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Abstract: Plants are subjected to multifaceted stresses that significantly jeopardize crop production.
Pathogenic microbes influence biotic stress in plants, which ultimately causes annual crop loss
worldwide. Although the use of pesticides and fungicides can curb the proliferation of pathogens in
plants and enhance crop production, they pollute the environment and cause several health issues
in humans and animals. Hence, there is a need for alternative biocontrol agents that offer an eco-
friendly mode of controlling plant diseases. This review discusses fungal- and bacterial-induced
stress in plants, which causes various plant diseases, and the role of biocontrol defense mechanisms,
for example, the production of hydrolytic enzymes, secondary metabolites, and siderophores by
stress-tolerant fungi and bacteria to combat plant pathogens. It is observed that beneficial endophytes
could sustain crop production and resolve the issues regarding crop yield caused by bacterial and
fungal pathogens. The collated literature review indicates that future research is necessary to identify
potential biocontrol agents that can minimize the utility of synthetic pesticides and increase the
tenable agricultural production.
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1. Introduction

By 2050, there will be a considerable increase in the population of around 9.7 billion,
leading to an increased requirement for food [1,2]. According to the Food and Agriculture
Organization (FAO) of the United Nations, at least a 50% increase in the average agricultural
food production must be achieved by 2050 [2]. Thus, a strategy is required to mitigate
pre- and post-harvest crop yield losses and enhance crop production to meet population
demands [1]. Plants are most vulnerable to biotic stresses caused by microbes that hinder
the sustainability of agriculture, leading to global crop catastrophe [3]. Biotic stresses cause
approximately a 17 to 30% decline in global crop production [3].

Fungi and bacteria are the major causative agents, which produce 70-80% of plant
infections leading to universal crop calamity [3,4]. These pathogens invade the plants
through the roots, stomata, or open wounds resulting from adverse weather conditions,
human activities (handling tools and machinery), insects, and other vectors, and cause
disease in plants by secreting either extracellular enzymes or secondary metabolites or
toxins [5-7]. Most plant pathogenic fungi species are Alternaria spp., Aspergillus spp.,
Colletotrichum spp., Fusarium spp., Phytophthora spp., and Pythium spp. These species cause
various infections in plants such as anthracnose, dieback, gall, powdery mildew, blight, rust,
rot, wilt, and smut. Some manifestations are overgrowth, deformations, mummification,
wilting, spotting, mold, and pustules [4]. For example, Aspergillus niger causes ear rot,
yellow mold, and black mold in cereal grains, legumes, nuts, grapes, apricots, and onions [8]
and Blumeria spp. cause powdery mildew in grasses and cereals and has symptoms of
white, powdery spots or patches on the plant stems or leaves [9]. Phytopathogenic bacteria
are grouped under the following genera: Agrobacterium, Bacillus, Burkholderia, Clavibacter,
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Erwinia, Pantoea, Pseudomonas, Ralstonia, Streptomyces, Xanthomonas, and Xylella. Galls and
overgrowths, wilts, soft rots, scabs, cankers, leaf spots, and blights are traits caused by
pathogenic bacteria [6]. For example, the first bacterial disease was anthrax caused by
Bacillus anthracis, infecting cattle and sheep in 1876. Fire blight disease in apple and pear in
addition to other fruits from the Rosaceae family was first discovered by T. ]. Burrill from
the University of Illinois during the period 1877-1885 [10]. This disease, which originated
in North America, has now spread to 50 countries in Europe, Africa, the Middle East, and
Asia. Another bacterial disease that is considered a serious threat to the tomato and pepper
industries around the world is bacterial canker or ring rot, which is caused by Clavibacter
michiganensis strains [11].

Although chemical pesticides curb biotic stress and enhance crop production, they
cause adverse environmental consequences such as soil acidification and groundwater
contamination, which impede the growth of plant roots and destroy the beneficial rhi-
zosphere microbes [12]. Prolonged use of chemical pesticides causes a health risk to
humans, for example, pesticides such as glyphosate, dichlorodiphenyltrichloroethane
(DDT), dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane
(DDD) cause acute poisoning and apneic seizures in humans, leading to death [12]. In
addition, such use gives rise to resistive pathogenic strains such as Aspergillus, Alternaria,
Botrytis, Colletotrichum, Fusarium, Penicillium, Phytophthora, Verticillium, and Ustilago [13].
Therefore, there is a need for an alternative natural source of plant disease management
known as biocontrol. Microbes are a novel source of naturally available biocontrol agents
that combat or inhibit the growth of pathogens [14].

Plants nurture many microorganisms in the phyllosphere and rhizosphere. In 1886,
German botanist Anton de Bary, the father of plant pathology, proposed the term endo-
phyte [15]. Endophytes are ubiquitous and reside in the intercellular tissues of about 300,000
plant species without causing any negative impacts [16]. Some predominant prokaryotic
and eukaryotic endophytes that have been explored are Actinobacteria, Ascomycota, Bac-
teroidetes, Basidiomycota, Firmicutes, Proteobacteria, and Zygomycota [17]. Endophytes produce
several secondary metabolites, enzymes, and hormones that have a vital role in biotechnol-
ogy. Endophytes’ antagonistic effect and antimicrobial activities prevent the plants from
pathogen infection [18]. Thus, the various plant-endophyte interactions have captivated
researchers in sustaining the agroindustries. This review encapsulates the fungal- and
bacterial-induced stress in plants such as water and nutrient deficiency stress that causes
various plant diseases. It also explores the significant role of stress-tolerant fungal and
bacterial endophytes, and their biocontrol defense mechanisms such as the production of
hydrolytic enzymes, secondary metabolites, siderophores, systemic acquired resistance
(SAR), and induced systemic resistance (ISR) in combating fungal and bacterial pathogens.

2. Bacterial- and Fungal-Induced Plant Stress

Pathogenic microbes (bacteria and fungi) induce biotic stress in plants. These pathogens
invade the plant through the roots, stomata, or open wounds by colonizing the plant xylem
vascular bundle, thus occluding the water flow and causing water deficit stress as a result
of xylem dysfunctioning in the plant, which ultimately causes vascular disease [5]. Some
pathogens use haustorium to deprive the host of nutrients via a biotrophic interface, thus
inhibiting the growth of the plant as a result of nutrient deficiency stress and the onset of
rust and powdery mildew diseases [19]. Due to this stress, plants experience morphological,
physiological, and biochemical variations [7]. Physiological changes affect the roots, xylem,
and leaf tissues, resulting in obstructed cell division and alleviated cell elongation in addi-
tion to affecting carbon fixation, transpiration, gas exchange reduction, respiration, and the
upregulation of defense metabolism genes and downregulation of photosynthesis genes
in leaves [20] Morphological changes can reduce the leaf surface area, leaf size, growth of
internodes, branching pattern, and root and shoot growth of the plant [7]. Biochemical
variation causes an imbalance in hormone regulation and nutrients in plants [7]. Table 1
represents the bacterial- and fungal-induced plant stresses and their diseases.
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Table 1. Fungal and bacterial pathogen-induced stress in plants and their diseases.

Pathogen Mode of Inducing Stress and Plant Disease References
Fusarium oxysporum, Fusarium oxysporum f. sp. pisi, ~ Fungi colonize the xylem vascular bundle then [5,8]
F. oxysporum var. redolent, F. poae, F. solani, and obstruct water flow and induce water stress in
F. avenaceum; Verticillium dahliae; fruits and vegetables, which leads to wilt disease.
Verticillium albo-atrum
Puccinia triticina, P. striiformis Westend f. sp. tritici, Fungi acquire nutrients from the host via a [20]
P. graminis Pers. f. sp. tritici. biotrophic interface and induce a nutrient
deficiency in wheat, causing rust disease.
Blumeria graminis f. sp. hordei, Blumeria graminis f. ~ Fungi colonize and induce a foliar fungal sink at [9,21]
sp. tritici, Sphaerotheca fuliginea the infected site and acquire nutrients from the
host via an obligate biotrophic interface, producing
powdery mildew disease in cereals and grasses.
Ustilago maydis Fungi induce endoglucanase to degrade cellulose [22]
and arabinofuranosidase and xylanase to degrade
the hemicellulose of the plant cell wall, causing
corn smut disease in corn
Magnaporthe oryzae During fungal infection, increased induction of [23]
pectate-lyase, endo-xylanase, cellulase, and
hemicellulase enzymes lead to degradation of the
plant cell wall, causing rice blast disease in rice.
Fusarium verticillioides, Fungi induce mycotoxins such as fumonisins, T-2 [24]
Fusarium sporotrichioides toxin, and trichothecenes, causing kernel, stalk,
and ear rot in cereals.
Fusicoccum amygdali Del Fungi produce fusicoccin, which induces [25]
irreversible stomatal opening due to the osmotic
swelling of the guard cells, leading to wilting of
leaves in peach and almond.
Pseudomonas marginalis Bacteria induce enzymes that degrade the pectin [26]
layers of the plant cells, causing bacterial soft-rot
disease in tomato.
Erwinia chrysanthemi Bacteria induce endo-xylanase activities to degrade [27]
plant cellulose, causing stem and root rot in maize.
Clavibacter michiganense subsp. sepedonicum, Bacteria colonize the xylem vascular bundle, thus [28-30]
Ralstonia solanacearum, Xanthomonas campestris, occluding water flow and inducing water deficit
Clavibacter michiganensis subsp. michiganensis and  stress in the plant, leading to ring rot, vascular wilt,
Xylella fastidiosa bacterial spots, bacterial canker and pierce’s
diseases in potatoes, tomatoes, pepper, and
grapevine, respectively.
Pseudomonas syringae, Pv. syringae Syringomycin E and G and syringopeptin 25A [25]

toxin induced by bacteria, which inhibit plant

growth, affect H"-ATPase activity, and induce
electrolyte leakage in plant tissues, causing

bacterial canker in carrot, potato, and tobacco.

3. Role of Endophytes in Combating Bacterial and Fungal Pathogens

Biocontrol forms an effective substitutional method of plant disease control with a low
negative impact on the environment and humans. Biological control is described as the ap-
plication of beneficial organisms, or by-products, such as phytohormones, metabolites, and
enzymes, to alleviate the threats caused by pathogens and aggravate favorable reactions in
the plant [14,31]. Endophytes, isolated from plant parts, such as the roots, shoots, leaves,
flowers, and seeds, have promising potential for development into biocontrol agents (BCAs)
to enhance plant growth and development. Most phyto-endophytes exhibit symbiotic,
mutualistic, and synergetic interactions within the host plants. This provokes resistance
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against biotic stress, improves soil fertility, and promotes plant growth. Endophytes are
beneficial microbiomes that play a vital role as biocontrol agents and phyto-stimulators [32].
Endophytes stockpile nutrients in plants via the production of siderophores, phosphate,
nitrate, and enzymes. They also trigger cellular responses by increasing secondary metabo-
lites and phytohormones such as jasmonic acid (JA), ethylene, and salicylic acid (SA) to
build up a robust resistance in plants against pathogens [33]. Thus, the application of
endophytic microbes is an environmentally friendly and inexpensive alternative method to
combat pathogens [33]

For instance, Trichoderma species protect many plants from pathogens by producing
inhibiting enzymes, toxic substances, and secondary metabolites and concomitantly pro-
moting plant growth via hormone production [30,34,35]. Endophytes such as Trichoderma
viride, Bacillus thuringiensis SY33.3, Streptomycetes spp., and Pseudomonas fluorescens suppress
the pectinolytic enzyme activities of Fusarium oxysporum, which causes vascular wilt in
plants [8,34,36]. Pseudomonas sp. LBUM300 mitigates Clavibacter michiganensis, which causes
canker disease in tomatoes by generating antibiotics, namely, hydrogen cyanide (HCN) and
2,4-diacetylphloroglucinol [29]. In general, Aspergillus spp., nonpathogenic Fusarium spp.,
Gliocladium spp., Petriella spp., and Trichoderma spp., along with Bacillus spp., Enterobacter
spp., Lysobacter spp., Pantoea spp., Pseudomonas spp., and Streptomyces spp., were identified
as prime BCAs [17,35,36]. Tables 2 and 3 illustrate the defense mechanisms of fungal and
bacterial endophytes against pathogens while Figure 1 depicts the endophytic biocontrol
mode of defense mechanisms against pathogens.

Table 2. Defense mechanism of fungal endophytes against pathogens.

Fungal Endophyte Mode of Defense Actions against Pathogens References
Endophytic curbing of Fusarium verticillioides and
F. proliferatum, which cause stalk rot disease in maize, by producing
Trichoderma viride and T. harzianum antifungal acetonic extracts of acetic acid and palmitic acid, and [34]

showing mycelial growth. Mycoparasitism mode of antagonistic
activities is only observed in T. viride.

Trichoderma harzianum

Endophyte produces antifungal metabolites and controls

! . . o 30
Ralstonia solanacearum, which causes bacterial wilt in tomato. [30]

Endophyte exhibits a mycoparasite mode of antagonistic activity

Simplicillium lanosoniveum against Phakopsora pachyrhizi, which causes [37]

rust in soybean.

Arbuscular mycorrhizal fungi (AMF)

Endophytes combat Phoma medicaginis, which causes alfalfa leaf

spots in alfalfa, by inducing defense activity, including jasmonic

acid (JA), salicylic acid (SA), peroxidase (POD), and polyphenol
oxidase (PPO).

[38]

Endophyte exhibits a drastic reduction in proliferation of the

Trichoderma harzianum LTR-2 causative agent Plasmodiaphora brassicae, which causes clubroot [39]

in cabbage.

Aureobasidium strains A. pullulans,
A. subglaciale and A. melanogenum

Endophytes defend Botrytis cinerea, which causes grey mold in
tomato and grapes via 3-methyl-1-butanol volatile organic [40]
compound (VOC).

Trichoderma asperellum T1 and
Trichoderma spirale T76-1

Endophytes control Corynespora cassiicola and Curvularia aeria which
cause leaf spot disease in lettuce by producing extracellular [35]
enzymes such as chitinase, POD, [3-1,3-glucanase, and PPO.

Endophyte shows an antagonistic effect by producing antibiosis

Rhizobium Vitis ARK-1 against virulence genes virA, virD3, and virG of Rhizobium Vitis (Ti), [41]

which causes crown gall in grapevine.
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Table 2. Cont.

Fungal Endophyte

Mode of Defense Actions against Pathogens

References

Trichoderma asperellum PQ34

Endophyte produces chitinase enzymes that significantly reduce the
prevalence of Sclerotium rolfsii and Colletotrichum sp., which causes
anthracnose in peanut.

[42]

Trichoderma virens FY06

Rhinomilisin B (41), divirensol H (42), and trivirensol A (43)
produced by endophytes exhibit potent antifungal activity against
Colletotrichum gloeosporioides, which causes anthracnose in lychee.

[43]

Table 3. Defense mechanism of bacterial endophytes against pathogens.

Bacterial Endophyte

Mode of Defense Actions against Pathogens

References

Bacillus subtilis XZ18-3

Endophyte shows antagonistic antifungal activity
by accumulating reactive oxygen species (ROS) in Rhizoctonia cerealis,
which causes rot and blight in wheat.

[44]

Bacillus thuringiensis SY33.3

Endophyte shows an antagonistic effect by producing an extracellular

chitinase enzyme against causative agents such as Fusarium oxysporum

f. sp. niveum, Verticillium dahlia, and Aspergillus niger, which causes wilt
and black mold in grapes, apricots, onions, and peanuts.

(8]

Streptomyces roseoverticillatus 63 (Sr-63)

Endophyte shows an antagonistic effect by producing carbazomycin B
metabolite against the pathogen Xanthomonas oryzae pv. oryzae, which
causes bacterial leaf blight in rice. It inhibits the pathogen metabolic activity
by decreasing the malate dehydrogenase activity and suppressing the
pathogen protein expression.

[45]

Bacillus velezensis Bs006

Endophyte shows antagonistic activity by producing antimicrobial
cyclic lipopeptides such as turins, surfactants, and fengycins and
suppresses Fusarium oxysporum f. sp. Physalis, which
causes Fusarium wilt in goldenberry.

[46]

Bacillus circulans GNO3

Endophyte isolated from Brassica Chinensis has unrivalled efficacy in
plant growth promotion and disease resistance by a significant hoard of
defense and growth-related hormones (SA, JA, gibberellic acid,
brassinosteroid, and indole-3-acetic acid (IAA)). The in vivo model
shows that endophytes protect cotton seedlings against the Verticillium
dahliae strain V991, whichcauses Verticillium wilt.

[47]

Chromobacterium vaccinii; C. vaccinii
MWU328, MWU300, and MWU205

Endophytic strains have a broad spectrum of antifungal VOC activity
that mitigates the growth of the Phoma sp. and Coleophoma sp., which
cause fruit rot in cranberry.

[48]

Bacillus sp. strains G4L1

Endophyte actively resists Ralstonia solanacearum, which causes bacterial wilt
in tomato, via upregulation of the lipoxygenase gene in the stem,
expression of the PR-1 gene and Glutelin genes in roots, and protection of the
plant by induction of JA, SA, and the ethylene-dependent defense signaling
pathway.

[49]

Bacillus velezensis strain J.K.

Endophyte isolated from the rice hybrid variety Oryza sativa L.,
Shenliangyou 5814 produces secondary metabolites that show a
significant antagonistic effect against the pathogen Magnaporthe oryzae,
which causes rice blast in rice.

[50]

Pantoea dispersa (RO-18, RO-20, RO-21,
and SO-13)

Endophytes strongly inhibit mycelium growth and spore germination
and modify the morphology of Ceratocytis Fimbriata hyphae via antifungal
effects and curb black rot in sweet potato.

[51]
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Table 3. Cont.

Bacterial Endophyte

Mode of Defense Actions against Pathogens References

Endophyte shows an antagonistic effect by producing the antifungal
component n-hexadecanoic acid against the growth of Fusarium

Streptomycetes sp. strain FJAT-31547 oxysporum and Ralstonia solanacearum, which causes Fusarium wilt and [36]
bacterial wilt in tomato, respectively.
Endophyte isolated from Brassica napus produces antifungal the metabolite
Aspergillus capensis CanS-34A rosellichalasin (3), which inhibits phytopathogens such as Botrytis cinerea, [52]

Monilinia fructicola, Sclerotinia sclerotiorum, and S. trifoliorum, which cause
grey mold, rot and canker, and rot in fruits and vegetables, respectively.

Streptomyces angustmyceticus

Endophyte produces (3-1, 3-glucanase antifungal metabolites and
NR8-2 volatile compounds to suppress Curvularia lunata and Colletotrichum sp., [53]
which cause leaf spots in Brassica rapa subsp. Pekinensis.

Endophyte produces antifungal metabolites oligomycin A and its
derivatives, which show an antagonism effect by inhibiting the germination

Streptomyces AMA49 of conidia and formation of appressorium of the pathogen Pyricularia — [54]
oryzae, which causes rice blast in rice.
Pseudomonas aeruginosa, Burkholderia In vitro and in vivo studies revealed that these endophytes have a significate
gladioli, Burkholderia rinojensis, and antifungal antagonistic effect against the seed colonization pathogen [55]

Burkholderia arboris

Colletotrichum truncatum, which causes anthracnose in pepper.

Antagonism is the component of a microbial population that suppresses the growth
of other microbial communities [31,56]. Hence, microbial community that experience an
inhibitory effect can survive. This chemical inhibition is generally known as antibiosis.
William Roberts was the first to coin the term antagonism by experimenting with the
antagonistic effect between Penicillium glaucum and other types of bacteria [31,57]. Hyper-
parasitism and antibiosis are the direct antagonist effects of biocontrol that hinder pathogen
infections in plants. Antagonistic endophytes are effective BCAs and have a significant role
in plant disease management.

3.1. Hydrolytic Enzymes

Enzymes are proteins that chemically aid animals and plants to biocatalyze the sub-
strate into a product. This also enhances the plant defense mechanisms to constrain or
inhibit biotic stress [42,58,59]. In 1877, Wilhelm Friedrich Kiithne was the first to propound
the name enzyme, also known as biocatalysts [58]. The microbial enzyme is vital in upgrad-
ing plant nutrients, decomposing organic matter, and combating biotic stress. Enzymes
have remarkable biotechnological benefits in various fields such as industrial, agricultural,
pharmaceutical, and biomedical therapy [17]. Hydrolytic enzymes have an antagonistic
property that can inhibit or resist pathogens through the hyper-parasite mechanism and
thus have an incredible biocontrol role in crop fertility.

The bacterial cell wall is protected by rigid peptidoglycan or murein, which is lysed
by endophytes that produce hydrolytic enzymes such as peptidase, amylase, xylanase, and
carboxylase [59]. The fungal cell wall constitutes glycoprotein as an exterior layer, and
chitin and B-glucans or a-glucans as an interior layer. Chitin, a chief component of the
fungal cell wall, adds rigidity and a skeletal framework to thin cells. o-glucan or -glucan
provides structural rigidity and protects the fungus. Endophytic hydrolytic enzymes can
degrade the cell wall of pathogenic fungi and thus protect plants during infection [38,42,60].
For example, chitin synthases (CHSs) trigger the innate immune responses in host plants
against fungal pathogen. Since plants are devoid of chitin, endophytes” CHS enzyme forms
an attractive antifungal BCA.
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Figure 1. Endophytic biocontrol mode of defense mechanisms against pathogens. Stage 1: Bacteria

and fungi invade the plant through a wound or stomatal opening. Stage 2: Both bacteria and fungi

degrade the plant cell wall with the aid of enzymes, secondary metabolites, or virulent factors.

Bacteria proliferate through the intercellular space, whereas fungi invade the plant by a biotrophic or

necrotrophic mechanism using appressorium (A), germ tube (G.T.), and spore and proliferate in the

cells of the plant. Endophytes provide defense against pathogens through various modes of action,
such as (a) hydrolytic enzyme; (b) mycoparasitism; (c) siderophore; and (d) SAR and ISR modes of
action. Note: ISR, induced systemic resistance; JA, jasmonic acid; MAMPs, microbe-associated molec-
ular patterns; NPR1, non-expressor of pathogenesis-related genes 1; PAMPs, pathogen-associated

molecular patterns; PRRs, pattern recognition receptors; PTI, pathogen-triggered immunity; SA,
salicylic acid; SAR, systemic acquired resistance.
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For example, Trichoderma species degrades the pathogenic fungal cell wall by pro-
ducing enzymes such as 3-1,3-glucanase, chitinase, N-acetylglucosaminidase, and pro-
tease [42] while Pantoea and Curtobacterium produce enzymes such as protease and en-
doglucanase [61]. On the other hand, the pistachio causative agent Paecilomyces formosus
is suppressed by Streptomyces misionensis strains (BH4-1 and BH4-3) through hydrolytic
enzymes and metabolites [62]. Moreover, Bacillus halotolerans FZV 34 and B. subtilis FZV-1
can produce metabolites, siderophores, and enzymes. Thus, these endophytes suppress the
causative agents that cause root rot infection in pea plants (Pisum sativum L.). They also
produce antibiotics, namely fengycin and surfactin [63].

However, there is a growing concern about applying live biocontrol microbes in
biotechnological applications due to the efficient combatting of specific diseases rather
than others. For example, rhizobacteria can only control soilborne diseases but cannot
inhibit foliar diseases. Conversely, enzyme-based biofungicides impede pathogens by
implying cell-wall-softening enzymes or toxins [58]. Sterilized chitinase isolated from
Serratia or Bacillus sp. showed substantial alleviation in the intensity of citrus fruit rust, rot,
and groundnut late leaf spot [64]. Unrivalled utilization of CHS enzymes is procured in
biotechnology applications. Hence, microbial-derived enzyme investigation may sustain
and reinforce global crop fertility.

3.2. Mycoparasitism

The fungi that exhibit parasitic effects on other fungi are mycoparasites [65]. Mea-
gre research has been conducted on biocontrol mechanisms, mainly on Gliocladium and
Trichoderma species [56,66]. Mycoparasite coils around the hyphae or grows adjacent to
the virulent fungi and produces the hydrolytic enzyme to degrade the cell wall of the
virulent fungi. Mycoparasite interacts with pathogens either as necrotrophs or biotrophs
by producing hydrolytic enzymes, antibiotics, or secondary metabolites for antagonistic
activity and procuring nutrition from the virulent fungi through a biotrophic interface [65].
For example, Trichoderma spp. defend against pathogens via mycoparasitism. In particular,
utilization of this genus effectively controls the rhizosphere and phyllosphere phytoph-
thora [34]. Trichoderma harzianum and T. hamatum show a higher antagonism effect against
Phytophthora capsica, which influences root rot disease in Capsicum pubescens. It was ob-
served that compared to T. hamatum, T. harzianum shows a strong mycoparasite effect [56].
Cheong et al. [66] reported that Diaporthe phaseolorum (WAAO02 and MIF01) and Trichoderma
asperellum T2 reveal better antagonistic activities against Ganoderma boninense, which causes
basal stem rot in oil palms. They also pointed out that T2 exhibits mycoparasitic activity
while Diaporthe phaseolorum (WAA02 and MIF01) shows niche competition.

3.3. Niche Competition

Nutrients are the primary source that aids spore germination and regulates the growth
of pathogens or endophytes in the host [67]. Biotrophic and necrotrophic pathogens procure
specific nutrients from the defected living or dead organisms in the environment [9,68,69].
The presence of exuding nutrients from the wounds, stomatal openings, senescent floral
tissues, and dead host tissues of the plants are some of the niche points for the microbes to
invade the host [67]. Endophytes occupy such niches and compete with the pathogen by
acquiring the essential nutrients and space in the plant, thus preventing the infection of
the host [68]. This antagonistic action does not kill the pathogens; instead, it mitigates the
pathogenic microbiomes.

Root exudates attract endophytes during stress tolerance. For instance, sugar beetroots
combat pathogens by provoking Flavobacterium and Chitinophaga into the endo-sphere [69].
Likewise, tomato enriches Flavobacterium spp. to suppress pathogens [70]. Leguminous
plants exude flavonoids during nitrogen starvation to attract N-fixing bacteria [71]. Phyl-
losphere fungi inhibit rust-induced Phytophthora infestans in potatoes through the thig-
motropism mechanism, which hinders the availability of stomata for rust spore germina-
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tion [60]. Landrace maize is enriched with diazotrophic bacteria that facilitate nitrogen
fixation [72].

3.4. Siderophore Productions

Iron (Fe) is a trace element with redox activities and exhibits a cofactor behavior for
many enzymes [73]. Despite being a micronutrient, Fe has essential bioactivities in the
growth of living organisms such as enzyme catalyst, electron transfer, DNA and RNA
synthesis, and oxygen metabolism [73]. It is insoluble and exists in a ferric hydroxide (Fe
(OH)3) form. Siderophores are small, high-affinity iron-chelating molecules generated by
microorganisms and plants growing in the iron-deficient region. Based on their functional
groups, siderophores are categorized into three families, namely, catecholate, hydroxam-
ates, and carboxylates [74]. Siderophores’ function is to accumulate Fe in the cells and
inhibit pathogenic organisms. It has an unrivalled affinity with ferric hydroxide and helps
organisms to scavenge this element from its surroundings and make it available to the
plant cells in a soluble Fe form such as Fe (OH);) [63]. Moreover, it promotes plant growth
and thus is involved in various bio-control, bioremediation, chelation agent, and biosensor
processes [73].

Siderophores produced by plant growth-promoting bacteria (Pseudomonas and Bacillus
spp-) play a vital role in niche competition by deploying Fe in pathogens and thus miti-
gating the upshot of pathogens in the plants [63]. Saravanakumar et al. [75] investigated
the yeast Metschnikowia pulcherrima, which causes the transformation of Fe molecules and
pulcherriminic acid into pulcherrimin (red stain), causing an Fe deficiency that retards the
growth of pathogens such as Alternaria alternata, Botrytis cinerea, and Penicillium expansum
in plants. The in vivo studies of Khan et al. [76] reported that Allium tuberosum and endo-
phyte Acremonium sp. Ld-03 promotes plant growth by producing siderophore, IAA, and
phosphate and protects plants from Fusarium fujikuroi and F. oxysporum. The co-cultivation
of Streptomyces ciscaucasicus GS2 and Cylindrocarpon olidum triggers a siderophore-mediated
defense mechanism and hence amplifies the production of ferrioxamines, which inhibits
Cylindrocarpon destructans, Phytophthora cactorum, Pythium spp., and Rhizoctonia solani AG-5,
which cause diseases in apple trees [77].

3.5. Secondary Metabolites Productions

Secondary metabolites are bioactive compounds that perform a significant role in
defense signaling, ecological interactions, and competition [78]. The establishment of micro-
bial interaction involves the synthesis of secondary metabolites during metabolic exchange,
which shows a complex regulatory response. These interactions can be antagonistic, mutu-
alistic, competitive, or parasitic. The latest imaging mass spectrometry (IMS) technology
has been used to study mold metabolites and their various functions during microbial
interactions [79]. The bioactive secondary metabolites of endophytes have a powerful
establishment in the pharmaceutical and agrochemical fields. Bioactive metabolites such
as alkaloids, steroids, tannins, terpenoids, quinones, saponins, phenols, and flavonoids
produced by endophytes have a prime role in protecting the host from biotic and abiotic
stresses [80]. Secondary metabolites have antibacterial and antifungal properties, which
control the growth of phytopathogens. Plants can produce secondary metabolites either
independently or in association with other endophytes to cope with stress and defense
responses during biotic stress [79]. Thus, endophytic secondary metabolites are used as
a biocontrol agent to protect plants and improve crop qualities. Plants produce bioac-
tive compounds with insufficient and heterogeneous quality, whereas microbes produce
metabolites that are uniform, high quality, and have maximum efficacy regarding their
biocontrol potential [80].

Cytochalasin alkaloids are fungal metabolic products with antifungal properties. Hith-
erto, 300 analogues of cytochalasin have been isolated from Aspergillus, Chaetomium, Penicil-
lium, Phomopsis, Xylaria, and so on [81]. Xylaria sp. isolated from the leaves of the guarana
Paullinia cupana plant produces cytochalasin D (1) and piliformic acid (125) metabolites.
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These metabolites show antifungal activity against Colletotrichum gloeosporioides, which
causes anthracnose disease in various plants such as citrus, papaya, avocado, eggplant,
sweet pepper, and tomato [81]. The fusaric acid derivative (3R,6R)-3-benzyl-6-isopropyl-
4-methyl morpholine-2,5-dione (25) obtained from endophyte Alternaria atrans MP-7 of
Psidium guajava exhibited potent antifungal activities against Alternaria solani, Colletotrichum
gloeosporioides, and Phyricularia grisea [82]. Acremonium sp. Ld-03 shows an antifungal ef-
fect against pathogens, namely Botrytis cinerea, Botryosphaeria dothidea, Fusarium fujikuroi,
and F. oxysporum, that infect Allium tuberosum. It prevents infections by revealing sec-
ondary metabolites such as peptides, xanthurenic acid, cyclic dipeptides, and valyl aspartic
acid [76]. Pseudomonas strains (P. donghuensis 22G5 and P. protegens XY2F4) secrete the
tropolone compound 7-hydroxytropolone, which has potential resistance against Verticil-
lium dahlia, which causes Verticillium wilt in cotton plants [83]. Terpenoids, albaflavenone,
-unsaturated ketone, geosmin, tricyclic «, and 2-methylisoborneol are some volatile
odoriferous metabolites distributed in Streptomyces that prevent plant infections [84].

3.6. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR)

Plants adapt either local or systemic defense-induced mechanisms to control pathogens,
such as systemic acquired resistance (SAR) and induced systemic resistance (ISR) [47,49].
Plants recognize stimuli from causative or non-causative microbes and pests, which ul-
timately triggers the resistance and priming actions against infective agents. Hence, the
plants perceive the pathogen-, microbe- or damage-associated molecular patterns (PAMPs,
MAMPs, or DAMPs) through pattern recognition receptors (PRRs). These PRRs trigger a
cascade of signals such as pathogen-, microbe-, or effector-triggered immunity (PTI, MTI,
or ETI) that boost plant defense against pathogens [33]. Induced defense mechanisms are
collateral, which either yields phytoalexins, phenolic compounds, nitrogen oxide, ROS,
relocation of nutrients, pathogenesis-related (PR) proteins, antimicrobial metabolites, or
build-up of physical barriers such as alteration of cell walls, cuticles, and stomata closure
regulation [33].

Systemic acquired resistance (SAR) is a plant resistance response aroused by pathogens
and pre-existing pathogen infections [49]. SAR induces local resistance by triggering hyper-
sensitive reaction (HR) via signaling molecules such as salicylic acid (SA) and associated
PR proteins to the infected parts and neighboring parts of the plant, thus defending against
biotrophic pathogens. SAR acquires long-term protection against a diversity of microorgan-
isms. In 1960, Ross reported that tobacco plants could successfully combat the secondary
infections provoked by the tobacco mosaic virus (TMV) in the distal tissue. He termed the
proliferation of resistance as SAR [85].

For example, Bacillus subtilis induces disease resistance via the SA-dependent signaling
pathway, thus controlling Blumeria graminis f. sp. Tritici, which causes powdery mildew
in wheat [86]. Pretreatment of pea (Pisum sativum) seeds with Trichoderma asperellum
(T42) and Pseudomonas fluorescens (OKC), which induces the defense response by elevating
phytohormone, SA, and PR-1 protein and hinders Erysiphe pisi, protects the plant from
powdery mildew disease [87]. The pathogenesis-related gene 1 (PR1) is a vital regulator
of non-expressor of pathogenesis-related genes 1 (NPR1 and NPR3/4), which ultimately
provokes an antagonistic effect via SAR through priming and reveals resistance against
secondary infections [88].

ISR is mediated by beneficial microbes living in the rhizosphere [47]. It triggers
signaling molecules such as JA and associated PR proteins to the infected parts and leads to
plant defense against necrotrophic pathogens. The ISR mechanism does not execute direct
killing or inhibit the pathogen. Instead, it augments the physical or chemical barrier of
the plants [89]. The ISR signal is unspecified due to the recruitment of varied components
by diverse microbes [90]. Generally, JA and its derivative JA-isoleucine (JA-Ile) hormone
regulate signaling pathways via abscisic acid (ABA) or ethylene (necrotrophic pathogens
defender) [89]. ISR and SAR often show an antagonistic effect, which regulates the cellular-
level signaling. Upstream and downstream signaling occurs between SA and JA during
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the antagonistic effect on necro- or biotrophic pathogens and vice versa [89]. During iron
depletion, several signaling molecules, hormones (nitric oxide, auxin, and ethylene), and
the transcription factor MYB72 emerge as critical regulators that process and initiate the
ISR defense mechanism. Thus, this process enhances the solubility of iron and remodels
rhizosphere microbes in the plant. The union of ISR and the iron deficiency response opens
the way for the use of ISR-eliciting microbes as iron biofertilizers [91].

Burkholderia species (BE17 and BE24) hinder spore germination and mycelium growth
of Botrytis cinerea via the ISR mode of defense and thus protects grapevine from grey
mold disease [92]. Streptomyces diastato chromogens KX852460 resist Rhizoctonia solani
AG-3, which causes tobacco leaf spots via ISR-synthesizing enzymes such as glutathione
peroxidase and peroxidase [93]. Bacillus subtilis PTA-271 and Pseudomonas fluorescens PTA-
CT2 act against Arabidopsis plant pathogens, namely, Botrytis cinerea, which causes grey
mold, and Pseudomonas syringae Pst DC3000, which causes canker, by inducing ISR and
their antagonistic effect is revealed by an increase in the levels of ABA and JA in the leaves
of the infected plant [94]. Trichoderma spp. AA2 and Pseudomonas fluorescens PFS are the
most potent inhibitors of Ralstonia spp., which causes bacterial wilt in tomatoes by inducing
ISR in the plant [95].

Priming enhances plants to sensitize environmental cues without invoking the in-
duction of specific defense genes and accelerates strong responses to biotic and abiotic
stresses [96]. Priming is activated via a broad spectrum of mechanisms such as infections
with causative agents, colonization of beneficial root microbes, administration of synthetic
or natural chemicals, alteration of primary or secondary metabolites, attraction of phenolic
compounds, and perception of volatile organic compounds [96]. The resistive reaction of
volatile organic compounds (VOCs) increases the emission of aromatic compounds, eleva-
tion of oxidative burst, union of hydroxycinnamic acid esters and “lignin-like” polymers
inside the cell wall, and multiplied induction of defense genes [96].

Hu et al. [97] discovered that due to the induction of prime signaling, benzoxazinoids,
a defensive secondary metabolite, are released from the root of wheat and maize, which
alter the root microbes of plants. Thus, they not only increase jasmonate signaling and
plant defense mechanism but also suppress the performance of herbivores in the next plant
generation.

Schulz-Bohm et al. [98] propounded that exposure of Carex arenaria root to the fungal
pathogen Fusarium culmorum invokes VOCs and attracts the endophytes in the root and
suppresses the pathogen. Burkholderia cenocepacia ETR-B22 of Sophora tonkinensis produces
VOCs such as nonanoic acid, benzyl propionate, benzyl acetate, dimethyl trisulfide, methyl
anthranilate, methyl salicylate, methyl benzoate, 3,5-di-tert-butyl phenol, and allyl benzyl
ether. The bacteria show a wide array of antifungal activities against 12 fungal pathogens,
namely Alternaria alternata, Aspergillus niger, Bipolaris sorokiniana, Botrytis cinerea, Fusarium
oxysporum, Fusarium solani, Fusarium fujikuroi, Helminthosporium torulosum, Mycosphaerella
fijensis, Magnaporthe oryzae Phyllosticta zingiber, and Rhizoctonia solani, which cause several
infections in plants [99].

4. Conclusions

Biotic stress influences pathogens and affects the quality of plant growth and pro-
ductivity. It alters the physiological and biological properties of crops and causes major
constraint on crop yield. Fungal and bacterial stresses affect plants and cause diseases
that lead to global crop calamity. Beneficial microbes are a capitative biocontrol substi-
tute for pesticides for plant disease management. Endophytes play an active biocontrol
role in suppressing pathogens and enhancing crop yields. They protect plants by pro-
ducing hydrolytic enzymes, secondary antifungal metabolites, and siderophores and con-
siderably improve the antioxidant system. They also induce plant defense via SAR and
ISR mechanisms.

This critical review highlights that beneficial endophytic microbes could sustain crop
production and resolve the issues regarding crop yield caused by bacterial and fungal
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pathogens. Based on the current scenario, future research is necessary to identify potential
BCAs, which can minimize the utility of synthetic pesticides, increase crop yield, and retain
beneficial soil microbes. In order to enhance crop production, meet the demands of a
growing global population, and reduce environmental pollution caused by the applications
of fungicides and pesticides, it is necessary to significantly increase the production of
endophytic BCAs. It is hoped that this review article will provide sufficient information
for microbiology researchers on the benefits of using biocontrol endophytes in enhancing
crop production. It will also motivate biotechnologists to move forward to commercially
produce more BCAs.
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