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Abstract

Medical waste has increased in the past 3 years as a result of
the coronavirus disease 2019 (COVID-19) pandemic. This
condition is expected to exacerbate due to the growing
healthcare markets and aging population, posing health
threats to the public via environmental footprints. To alleviate
these impacts, there is an urgent need for medical waste
management. This article highlights the drawbacks of current
disposal methods and the potential of medical waste reuse and
recycling, emphasizing the processes, materials, and chem-
istry involved in each practice. Further discussion is provided
on the chemical and mechanical recycling of plastics as the
dominating material in biomedical applications, and possible
strategies and challenges in recycling and reusing biomedical
materials are explored in this review.
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Introduction
Healthcare waste is defined as the waste generated via
medical procedures at healthcare or research facilities
and laboratories [1,2]. Medical waste is divided into two
categories: (i) hazardous waste, involving biological,
chemical, radioactive, and/or physical footprints, and (ii)
non-hazardous waste, constituting about 85% of waste
generated from healthcare activities that are similar to
domestic waste [3]. Improper medical waste handling
and disposal may impose health risks on healthcare
workers and the public [4]. This mainly occurs through
www.sciencedirect.com C
the transmission of infectious or drug-resistant microor-
ganisms, toxic exposure to chemical and pharmaceutical
waste, and the release of air pollutants [3,4]. Soaring

medical waste production as a result of the COVID-19
pandemic [5,6] is expected to be perpetuated by the
projected growth of emerging healthcare sectors and the
aging population, posing environmental hazards and
causing illnesses in a significant number of people [7].

Figure 1 shows the current medical waste treatment
methods, including thermal, chemical, radiation, bio-
logical, and mechanical treatments, where the thermal
treatment is the most common technology worldwide
[1]. The two most common thermal treatment methods

to dispose of hazardous waste are incineration and
autoclaving [4,8]. Undesirable emissions, such as di-
oxins, furans, and heavy metals, occur during incinera-
tion [9,10]. Also, some organic solvents used in the
pharmaceutical industry, such as 2,2,2-trifluoroethanol,
cause corrosion in incinerators [11]. With autoclaves,
aside from the difficulties of handling mixed clinical
waste or large and bulky materials [1,4,8], additional
treatments may be required because of the untreated
appearance of autoclaved waste, involving financial costs
and adverse environmental impacts [4].

Overall, the environmental impacts and health risks
associated with medical waste, as well as the short-
comings of current disposal approaches have increased
the demand for recycling and reuse strategies as part of
waste management. In addition, other factors such as
reducing the reliance on natural resources, improving
the accessibility of medical products, and increasing the
financial gain for the health sectors motivate the utili-
zation of these approaches [12]. In this article, we will
review the recent advances in recycling and reusing

biomedical materials, discuss challenges associated with
each practice, and outline prospects for future research.
Reprocessing and reusing biomedical
materials
Reprocessing and reusing medical materials and devices

are common waste management approaches to increase
economic and environmental benefits [7,13]. There are
protocols and guidelines specifically designed for
reprocessing and sterilizing multiuse medical devices,
whereby health risks merely ensue in case these pro-
tocols are not rigorously followed [14]. Likewise, with
strict considerations, the reprocessing of single-use
medical devices (SUMDs) has been established and
urrent Opinion in Green and Sustainable Chemistry 2022, 38:100695
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Figure 1
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Current medical waste treatment strategies [1].
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supported in various countries, including Germany and
the USA [15]. The ability of a target biomedical material
to withstand cleaning, disinfection, and sterilization
without undergoing any property change plays a signif-
icant role in selecting appropriate methods for reproc-
essing and reusing. Figure 2 demonstrates suitable
sterilization approaches based on plastic material prop-

erties. The growing use of disposable devices has led to a
shift from other biomedical materials, such as glass,
metals, and ceramics, to plastics [16].

Sterilization can be divided into three categories: (i)
thermal, (ii) radiation, and (iii) chemical sterilization
[17]. Steam sterilization (autoclaving, limited to
moisture-resistant materials) and dry heat sterilization
are among the thermal treatments that are used for
heat-resistant materials [16]. Autoclaving can cause
corrosion in surgical alloys or rust in instruments [17].

Moreover, it has been reported that the repeated auto-
claving of polyvinyl chloride (PVC), used in blood bags,
causes plasticizer loss, molecular weight reduction, and
increase in tensile modulus and yield strength [18].

In low-temperature sterilization methods, medical de-
vices are radiated at varying wavelengths and penetra-
tion power. Electron beam, gamma, and X-ray radiations
are used for low, medium to high, and high penetration
needs, respectively [16]. Typically, plastics used in
medical devices are susceptible to structural changes,

including degradation, discoloration, and crosslinking
during radiation sterilization [16,18]. This includes the
gamma irradiation of PVC/polystyrene blends [19],
polypropylene (PP) [20], polymethyl methacrylate [21],
and polyethylene terephthalate fibers [22], as well as
the electron beam sterilization of polylactic acid [23].

For radiation- and heat-sensitive materials, chemical
agents, such as chlorine compounds, aldehydes (form-
aldehyde and glutaraldehyde), hydrogen peroxide,
peracetic acid, and ethylene oxide (EO), are used as

chemical treatments for disinfection and sterilization
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[16]. In this type of treatment, disinfection is typically
conducted instead of sterilization [1]. It should be
noted that different chemical treatments may affect the
tensile strength of materials used in SUMDs, such as
polyurethane (PU), latex, nylon, or polyethylene (PE)
[24]. It has been shown that using EO as a low-
temperature sterilization method renders PU catheters

toxic, which requires a long aeration time to remove
toxic residues [25]. Sterilization of PU electrophysiology
catheters via the concurrent use of plasma and oxidative
sterilants, such as vaporized hydrogen peroxide or
peracetic acid, resulted in additive (antioxidant Irganox
1076) degradation or difference in coloration [25].
Moreover, antimicrobial nanostructured zinc-based
coating in personal protective equipment (PPE) may
improve disinfection, enabling the extended reuse of
PPE via self-sterilization [26].

Overall, these studies show that reprocessing and reus-
ing biomedical materials should be material specific.
Moreover, after each sterilization or disinfection cycle,
validation tests are needed to ensure that medical de-
vices maintain functionality, and the risk of disease
transmission by microorganisms is eliminated.
Recycling and recovery of biomedical
materials
Recycling is conducted by converting a product to its
materials and turning them into a new product, wherein
the process suitability depends on the product compo-
nents [7]. Most medical instruments are made from
plastics, as they are cost-effective, durable, and flexible
compared with steel, ceramics, and glass [27*]. It is
therefore essential to recycle plastic-based materials,

while a variety of non-plastic wastes have also been re-
ported to be recyclable, such as stainless steel used in
surgical instruments [28*], medical implants and dental
prosthetics collected from the cremation industry [29],
mercury from dental amalgams [30], and aluminum from
waste pharmaceutical blister [31e34]. At least 12
www.sciencedirect.com
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Figure 2
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Decision tree for plastic material sterilization method selection—Reproduced from the study by Sastri et al. [16], Copyright 2022, with permission from
Elsevier.
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United Nations Sustainable Development Goals are
impacted directly or indirectly by plastic and micro-
plastic pollution [35], which attests to the urgency of
recycling plastic-based materials.

Several programs have been developed worldwide for
plastic-based medical waste recycling. A recycling pilot

was developed in the UK to downcycle PVC-based
materials such as anesthesia masks, oxygen masks, and
tubing into horticultural items [36]. Another PVC
recycling program in hospitals is conducted by the Vinyl
Council of Australia to remanufacture valuable items,
including industrial hoses, from recycled PVC medical
waste, such as oxygen masks and tubing, intravenous
fluid bags, and suction tubing [37].

In general, plastic waste is recycled using primary, sec-
ondary, tertiary, or quaternary pathways. Primary recy-

cling (also known as re-extrusion and closed-loop
recycling) is limited to almost pristine waste and is
generally exploited in the processing line, because the
recycled products must have a similar quality to the
original plastic [38,39]. Consequently, applying primary
recycling to medical wastes may not be feasible. In
secondary (mechanical) recycling, mechanical processes
are used to recover plastic wastes. These processes,
involving the sorting, washing, and extrusion of plastic
waste, generally lead to the degradation of polymers
[38]. Tertiary (chemical) recycling refers to the use of

chemical processes to recover the petrochemical com-
ponents of plastic wastes [38]. During quaternary
recycling (or energy recovery), energy is recovered by
waste incineration, and harmful emissions are inevitably
produced [38], which is unsuitable for recycling medical
waste. Effective energy recovery is not attainable in
www.sciencedirect.com C
healthcare waste incinerators due to their small sizes
[1]; however, by reusing incineration products, the
environmental impacts of incineration may be reduced.
For instance, replacing fine aggregates in concrete with
incinerated biomedical waste ash results in improved
strength and reduced permeability, while eliminating
the necessity of landfilling the ash [40]. Considering the

limitations of primary and quaternary recycling, me-
chanical and chemical treatments may be primarily
considered for the recycling and recovery of biomedical
materials.

Mechanical recycling of plastic-based biomedical
materials
Mechanical recycling of medical waste has been the
focus of several studies. Blue wrapping papers, made
from PPused to wrap surgical instruments, are injection-
molded into new medical devices without using addi-
tives. The mechanical properties of materials recycled
through the injection molding of molten wrapping paper

waste did not significantly change at varying melting
temperatures, and the products withstood up to 10
disinfection cycles with preserved properties [12]. With
the extensive consumption of PPE, such as surgical face
masks during the COVID-19 pandemic, there has been
an increasing interest in PPE recycling [41*] via me-
chanical and chemical recycling pathways to yield
products for various applications (Figure 3). This in-
cludes developing sound-absorbing porous materials
from PP-based face masks with comparable performance
to commercial counterparts [42*], as well as the

immense potential of using recycled face masks in
construction applications [43,44]. Adding shredded face
masks (SFM) to concrete resulted in negligible changes
in compressive (about 5% increase) and tensile (about
urrent Opinion in Green and Sustainable Chemistry 2022, 38:100695
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Figure 3
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Recycling face masks via chemical or mechanical methods to yield a variety of products.
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3% decrease) strengths, with preserved material stabil-

ity under spalling and frost resistance tests [43].
Incorporating 1.5% of SFM into hot mix asphalt
ameliorated the rutting resistance of asphalt pavement,
resulting in 69% decrease in the rutting depth [45]. In
another study, using 1% of SFM in recycled concrete
aggregate (RCA) increased the unconfined compressive
strength (by 17%) and resilient modulus (by about 4%),
as the PP fibers reinforced RCA particles, rendering the
final blend suitable for pavements base and subbase
applications [44].

Chemical recycling of plastic-based biomedical
materials
Tertiary recycling enables the treatment of contami-
nated and heterogenous plastics with minimal pre-
treatment [39]. Pyrolysis is a promising thermochemical
treatment of medical waste, as it provides environ-
mental advantages [46], including lower pollution and
carbon footprint compared with other thermal treat-
ments, and there is no requirement for the earlier
separation of different waste plastics prior to pyrolysis
[47]. This process has been applied to different types
of medical waste to produce value-added materials
[47e51]. Waste syringes made from PP were recycled

via pyrolysis in a semi batch reactor, where the pyrolysis
oil contained alkanes, alkenes, and aromatic rings, and
the physical properties of it were close to the diesel
fuel and petrol blend [48]. Syngas and C1-2 hydrocar-
bons were yielded from the catalytic conversion of
disposable masks made from PP, PE, and nylon-6 over
nickel/sulfur dioxide (Ni/SO2) catalysts in a carbon di-
oxide (CO2) reaction medium. In this thermochemical
process, the conversion of long-chain hydrocarbons to
methane and hydrogen on the Ni/SO2 catalyst was sig-
nificant, and the carbon monoxide (CO) formation was

increased in the CO2 medium [49*]. The catalytic fast
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pyrolysis of disposable masks has been used to produce

high-value aromatics, including benzene, toluene,
ethylbenzene, and xylene (BTEX) [50]. Without cata-
lysts, branched hydrocarbons were yielded, whereas
zeolite catalysts enabled the production of aromatic
compounds, and higher BTEX selectivity was obtained
in the catalysts containing larger pore sizes [50]. Also,
activating and functionalizing char, as a product of face
mask pyrolysis, with iron (Fe)-phthalocyanine and Ni-
phthalocyanine has yielded electrocatalysts for oxygen
reduction and hydrogen evolution reactions, respec-
tively [51].

Other chemical processes may also enable tertiary
biomedical material recycling. Recently, a process has
been developed, whereby a simple chemical treatment
on face masks resulted in a highly efficient separator for
aqueous rechargeable batteries [52*]. In this process
(Figure 4a), the middle filter layer of disposable masks
made from PP-based nonwoven fabrics (Figure 4b) was
treated with fuming sulfuric acid (FSA) for 2e6 min,
changing the color to light brown and increasing the
surface toughness (Figure 4cee). During this reaction,

the hydrophobic surface of middle filter was rendered
hydrophilic with copious hydroxyl (-OH) and sulfonic
acid (-SO3H) groups, and the final separator improved
the electrochemical performance compared with con-
ventional glass-fiber based separators [52*]. In another
study, a hydrothermal process was used to load zinc
sulfide (ZnS) nanoparticles in a sensing substrate made
from waste mask fibers, where the resulting composite
was used as a gas sensor [53]. Compared with ZnS-
loaded ceramic substrates, this gas sensor demon-
strated 8.4e35.2 times higher sensitivity to different

analytes, including formaldehyde, ammonia, hydrogen
peroxide, and relative humidity (85%). This is attrib-
uted to the complete exposure of nanoparticles to target
www.sciencedirect.com
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Figure 4

(a) Expected pathway for FSA-mediated PP chemical modification. Optical and scanning electron microscopy (SEM) images of (b) a mask filter, and
sulfonated mask filters treated with FSA for (c) 2 min, (D) 4 min, and (e) 6 min—Reproduced from the study by Kim et al. [52*], Copyright 2021, with
permission from Elsevier.
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gases because mask fibers are highly permeable [53]. It
has been shown that waste PP masks could be recycled
into sulfur-doped porous carbon via sulfonation and
carbonization methods, which is used as a cathode for

supercapacitors [54].

Recycling PVC, as the primarily utilized plastic in terms
of volume in medical devices [27,55], is challenging and
imposes adverse environmental impacts, especially in
the forms of air pollutants and chlorine, which con-
taminates recycling products and causes equipment
corrosion [38]. These problems are addressed by
introducing catalysts, hydrogen chloride inhibitors, or
pretreatment processes to increase the efficiency of
recycling procedures [38]. Promising techniques such

as near-critical methanol (NCM) for PVC-medical
waste treatment may be implemented, wherein effi-
cient additive recovery and dechlorination efficiency of
>90% have been obtained at 250 �C [56]. Aluminum
has also been completely recovered from PVC plastic in
waste pharmaceutical blisters via a hydrometallurgical
method, wherein the waste is leached with hydrochloric
acid [57].
Challenges and outlook in recycling and
reusing medical waste
Medical waste recycling faces several challenges,
including unstandardized sorting as well as health
concerns regarding recycling infectious waste. Most
hospital wastes are not infectious, rendering them
suitable for recycling programs [58]. However, un-

standardized medical waste sorting has led to the
erroneous disposal of items as infectious waste [59],
imposing unnecessary costs associated with infectious
www.sciencedirect.com C
waste treatment [4]. This challenge might be
addressed using machine learning algorithms, as they
have been utilized to sort and classify wastes for
different industrial applications, such as plastic waste,

bottle, and municipal solid waste recycling, with >90%
accuracy [60]. Training healthcare workers on waste
management may improve their practices in biomedical
waste handling and disposal [61,62]. Furthermore,
social and ethical concerns stemming from the health
risks of infectious medical waste recycling should be
addressed by raising public awareness and implement-
ing strict protocols for medical waste recycling [27*]. In
addition, economically feasible processes should be
developed for plastic recycling, and the design of
plastic-based materials should satisfy the feasibility of

efficient recycling by following healthy design practices
[27*]. Using bio-based plastics in medical applications
is another alternative that may lower environmental
impacts [63] and, with further exploration, might
lessen recycling costs associated with the petroleum-
based counterparts [64].
Conclusions
Environmental and public health concerns regarding the
rapid increase in medical waste generation and the
drawbacks of current disposal methods may be
addressed by practicing recycling and reuse programs.
Compared with current disposal methods, reprocessing
and reusing medical devices are environmentally and
financially beneficial. Still, established protocols should
be strictly followed to eliminate the risk of contamina-

tion. Also, preserving the functionality and original
properties of materials needs to be considered in
selecting reuse methods. Recycling and recovery are
urrent Opinion in Green and Sustainable Chemistry 2022, 38:100695
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other approaches that may enable the efficient man-
agement of biomedical material waste. Nevertheless,
challenges associated with sorting, designing, and ster-
ilization are ahead of recycling programs. In summary,
efforts should be devoted to allocating financial and
technological resources, enabling sustainable waste
management programs in healthcare sectors through
recycling and reusing biomedical materials.
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