found that the performance of the proposed approach was
relatively stable and did not vary between the different
phonatory tasks. Moreover, since the proposed network
was trained on HSV frames that were segmented using the
automated labeling tool we developed, it was important to
also validate the network by comparing it against manu-
ally segmented HSV frames. Hence, a separate manually
labeled data set (testing data set) was created, where the
glottal area in a set of new HSV frames were manually
segmented, to test and quantify the performance of the
proposed network. Different metrics were utilized to eval-
uate the network’s performance against the manually seg-
mented frames: a contour-based metric (BF score) to eval-
uate the detected boundary of the segmented glottal area
(glottal edges) and an area-based metric (IoU) to assess
the segmented glottal area itself. The introduced network

showed a high mean BF score by 0.96 (SD = 0.12) indi-
cating high accuracy of the network in localizing the edges
of the glottal area, (i.e., vocal fold edges). Furthermore,
the developed network achieved a mean IoU of 0.82
(SD = 0.26) and a mean DC of 0.88 (SD = 0.25), signify-
ing high precision in detecting the glottal area.

This work is the first deep learning-based scheme
for automatically segmenting glottal area in connected
speech. So, there are no other studies that utilized the
state-of-the-art deep neural network for glottal area seg-
mentation in running speech to compare with. The
recently introduced/utilized deep learning models applied
deep neural networks to segment glottal area in grayscale
(Kist & Dollinger, 2020; Kist et al., 2020) and RGB
(Fehling et al., 2020) HSV data, during sustained phona-
tion using rigid endoscopes, but not during running speech
using flexible endoscopy as in this study. HSV data in
running speech, however, exhibit even lower image quality
and excessive laryngeal maneuvers leading to considerable
changes in the spatial location of the vocal folds. These
constraints impose more challenges for the deep neural
networks to successfully segment the glottal area in HSV
in connected speech. Despite these challenges, the intro-
duced approach showed a mean IoU of 0.82 and DC of
0.88, which are even above the baseline scores mentioned
in literature that utilized a less challenging and higher
quality HSV data with IoU of 0.799 (Gomez et al., 2020;
Kist & Dollinger, 2020) and DC of 0.85 (Fehling et al.,
2020). This comparison though was on a different data set
but showing how the proposed method achieved a promis-
ing performance on a more challenging data demonstrates
the high competitiveness of our approach against the other
related methods. Furthermore, the previous deep learning
approaches for HSV analysis (Fehling et al., 2020; Gomez
et al., 2020; Kist & Ddllinger, 2020; Kist et al., 2020,
2021) were entirely utilized for only spatial segmentation.
Among these studies, Fehling et al. (Fehling et al., 2020)
was the only group that designed deep neural networks
that could keep the HSVs temporal information, and they
evaluated the segmentation conformity over the course of
time. However, the sequences they utilized were quite
short. In contrast, the introduced deep learning model is a
spatiotemporal technique, where the HSV data are first
preprocessed using a temporal segmentation algorithm to
extract the vocalized segments on which the proposed
deep neural network was applied on long HSV sequences.
This spatiotemporal feature enhances the robustness of the
proposed model toward, for example, irregular vocal fold
closure. The present work was conducted to demonstrate
the high capability and robustness of a new deep learning-
based technique for automatically segmenting connected
speech in challenging images using a color HSV data from
one subject. This approach will be applied to a larger
sample size from individuals with and without voice
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disorders and on HSV data recorded using a monochrome
camera with less challenging image quality. It should be
noted that the current work applied the developed method
on color HSV data, which have smaller dynamic ranges in
comparison with monochrome images. This will guarantee a
higher accuracy of this method in future when applied to
monochrome data with a higher dynamic range. In future
work, after applying this method to the HSV data of patients
with voice disorders, objective HSV measures will be devel-
oped to characterize voice disorders. Having access to such
automated measures would benefit future clinicians from
HSV analysis in connected speech as it provides detailed
vocal folds vibratory information that could potentially facil-
itate voice disorder diagnosis.

Conclusions

Developing approaches to automatically segment/
detect the glottal area/edges in HSV is a critical step for
vocal function analysis in connected speech, where voice
disorders typically reveal themselves. This work introduces
an efficient deep-learning model that can provide a quan-
titative representation of the glottal area from HSV during
running speech. A successful implementation of an auto-
mated labeling tool for training deep-learning approaches
was performed. The tool was based on our previously
developed hybrid method incorporating multiple image
processing steps: temporal segmentation, motion compen-
sation, and spatial segmentation using k-means clustering
with ACM. Since the hybrid method was accurate across
the HSV frames with sustained vocal fold vibrations, it
was used as an automated labeling tool to segment the
glottal area to form a large training data set for a deep
neural network. The developed network even outper-
formed the labeling tool (our prior hybrid method) by
improving the segmentation accuracy, enhancing the
robustness toward poor image quality/noise, lowering the
computational cost, and increasing the flexibility to accu-
rately performing segmentation during complex events as
in phonation onsets/offsets and voice breaks.

The present work showed the feasibility and the
promising capability of the introduced deep-learning
scheme to segment the glottal area in even challenging
color HSV data during connected speech. This facilitates
the future utilization of the developed model for HSV
analysis in running speech from more vocally normal par-
ticipants as well as patients with voice disorders.
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