Skip to main content
. 2022 Oct 14;12:17297. doi: 10.1038/s41598-022-21380-4

Table 4.

Comparison of our work with state-of-the-art methods developed for automated pain intensity classification using facial images.

Study Method Classifier Dataset Results
Bargshady35 Temporal convolutional network, LSTM, principal component analysis Temporal convolutional network UNBC-McMaster (10,783 frames) MSE: 1.186
MAE: 0.234
Acc: 94.14%
AUC: 91.30%
Bargshady36 Ensemble neural network Ensemble CNN-recurrent neural network UNBC-McMaster (10,783 frames) AUC: 90.50%
Acc: 86.00%
MSE: 0.081
Semwal37 Ensemble of compact CNN Ensemble UNBC-McMaster (16,000 frames) Pre: 91.97%
Rec: 91.01$
F1: 91.42%
Acc: 93.87
Rudovic38 CNN Softmax UNBC-McMaster (48,106 frames) Acc: 76.00%
PR-AUC: 59.00
F1: 47.00
Karamitsos39 CNN Softmax UNBC-McMaster (48,398 frames) Acc: 92.50%
Semwal40 CNN Softmax UNBC-McMaster (16,000 frames) Acc: 92.00%
MAE: 0.20
MSE: 0.17
Bargshady1 CNN, bidirectional LSTM Enhanced joint hybrid-CNN-bidirectional LSTM UNBC-McMaster (10,783 frames) Acc: 91.20%
AUC: 98.40%
El Morabit and Rivenq41 Vision Transformer, Feed Forward Network Softmax UNBC-McMaster (48,398 frames) Acc: 84.15
Our model Transfer learning, novel shutter blinds-based deep feature extraction kNN UNBC-McMaster (10,852 frames) Acc: 95.57%
UAR: 95.59%
UAP: 95.79%
Average F1: 95.67%
MCC: 94.14%
CK: 93.93%
GM: 95.58%
DISFA (39,182 frames) Acc: 96.06%
UAR: 96.04%
UAP: 96.16%
Average F1: 96.08%
MCC: 94.78%
CK: 94.74%
GM: 96.03%

Acc, Accuracy; AUC, area under curve; CK, Cohen’s kappa; CNN, convolutional neural network; F1, F1-ScoreGM, geometric mean; LSTM, long short-term memory; MAE, mean absolute error; MCC, Matthew’s correlation coefficient; MSE, mean squared error; PR-AUC, precision-recall area under the curve; Pre, precision; Rec, recall; UAP, unweighted average precision; UAR, unweighted average recall.