Skip to main content
. 2022 Oct 14;12:17297. doi: 10.1038/s41598-022-21380-4

Table 1.

Summary of the state-of-the-art for automated pain level detection using facial images.

Study Method Classifier Number of subjects Number of facial images/frames Accuracy (%) Limitations
Brahnam et al.11 Principal component analysis, linear discriminant analysis Support vector machine 26 (13 male, 13 female) 204 88.00 Single and small dataset, low accuracy
Brahnam et al.12 Principal component analysis, linear discriminant analysis, frequency domain methods Neural network simultaneous optimization algorithm 26 (13 male, 13 female) 204 100.0 Single and small dataset
Brahnam et al.13 Principal component analysis, linear discriminant analysis Neural network simultaneous optimization algorithm 26 (13 male, 13 female) 204 90.20 Single and small dataset
Kristian et al.14 Active shape model, local binary pattern Support vector machine 23 132 88.70 Single and small dataset
Othman et al.16 MobileNetV2 Softmax 1. 87 1. 3480 1. 6550 Low accuracy
2. 134 2. 7763 2. 7140
Weitz et al.19 Convolutional neural network Softmax 324 14,322 67.00 Single dataset, low accuracy
Yang et al.20 Local binary pattern, local phase quantization, statistical features Support vector machine 1. 129 1. 48,398 1. 8342 Low accuracy
2. 90 2. 8700 2. 71.00
Kharghanian et al.22 Convolutional deep belief network model Support vector machine 25 48,398 87.20 Single dataset, low accuracy
Zafar and Khan23 Geometric features k-nearest neighbor Unspecified 21,500 84.02 Single dataset, low accuracy