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Abstract 

Background:  Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and 
treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, tests in rodents 
are still poorly reproducible and often unsuitable for unraveling the complex behavior after injury.

Results:  Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia based on the new 
deep learning-based software (DeepLabCut, DLC) that only requires basic behavioral equipment. We demonstrate a 
high precision 3D tracking of 10 body parts (including all relevant joints and reference landmarks) in several mouse 
strains. Building on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils bio-
logically relevant differences in locomotor profiles after a stroke over a time course of 3 weeks. We further refine the 
widely used ladder rung test using deep learning and compare its performance to human annotators. The generated 
DLC-assisted tests were then benchmarked to five widely used conventional behavioral set-ups (neurological scoring, 
rotarod, ladder rung walk, cylinder test, and single-pellet grasping) regarding sensitivity, accuracy, time use, and costs.

Conclusions:  We conclude that deep learning-based motion tracking with comprehensive post-analysis provides 
accurate and sensitive data to describe the complex recovery of rodents following a stroke. The experimental set-up 
and analysis can also benefit a range of other neurological injuries that affect locomotion.

Keywords:  DeepLabCut, Deep learning, Automated behavior analysis, Photothrombotic stroke, Brain injury, 
Locomotor profile, Behavioral tests, Ischemic stroke, Mouse
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Background
Stroke is a leading cause of disability and death world-
wide. Over 13.7 million strokes occur each year, and 
one in four people over 25 years of age will experience 
a stroke in their lifetime [1]. The presence of life-saving 
medicines allows timely intervention, which has signifi-
cantly decreased mortality following a stroke [2, 3]. How-
ever, acute treatments are not applicable in most patients, 
mainly because of the narrow therapeutic time window, 

leaving five million patients permanently disabled every 
year [4, 5]. To promote recovery outside the confines of 
conventional therapies, a variety of experimental treat-
ments in rodents have emerged targeting neuropro-
tection [6], therapeutic angiogenesis [7–10], axonal 
sprouting [11], or cell-based therapies [12–14]. In most 
of these studies, behavioral evaluation is the primary out-
come and ultimately provides evidence that functional 
impairment can be corrected by the experimental treat-
ment. However, behavioral tests in rodents have proved 
difficult: (1) test results are often poorly reproducible and 
(2) the task is limited to a specific sensorimotor outcome, 
thus ignoring most of the other biologically relevant 
parameters of functional recovery after stroke [15].

Advances in high-speed video equipment have enabled 
scientists to record massive datasets of animal behavior 
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in exquisite detail, and commercial software solutions 
including Ethovision (Noldus), AnyMaze (Stoelting Co.), 
and Top Scan (CleverSys Inc.) have assisted with vision-
based tracking and analysis. However, these technologies 
offer little methodological transparency, are not afford-
able for many laboratories [16], and are often designed to 
study pre-specified modules within one particular para-
digm (e.g., the Morris water maze or the open field test) 
rather than discover new behavioral patterns. Although 
the concept of quantitative behavioral analysis has 
already been implemented in some cases before [17], the 
introduction of machine learning algorithms has recently 
reached various sectors of life and provided a new set of 
tools ideally suited for behavior analysis [18–27]. These 
algorithms, referred to as deep learning models, offer 
user-defined feature tracking with greater flexibility, as 
well as reduced software and hardware acquisition costs 
[28]. One of the latest contributions to this toolbox is the 
open-source software DeepLabCut (DLC) [29], which 
uses convolutional neural networks to automatically cap-
ture movements and postures directly from images and 
without requiring active or passive markers. DLC is a 
modified version of a state-of-the-art algorithm for track-
ing human movement, DeeperCut [30], and can be used 
in a broad range of study systems with near human-level 
accuracy [31, 32]. Typically, such algorithms are seen as 
“data-hungry”; algorithms must be trained first by show-
ing thousands of hand-labeled frames, an effort that 
requires an enormous amount of time. DLC, however, is 
pre-trained on ImageNet, a large database of images used 
for image recognition research [33]. With that pretrain-
ing in place, DLC only needs a few training examples 
(typically 50 - 200 frames) to achieve human-level accu-
racy, making it a highly data-efficient software [29, 34]. 
DLC has already been implemented in different research 
fields including neuroscience for general pose estimation 
and injury prediction [32, 35–38].

In this study, we developed a modular experimental set-
up to identify biologically relevant parameters to reveal 
gait abnormalities and motor deficits in rodents after a 
focal ischemic stroke. We trained the neural networks to 
recognize mice of different fur colors from three perspec-
tives (left, bottom, and right) and to label 10 body parts 
with high accuracy. A detailed comprehensive post hoc 
script allows analysis of a wide range of anatomical fea-
tures within basic locomotor functions, vertical and hori-
zontal limb movements, and coordinative features using 
the freeware software environment R. We detect distinct 
changes in the overall mouse gait affecting, e.g., step 
synchronization, limb trajectories, and joint angles after 
ischemia. These changes are distinct at acute and chronic 
time points and primarily (but not exclusively) affect the 
body parts contralateral to the lesion. We further refine 

the conventional ladder rung tests with DLC (e.g., for 
detection of foot placements) and compare the deep 
learning-assisted analysis with widely used behavioral 
tests for stroke recovery that use human annotations, the 
gold standard. We detect similar levels of accuracy, less 
variation, and a considerable reduction in time using the 
DLC-based approach. The findings are valuable to the 
stroke field to develop more reliable behavioral readouts 
and can be applied to other neurological disorders in 
rodents involving gait abnormalities.

Results
Generation of a comprehensive locomotor profile using 
deep learning‑based tracking
Our aim was to develop a sensitive and reliable profil-
ing of functional motor recovery in mice after stroke 
using the open-access deep learning software, DLC. 
Unraveling the complexity of changes in locomotion is 
best approached via generation of gait parameters [39]. 
Therefore, we customized a free walking runway with 
two mirrors that allowed 3D recording of the mice from 
the lateral/side and down perspectives. The runway can 
be exchanged with an irregular ladder rung to identify 
fine-motor impairments by paw placement (Fig. 1A). The 
dimensions of the set-up were adapted from the routinely 
used MotoRater (TSE Systems) [40]. After adaptation to 
the set-up, non-injured mice were recorded from below 
with a conventional GoPro Hero 8 camera during the 
behavioral tasks. The DLC networks were trained based 
on ResNet-50 by manually labeling 120 frames from ran-
domly selected videos of different mice. Individual body 
parts were selected according to previous guidelines to 
enable a comprehensive analysis of coordination, move-
ment, and relative positioning of the mouse joints from 
all three perspectives and included tail base, iliac crest, 
hip, back ankles, back toe tip, shoulder, wrist, elbow, 
front toe tip, and head (Fig. 1B, C) [41].

Next, we applied the neural network model to detect 
and extract the relevant body coordinates in each frame 
of all recorded videos to generate a 3D walking profile 
(Additional file 1: Fig. S1A, B). A training set of six vid-
eos proved sufficient to achieve a cross-entropy loss 
of < 0.1% indicating a marginal predicted divergence 
from the actual label after 500,000 iterations (Fig. 2A). 
We achieved an average tracking performance, esti-
mated from the root-mean-square error (RMSE), on 
the test set that only deviated 5.5 pixels (≈ 0.14 cm) 
in the runway and 4.7 pixels (≈ 0.12 cm) in the rung 
walk from the human-annotated ground truth. The 
RMSE differed between individually tracked body 
parts ranging between 0.05 and 0.3 cm in the test set 
(Fig. 2B, Additional file 1: Fig. S2A, B). A more detailed 
analysis revealed that >99% of all predicted body part 



Page 3 of 19Weber et al. BMC Biology          (2022) 20:232 	

labels fell within the confidence threshold of 17 pixels 
(≈ 0.45 cm) to the ground truth (Fig.  2C). The ratio 
of confident labels (labels with a likelihood to appear 
within the confidence threshold to the ground truth of 
>95%) to total labels ranged for individual body parts 
from 96 to 100% for the runway and between 89 and 
100% for the rung walk (Fig. 2C, D). In both set-ups, we 
observed the highest variability for the front and back 
toe tip labels. For further analysis, all data points that 
did not pass the likelihood of detection threshold of 
95% were excluded. The remaining data generated a full 
3D profile of each animal during the behavioral task 
(Additional file 1: Fig. S1A, B).

Next, we used the same trained networks to reliably 
label body parts of (a) the same mice 3 days after stroke, 
(b) different mice with the same genetic background 
(C57BL/6J, black fur), and (c) mice with a different 
genetic background (NOD, white fur). We achieved simi-
lar confidence in labeling for mice after stroke (95–100%) 
and mice with the same genotype (97–100%) after minor 
refinement of the network (see the “Methods” section, 
Additional file 1: Fig. S2C, D). However, we were unable 
to successfully refine the pre-existing network to track 
mice of a different strain with white fur (0–41%). We then 
created an entirely new training set for these mice with 
the same training parameters and reached similar levels 

Fig. 1  Experimental workflow to perform deep learning-based gait analysis. A Schematic view of the dimensions of experimental set-up. 
B Workflow to identify and label anatomical landmarks of mice for pose estimation. C Overview of labeled body parts from side and down 
perspective

(See figure on next page.)
Fig. 2  DeepLabCut enables markerless 3D tracking of mouse body parts. A Training efficiency of neural networks. B Root mean square error (RMSE) 
of individual mouse body parts during runway (left) and ladder rung test (right). C Likelihood of a confident labeling for individual body parts from 
down view (left) side view (right) in the runway and D during the ladder rung walk. Each dot represents an anatomical landmark of individual image 
frames in a video. The red dotted line represents the confidence threshold of 95% likelihood for confident labeling
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Fig. 2  (See legend on previous page.)
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of confident labels (94–100%) to the original training set 
(Additional file 1: Fig. S2E, F).

Overall, we demonstrated successful labeling and gen-
eration of 3D locomotor coordinates in non-injured and 
injured mice of different genetic backgrounds and fur 
colors for both the runway and ladder rung walk using 
deep learning.

Deep learning trained networks detect distinct gait 
abnormalities following stroke
To identify stroke-related gait abnormalities across a 
specific time period, we induced a photothrombotic 
stroke in the right hemisphere of the sensorimotor 
cortex (Fig.  3A, B) [7, 42]. We confirmed success-
ful induction of ischemia with a reduction of cerebral 
blood flow only in the ipsilesional right side (right: 
–72.1 ± 11.5%, p < 0.0001, left: –3.2 ± 8.6%, p = 0.872) 
using laser Doppler imaging 24 h after injury (Fig. 3C). 

Three weeks after injury, mice had histological dam-
age in all cortical layers, which was accompanied by 
a microglial activation and glial scar formation on 
the ipsilesional hemisphere while sparing subcortical 
regions and the contralesional side. The injured tissue 
extended from +2 to –2 mm anterior-posterior related 
to bregma, and the average stroke volume was 1.3 ± 
0.2 mm3 (Fig. 3D, E).

We began the motion tracking analysis by assessing 
the overall gait at baseline and after injury over a 3-week 
period. Individual steps were identified by the movement 
speed of each limb between frames as filmed from below 
(Fig.  4A, B). In uninjured animals, the footfall pattern 
showed a typical gait synchronization [43] of opposing 
front and back paws (Fig.  4C). Normalizing the data to 
a single step cycle revealed that this pattern was severely 
altered acutely after injury as shown by single-animal 
data (Fig.  4D). We noticed that the asynchronization 

Fig. 3  Induction of photothrombotic stroke leads to permanent focal ischemia in the cortex. A Schematic time course of experimental 
interventions. B Schematic representation of stroke procedure. C Laser Doppler imaging (LDI) of three representative baseline and stroked brains 
24 h after injury. D Quantification of stroke area and stroke volume at 21 dpi. Stroke area: Each dot represents the mean of the corresponding 
subgroup (red: stroke, grey: intact). E Representative histological overview of cortical damage (Neurons, cyan), inflammatory infiltration (Iba1+, 
magenta), and scar formation (GFAP+, green) at 21 dpi, scale bar: 100 μm. Data are shown as mean distributions where the white dot represents the 
mean. Boxplots indicate the 25 to 75% quartiles of the data. For boxplots: each dot in the plots represents one animal. Line graphs are plotted as 
mean ± sem. Significance of mean differences between the groups (baseline hemisphere, contralesional hemisphere, and ipsilesional hemisphere) 
was assessed using Tukey’s HSD. Asterisks indicate significance: ∗∗∗P < 0.001. ctx, cortex; cc, corpus callosum; ap, anterior posterior; p.i., post injury; 
ibz, ischemic border zone
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between the paws is acutely increased after injury (p 
< 0.001, 3 dpi (days post-injury); p = 0.029, 7 dpi; p = 
0.031, 14 dpi) but recovered to baseline over 21 days (p = 
0.81, 21 dpi; Fig. 4E). Furthermore, acutely injured mice 

walked slower as the step cycle duration was increased 
compared to intact mice (p = 0.05, 3 dpi, Fig. 4F). While 
the swing duration did not differ at any time point (all p 
> 0.05), stroked mice had a longer stance duration (p = 

Fig. 4  Gait changes in footfall pattern in spontaneous walk after stroke. A Schematic set-up of runway walks from bottom perspective. B 
Movement speed of individual fore- and hindlimbs during spontaneous walk. C Footfall profile of single mouse without injury. D Footfall profiles of 
a normalized locomotor cycle showing the stance and phase start and end of three individual control mice (left) and stroked mice (right). E Ratio 
of asynchronization at baseline, 3, 7, 14, 21 dpi. F Duration of a cycle. G, H Comparison of cycle duration between stance and swing time in a time 
course. I Schematic view on analysis of positioning paws to body centers. J Profile of paw angles relative to body center of an individual animal. K 
Comparison of angles of individual paws to body center in a time course. Data are shown as mean distributions where the white dot represents 
the mean. Boxplots indicate the 25 to 75% quartiles of the data. Each dot in the plots represents one animal and significance of mean differences 
between the groups was assessed using repeated ANOVA with post hoc analysis. Asterisks indicate significance: *P < 0.05, **P < 0.01, ***P < 0.001
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0.04, 3dpi, Fig.  4G, H). These alterations in the footfall 
pattern were associated with changes in the positioning 
of the paws during a step (Fig. 4I, J). The angle amplitude 
of the ipsilesional hindlimb relative to the body center 
increased acutely after injury (p = 0.003, 3dpi) while 
the angle of the front limbs remained unchanged (all p > 
0.05, Fig. 4K).

Overall, the synchronization of the footfall pattern 
was severely altered during the acute phase of stroke but 
returned to a normal pattern in the long-term.

The kinematics of a spontaneous walk were then 
compared by tracking the fore- and hindlimb joints 
from the left- and right-side perspectives (Fig. 5A, B). 
First, we analyzed the average height and total verti-
cal movement of each joint involved in the hindlimb 
(iliac crest, hip, back ankle, and back toe tip) and fore-
limb movement (shoulder, elbow, wrist, and front toe 
tip, Fig.  5C, D). We identified alterations in the total 
vertical movement and average height of the fore- and 
hindlimb joints that was, as expected, more prominent 
on the contralateral left side. Most notably, the total 
vertical movement decreased in the contralateral left 
back and front toe tips, shoulder, and wrist at 3 dpi (all 
p < 0.05) with a partial but incomplete recovery over 
time (Fig.  5E, Additional file  1: Fig. S3). Interestingly, 
we also observed compensatory changes in the verti-
cal movement on the ipsilateral right side most promi-
nent in the back toe tip, back ankle, elbow, and wrist 
(Fig.  5E, Additional file  1: Fig. S3). Next, we checked 
for alterations in the horizontal movement determin-
ing the average step length, as well as protraction, and 
retraction of the individual paws. At 3 dpi both retrac-
tion and protraction length are reduced in stroked 
mice. These changes remained more pronounced in 
the hind limbs during retraction whereas protrac-
tive changes returned to normal throughout the time 
course (Fig.  5F). Like the vertical movement, we also 
observed compensatory changes in protraction in the 
ipsilateral right hindlimb at later time points. Then, 
the joint positions were used to extract the angles of 
the hindlimbs (iliac crest-hip-ankle; hip-ankle-toe tip) 
and forelimbs (shoulder-elbow-wrist; elbow-wrist-toe 

tip). The angular variations were acutely unchanged 
after stroke and showed a similar profile throughout 
the time course (Fig. 5G, H, Additional file 1: Fig. S4).

To understand the individual importance of the >100 
measured parameters (Additional file  2: Table  S1) dur-
ing kinematics analysis, we applied a random forest clas-
sification to the data of all animals based on all extracted 
parameters throughout the entire time course (Fig.  5I). 
The highest Gini impurity-based feature importance 
between the groups was observed for parameters: left 
front and back toe heights as well as protractive and total 
horizontal back toe movements. Since many studies in 
stroke research only focus on either acute or long-term 
deficits, a separate analysis was performed between base-
line and acutely injured mice at 3 dpi and mice with long-
term deficits at 21 dpi (Additional file 1: Fig. S5). In these 
subgroup analyses, we evaluated the performance of the 
random forest model with a confusion matrix. We were 
able to predict the acute injury status with 90% accuracy 
and long-term deficits with 85% accuracy. The over-
lap between the 20 highest Gini impurity-based feature 
importance parameters (top 10% of all measured param-
eters) in acute and chronic time points was 20% further 
confirming the need to consider the entirety of the gait 
to understand the complexity of functional recovery over 
time (Additional file  1: Fig. S5). We then used a princi-
pal component analysis (PCA) to reduce the dimen-
sions of our data and determine the differences between 
the groups (Fig. 5J). We found that data from later time 
points after injury cluster closer to the baseline suggest-
ing that the recovery effects can be ascertained based 
on kinematic parameters. The separation expands when 
comparing only data from 3 dpi and 21 dpi to baseline 
(Additional file  1: Fig. S5). Importantly, these changes 
were not observed in non-stroked control mice through-
out the time course (Additional file 1: Fig. S6).

Next, we considered whether deep networks can also 
be applied to conventional behavioral tests to detect fine 
motor deficits in a ladder rung test (Fig.  6A). Tracking 
the fore- and hindlimbs during the ladder rung record-
ings enabled the identification of stepping errors in the 
side view (Fig.  6B, C). We identified a 106% increase of 

Fig. 5  Kinematic changes in runway walk after stroke. A Schematic overview of analysis from the sides and time course of the experiment. B Stick 
profile of fore and hindlimb movement in individual mouse. C, D Walk profile of hindlimb and forelimb joints in intact and stroked mice; x-axis 
represents relative height and y-axis represents time across multiple steps (grey shades). E Absolute height of selected joints at baseline and 3, 7, 
14, 21 dpi. F Experimental design of runway testing. G Protraction and retraction of joints throughout a time course. H Angular variability between 
front and hindlimb joints. I Random Forest classification of most important parameters. J Principal component analysis of baseline 3, 7, 14, 21 dpi. 
Data are shown as mean distributions where the white dot represents the mean. Boxplots indicate the 25 to 75% quartiles of the data. For boxplots: 
each dot in the plots represents one animal. Line graphs are plotted as mean ± sem. For line graphs: the dots represent the mean of the data. 
Significance of mean differences between the groups was assessed using repeated ANOVA with post hoc analysis. Asterisks indicate significance: 
*P < 0.05, **P < 0.01, ***P < 0.001. i-h-a, iliac crest-hip-ankle; h-a-t, hip-ankle-toe; s-e-w, shoulder-elbow-wrist; e-w-t, elbow-wrist-toe; PC, principal 
component

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  DeepLabCut assisted analysis of horizontal rung test after stroke. A Schematic view of ladder rung test. B Side view of step profile of hips, 
back toes, shoulder, and front toes in individual animals at baseline and 3 dpi. C Photographs of mouse from three perspectives. D Overall success 
and error rate in the contralesional and ipsilesional hemisphere of all paws. E Time course of error rate during ladder rung test in the individual 
paws. F Comparison of error rate scores in selected videos between three human observers and DLC. G Correlation matrix between human 
observers and DLC. H Duration of analysis for ladder rung test for 20× 10s videos. Data are shown as mean distributions where the white dot 
represents the mean. Boxplots indicate the 25 to 75% quartiles of the data. For boxplots: each dot in the plots represents one animal. Line graphs 
are plotted as mean ± sem. For line graphs: the dots represent the mean of the data. Significance of mean differences between the groups was 
assessed using repeated ANOVA with post hoc analysis. Asterisks indicate significance: *P < 0.05, **P < 0.01, ***P < 0.001
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the overall error rate in injured animals compared with 
their intact controls (intact 5.27 ± 8.4%, stroked: 10.9 ± 
12.6%, p < 0.001) at 3 dpi. This increased error rate after 
acute stroke was most pronounced on the contralesional 
side (left front paw: +182%; left back paw: +142%, both p 
< 0.001) but also marginally detectable in the ipsilesional 
site (right front paw: +21%, p = 0.423; right back paw: 
+17%, p < 0.001; Fig. 6D). In a time course of 3 weeks, 
we detected a marked increase of footfall errors in both 
the contralateral left front and back toe (all p < 0.001) 
compared to baseline. Although the error rate returned 
to baseline for the back paw (p = 0.397), it does not fully 
recover for front paw (p = 0.017), as previously observed 
[7] (Fig. 6E).

In a subset of 20 randomly selected videos, we cross-
verified the error rates by a blinded observer and com-
pared the variability between the DLC-approach and 
the manual assessment of the parameters regarding (1) 
variability of the analysis and (2) duration of the analy-
sis. We did not detect a difference in the scoring accu-
racy between the manual assessment and DLC-assisted 
analysis (Fig.  6F). The error rate in individual videos 
highly correlated between human and the machine learn-
ing evaluation (Fig.  6G, Additional file  1: Fig. S7A-F). 
A frame-by-frame analysis revealed that footfall errors 
that were identified by all human raters were recognized 
in the 22/23 (95%) frames by the DLC-assisted analysis 
further confirming the correct classification of the DLC 
model (Additional file  1: Fig. S7G, H). The automated 
analysis is also considerably faster after the initial effort 
has been overcome (Additional file 1: Fig. S8A). We esti-
mate that DLC-assisted analysis is 200 times faster with 
regular use, once the neural networks are established 
(human: 4.18 ± 0.63 min; DLC: 0.02 min; for a 10s video, 
p < 0.0001; Fig. 6F–H, Additional file 1: Fig. S7).

Overall, these results suggest that DLC-assisted analy-
sis of the ladder rung test achieves human-level accu-
racy, while saving time and avoiding variability between 
human observers.

Comparison of deep learning‑based tracking 
to conventional behavioral tests for stroke‑related 
functional recovery
Finally, we benchmarked DLC-tracking performance 
against popular functional tests to detect stroke-related 
functional deficits. We performed a rotarod test with the 
same set of animals and analyzed previously acquired 
data from a broad variety of behavioral tasks routinely 
used in stroke research including neurological scoring, 
cylinder test, the irregular ladder rung walk, and single 
pellet grasping (Fig. 7A, B).

In all behavioral set-ups, we identified initial deficits 
after stroke (rotarod: p = 0.006, all other tests: p < 0.001). 

While the neurological deficit score (21 dpi, p = 0.97) 
and the rotarod (21 dpi, p = 0.99) did not provide much 
sensitivity beyond the acute phase (Fig. 7A, B), the ladder 
rung test, cylinder test, and single pellet grasping were 
suitable to reveal long-term impairments in mouse stroke 
models (21 dpi, all p < 0.001, Fig. 7C–E, Additional file 1: 
Fig. S9A).

These functional tests were then further compared in a 
semi-quantitative spider diagram regarding (1) duration 
to perform the task, (2) objectivity, (3) post hoc analysis, 
(4) requirement of pre-training, and (5) costs (Fig.  7G, 
Additional file 1: Fig. S9B, C). Despite the simple perfor-
mance, the neurological scoring, rotarod, and cylinder 
tests have the drawback of a relatively low sensitivity and 
objectivity. On the other hand, more sensitive tests such 
as the pellet grasping test require intense pre-training of 
the animals, or the manual post-analysis of a ladder rung 
test can be tedious and suffers from variability between 
investigators. Many conventional tests only provide a 
very low number of readouts, which may not capture 
the entire complexity of the acute injury and subsequent 
recovery.

More advanced analysis including kinematic tracking 
offers the advantage of generating a variety of parame-
ters but the high costs for the set-up and the commercial 
software are disadvantageous (Fig 7H). The DLC-assisted 
tracking presented here provides an open-source solu-
tion that is available at negligible costs and can be set up 
easily. The experiment duration is shortened, and animal 
welfare is improved since the test does not require mark-
ing the mouse joints beforehand. Most importantly, using 
our comprehensive post-analysis, the set-up reduces 
analysis time while minimizing observer biases during 
the evaluation.

Discussion
Preclinical stroke research heavily relies on rodent 
behavior when assessing functional recovery or treat-
ment efficacy. Nonetheless, there is an unmet demand 
for comprehensive unbiased tools to capture the complex 
gait alterations after stroke; many conventional methods 
either do not have much sensitivity aside from identify-
ing initial injures or require many resources and a time-
consuming analysis. In this study, we used deep learning 
to refine 3D gait analysis of mice after stroke. We per-
formed markerless labeling of 10 body parts in uninjured 
control mice of different strains and fur color with 99% 
accuracy. This allowed us to describe a set of >100 bio-
logically meaningful parameters for examining, e.g., syn-
chronization, spatial variability, and joint angles during a 
spontaneous walk, and that showed differential impor-
tance for acute and long-term deficits. We refined our 
deep learning analysis for use with the ladder rung test, 
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which achieved outcomes comparable to manual scor-
ing accuracy. We found that our DLC-assisted tracking 
approach, when benchmarked to other conventionally 

used behavior tests in preclinical stroke research, out-
performed those based on measures of sensitivity, time-
demand, and resources.

Fig. 7  Functional assessment of recovery after stroke using conventional behavioral tests. A Neurological score, B rotarod test, C dragging during 
cylinder test, D missteps in ladder rung test, and E drag and drop in single pallet grasping. F Semi-quantitative measure of relevant parameters for 
behavioral tests (time, sensitivity, readouts, objectivity, long-term deficits, post-hoc analysis, pre-training, and costs). G Spider chart of conventional 
behavioral tests. H Spider chart of behavioral tests without and with DLC assistance. Scale: +: high , 0: neutral, −: low. Dara are shown as line graphs 
and are plotted as mean ± sem. Significance of mean differences between the groups was assessed using repeated ANOVA with post hoc analysis. 
Asterisks indicate significance: **P < 0.01, ***P < 0.001
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The use of machine learning approaches has dramati-
cally increased in life sciences and will likely gain impor-
tance in the future. The introduction of DeepLabCut 
considerably facilitated the markerless labeling of mice 
and expanded the scope of kinematic tracking software 
[29, 34]. Although commercial attempts to automate 
behavioral tests eliminated observer bias, the analyzed 
parameters are often pre-defined and cannot be altered. 
Especially for customized set-ups, DLC has been shown 
to reach human-level accuracy while outperforming 
commercial systems (e.g., EthoVision, TSE Multi Con-
ditioning system) at a fraction of the cost [32]. These 
advantages may become more apparent in the future 
since unsupervised machine learning is beginning to 
reveal the true complexity of animal behavior and may 
allow recognition of behavioral sequences not detectable 
by humans. On the other hand, execution and interpreta-
tion of unsupervised tracking are often beyond the reach 
of many basic research labs and require the necessary 
machine learning knowledge [15].

Consequently, deep learning-based quantitative analy-
sis has been successfully performed in various behavio-
ral set-ups often on rodents for data-driven unbiased 
behavior evaluation [22, 24, 25, 27, 32]. Some data-driven 
approaches also used acute brain injuries and neurologi-
cal disorders to reliably predict the extent of injury [38, 
44]. For instance, spinal cord injuries and traumatic brain 
injuries could be reliably quantified over a time course 
of 3 weeks using an automated limb motion analysis 
(ALMA) that was also based on DLC [44]. Other stud-
ies applied DLC to stroked mice and rats to a set of 
behavioral tests including set-ups analyzed here such as 
the horizontal ladder rung test and single pellet grasp-
ing [38]. Although the set-up provides an excellent tool 
for predicting moving deficits in specific stroke-related 
behavioral tasks (e.g., paw movement during pellet grasp 
or missteps during horizontal rung test), the tool was not 
tested for general pose estimation and gait analysis after 
stroke. Nevertheless, these methods achieved a compa-
rable level of reliability to the present study in tracking 
and identifying injury status and may also be refined to 
perform similar post hoc analysis. We did not perform 
a quantitative comparison of the performance among 
the developed data-driven behavioral analysis tools. It is 
challenging to compare or determine the most appropri-
ate method for functional stroke outcome as it is likely to 
depend on a variety of factors, such as the general experi-
mental set-up, the species used, and the biological ques-
tion. We believe that our study is particularly useful for 
groups that may not have the methodological machine 
learning experience to apply a generalized pose estima-
tion tool to their stroke model. In addition, research 
groups may complement their already established 

network with our post hoc analysis with pre-defined and 
biologically relevant parameters.

Many neurological disorders (e.g., multiple sclero-
sis, Huntington’s, and spinal cord injury) result in pro-
nounced motor deficits in patients, as well as in mouse 
models, with alterations in the general locomotor pattern. 
These alterations are usually readily identifiable, espe-
cially in the acute phase, and excellent automated tools 
have recently been developed to track the motor impair-
ments [44]. In contrast, deficits following cortical stroke 
in mice often do not reveal such clear signs of injury and 
require higher levels of sensitivity to identify the motor 
impairment [7, 8, 45]. The degree of functional motor 
deficits after stroke is highly dependent on corticospi-
nal tract lesions that often result in specific deficits, e.g., 
impairment of fine motor skills [46]. Moreover, a stroke 
most commonly affects only one body side; therefore, 
an experimental set-up that contains 3D information 
is highly valuable, as it enables the detection of contra- 
and ipsilateral trajectories of each anatomical landmark. 
Accordingly, our set-ups enabled us to also detect intra-
animal differences that may be important to distinguish 
between normal and compensatory movements through-
out the recovery time course [47].

Compensatory strategies (e.g., avoiding the use of the 
impaired limb or relying on the intact limb) are highly 
prevalent in rodents and in humans [48, 49]. Although 
functional recovery is generally observed in a variety of 
tests, it is important to distinguish between compensa-
tory responses and “true” recovery. These mechanisms 
are hard to dissect in specific trained tasks (e.g., reach-
ing during single pellet grasping). Therefore, tasks of 
spontaneous limb movements and many kinematic 
parameters are valuable to distinguish these two recov-
ery mechanisms [39]. Interestingly, we observed altera-
tions in several ipsilateral trajectories during the runway 
walk affecting the vertical positioning as well as protrac-
tive and retractive movement (although less prominent 
than in the contralateral paws) that suggest a compensa-
tory movement. Similar gait alterations have been previ-
ously reported in a mouse model of distal middle cerebral 
artery occlusion, another common model of ischemia in 
mice [50]. These compensatory movements are predomi-
nantly caused by either plastic change by the adjacent 
areas of cortex or through support from anatomical reor-
ganization of the contralesional hemisphere [51–53] and, 
therefore, could provide valuable information about the 
therapeutic effects of a drug or a treatment.

Apart from general kinematic gait analysis, variations of 
the horizontal ladder rung/foot fault or grid tests remain 
one of the most reproducible tasks to assess motor skill 
in rodents after injury, including stroke. However, these 
tests often remain unused in many experimental stroke 
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studies, most likely due to the associated time-consum-
ing analysis. DLC-assisted refinement might allow future 
studies to incorporate this important assessment into 
their analyses given the striking decrease in time invest-
ment. We have demonstrated that DLC-assisted refine-
ment of these conventional tests represents a striking 
decrease in time consumption. Therefore, it is conceiv-
able that some of these conventional tests and other 
assessment methods (e.g., single pellet grasping) may 
profit from the advancements of deep learning and will 
not be fully replaced by kinematic gait analysis.

Interestingly, some of the assessed parameters showed 
an impairment after stroke only in the acute phase 
(e.g., synchronization, cycle duration, hip movement), 
while some parameters showed an initial impairment 
after injury followed by a partial or full recovery (e.g., 
wrist height, toe movement, and retraction) and oth-
ers showed no recovery in the time course of this study. 
Given the number of parameters raised in this setting, 
this approach might be particularly suited to assess treat-
ment efficacy of drug interventions in preclinical stroke 
research. Overall, we found a strong separation of param-
eters in the acute vs. chronic phase in the PCA and ran-
dom forest analysis, making this approach suitable to 
assess both the acute phase as well as the chronic phase. 
It will be of interest in the future to assess the presented 
approach in different models of stroke as well as in addi-
tional neurological conditions such as spinal cord injury, 
ALS, cerebral palsy, or others [39].

Notably, a detailed kinematic analysis required optional 
recording settings to generate a high contrast between 
animal and background. In our experience, these param-
eters needed to be adapted to the fur color in the ani-
mals. Although we reached almost equivalent tracking 
accuracy of 99.4% (equivalent to losing 6 in every 1000 
recorded frames), mice with black and white fur could 
not be tracked based on the same neural network and 
required two training sessions, which may show slight 
differences in the analysis. Moreover, the high accuracy 
in our experimental set-up was achieved by recording 
only mice with smooth runs without longer interrup-
tions. In the future, these limitations could be overcome 
by combining DLC-tracking with a recently developed 
unsupervised clustering approach to reveal grooming or 
other unpredictable stops during a run [54, 55].

Conclusions
Taken together, in this study, we developed a compre-
hensive gait analysis to assess stroke impairments in 
mice using deep learning. The developed set-up requires 
minimal resources and generates characteristic multifac-
eted outcomes for acute and chronic phases after stroke. 
Moreover, we refined conventional behavioral tests used 

in stroke assessment at human-level accuracy that may 
be expanded for other behavioral tests for stroke and 
other neurological diseases affecting locomotion.

Methods
Study design
The goal of the study was to develop a comprehensive, 
unbiased analysis of post-stroke recovery using deep 
learning over a time course of 3 weeks. Therefore, we 
performed a large photothrombotic stroke in the sen-
sorimotor cortex of wildtype and NSG mice (male and 
female mice were used). We assessed a successful stroke 
using laser Doppler imaging directly after surgery and 
confirmed the stroke volume after tissue collection at 3 
weeks post-injury. Animals were subjected to a series of 
behavioral tests at different time points. The here used 
tests included the (1) runway, (2) ladder rung test, (3) 
rotarod test, (4) neurological scoring, (5) cylinder test, 
and (6) single pallet grasping. All tests were evaluated at 
baseline and 3, 7, 14, and 21 after stroke induction. Video 
recordings from the runway and ladder rung test were 
processed by a recently developed software DeepLabCut 
(DLC, v. 2.1.5), a computer vision algorithm that allows 
automatic and markerless tracking of user-defined fea-
tures. Videos were analyzed to plot a general overview 
of the gait. Individual steps were identified within the 
run by the speed of the paws to identify the “stance” and 
“swing” phase. These steps were analyzed (from the bot-
tom perspective for, e.g., synchronization, speed, length, 
and duration from the down view over a time course. 
From the lateral/side view, we next measured, e.g., aver-
age, and total height differences of individual joins 
(y-coordinates) and the total movement, protraction, and 
retraction changes per step (x-coordinates) over the time 
course. All >100 generated parameters were extracted to 
perform a random forest classification to determine the 
importance for determining accuracy of the injury sta-
tus. The most five important parameters were used to 
perform a principal component analysis to demonstrate 
separation of these parameters.

We compared DLC-tracking performance against pop-
ular functional tests to detect stroke-related functional 
deficits including neurological score, rotarod test, drag-
ging during cylinder test, missteps in ladder rung test, 
and drag and drop in single pallet grasping.

Animals
All procedures were conducted in accordance with gov-
ernmental, institutional (University of Zurich), and 
ARRIVE guidelines and had been approved by the Veteri-
narian Office of the Canton of Zurich (license: 209/2019). 
In total, 33 wildtype (WT) mice with a C57BL/6 back-
ground mice and 12 non-obese diabetic SCID gamma 
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(NSG) mice were used (female and male, 3 months of 
age). Mice were housed in standard type II/III cages on 
a 12h day/light cycle (6:00 A.M. lights on) with food 
and water ad  libitum. All mice were acclimatized for at 
least a week to environmental conditions before set into 
experiment. All behavioral analysis were performed on 
C57BL/6 mice. NSG mice were only used to evaluate the 
ability of the networks to track animals with white fur.

Photothrombotic lesion
Mice were anesthetized using isoflurane (3% induc-
tion, 1.5% maintenance, Attane, Provet AG). Analgesic 
(Novalgin, Sanofi) was administered 24 h prior to the 
start of the procedure via drinking water. A photothrom-
botic stroke to unilaterally lesion the sensorimotor cor-
tex was induced on the right hemisphere, as previously 
described [56–59]. The stroke procedure was equivalent 
for all mouse genotypes [60]. Briefly, animals were placed 
in a stereotactic frame (David Kopf Instruments), the 
surgical area was sanitized, and the skull was exposed 
through a midline skin incision. A cold light source 
(Olympus KL 1,500LCS, 150W, 3,000K) was positioned 
over the right forebrain cortex (anterior/posterior: −1.5 
to +1.5 mm and medial/lateral 0 to +2 mm relative to 
Bregma). Rose Bengal (15 mg/ml, in 0.9% NaCl, Sigma) 
was injected intraperitoneally 5 min prior to illumination 
and the region of interest was subsequently illuminated 
through the intact skull for 12 min. To restrict the illu-
minated area, an opaque template with an opening of 3 
× 4 mm was placed directly on the skull. The wound was 
closed using a 6/0 silk suture and animals were allowed to 
recover. For postoperative care, all animals received anal-
gesics (Novalgin, Sanofi) for at least 3 days after surgery.

Blood perfusion by laser Doppler imaging
Cerebral blood flow (CBF) was measured using laser 
Doppler imaging (LDI, Moor Instruments, MOORLDI2-
IR). Animals were placed in a stereotactic frame; the 
surgical area was sanitized and the skull was exposed 
through a midline skin incision. The brain was scanned 
using the repeat image measurement mode. All data were 
exported and quantified in terms of flux in the ROI using 
Fiji (ImageJ). All mice receiving a stroke were observed 
with LDI directly after injury to confirm a successful 
stroke. A quantification of cerebral blood perfusion 24 h 
after injury was performed in N = 8 mice.

Perfusion with paraformaldehyde (PFA) and tissue 
processing
On post-stroke day 21, animals were euthanized by 
intraperitoneal application of pentobarbital (150mg/
kg body weight, Streuli Pharma AG). Perfusion was 
performed using Ringer solution (containing 5 ml/l 

Heparin, B.Braun) followed by paraformaldehyde (PFA, 
4% in 0.1 M PBS, pH 7.5). For histological analysis, 
brains were rapidly harvested, post-fixed in 4% PFA 
for 6 h, subsequently transferred to 30% sucrose for 
cryoprotection and cut (40 μm thick) using a sliding 
microtome/Microm HM430, Leica). Coronal sections 
were stored as free-floating sections in cryoprotectant 
solution at −20°.

Lesion volume analysis
A set of serial coronal sections (40 μm thick) were immu-
nostained for NeuroTracer (fluorescent Nissl) and imaged 
with a 20×/0.8 objective lens using an Axio Scan.Z1 slide 
scanner (Carl Zeiss, Germany). The sections lie between 
200 and 500 μm apart; the whole brain was imaged. The 
cortical lesion infarct area was measured (area, width, 
depth) on FIJI using the polygon tool, as defined by the 
area with atypical tissue morphology including pale areas 
with lost NeuroTracer staining.

The volume of the injury was estimated by calculat-
ing an ellipsoidal frustum, using the areas of two cortical 
lesions lying adjacent to each other as the two bases and 
the distance between the two areas as height. The follow-
ing formula was used:

The single volumes (frustums) were then summed up to 
get the total ischemic volume. The stroke analysis was per-
formed 21 days after stroke in a subgroup of N = 8 mice.

Immunofluorescence
Brain sections were washed with 0.1M phosphate buffer 
(PB) and incubated with blocking solution containing 
donkey serum (5%) in PB for 30 min at room tempera-
ture. Sections were incubated with primary antibodies 
(rb-GFAP 1:200, Dako, gt-Iba1, 1:500 Wako, NeuroTrace™ 
1:200, Thermo Fischer) overnight at 4°C. The next day, 
sections were washed and incubated with corresponding 
secondary antibodies (1:500, Thermo Fischer Scientific). 
Sections were mounted in 0.1 M PB on Superfrost PlusTM 
microscope slides and coverslipped using Mowiol.

Behavioral studies
Animal were subjected to a series of behavioral tests at 
different time points. The here used tests included the 
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(1) runway, (2) ladder rung test, (3) the rotarod test, (4) 
neurological scoring, (5) cylinder test, and (6) single pal-
let grasping. All tests were evaluated at baseline and 3, 7, 
14, and 21 after stroke induction. Animals used for deep 
learning-assisted tests (runway, ladder rung) represent 
a different cohort of animals to the remaining behavior 
tasks.

Runway test
A runway walk was performed to assess whole-body 
coordination during overground locomotion. The walk-
ing apparatus consisted of a clear Plexiglas basin, 156 cm 
long, 11.5 cm wide, and 11.5 cm high (Fig. 1). The basin 
was equipped with two ∼ 45° mirrors (perpendicularly 
arranged) to allow simultaneous collection of side and 
bottom views to generate three-dimensional tracking 
data. Mice were recorded crossing the runway with a 
high-definition video camera (GoPro Hero 7) at a resolu-
tion of 4000 × 3000 and a rate of 60 frames per second. 
Lighting consisted of warm background light and cool 
white LED stripes positioned to maximize contrast and 
reduce reflection. After acclimatization to the apparatus, 
mice were trained in two daily sessions until they crossed 
the runway at constant speed and voluntarily (without 
external intervention). Each animal was placed individu-
ally on one end of the basin and was allowed to walk for 
3 minutes.

Ladder rung test
The same set-up as in the runway was used for the lad-
der rung test, to assess skilled locomotion. We replaced 
the Plexiglas runway with a horizontal ladder (length: 113 
cm, width: 7 cm, distance to ground: 15 cm). To prevent 
habituation to a specific bar distance, bars were irregu-
larly spaced (1-4 cm). For behavioral testing, a total of 
at least three runs per animal were recorded. Kinematic 
analysis of both tasks was based exclusively on video 
recordings and only passages with similar and constant 
movement velocities and without lateral instability were 
used. A misstep was defined when the mouse toe tips 
reached 0.5 cm below the ladder height. The error rate 
was calculated by errors/total steps × 100.

Rotarod test
The rotarod test is a standard sensory-motor test to 
investigate the animals’ ability to stay and run on an 
accelerated rod (Ugo Basile, Gemonio, Italy). All ani-
mals were pre-trained to stay on the accelerating rotarod 
(slowly increasing from 5 to 50 rpm in 300s) until they 
could remain on the rod for > 60 s. During the perfor-
mance, the time and speed were measured until the 
animals fell or started to rotate with the rod without 
running. The test was always performed three times and 

means were used for statistical analysis. The recovery 
phase between the trials was at least 10 min.

Neurological score/Bederson score
We used a modified version of the Bederson (0–5) score 
to evaluate neurological deficits after stroke. The task 
was adapted from Biebet et al. The following scoring was 
applied: (0) no observable deficit; (1) forelimb flexion; (2) 
forelimb flexion and decreased resistance to lateral push; 
(3) circling; (4) circling and spinning around the cranial-
caudal axis; and (5) no spontaneous movement/ death.

Cylinder test
To evaluate locomotor asymmetry, mice were placed in 
an opentop, clear plastic cylinder for about 10 min to 
record their forelimb activity while rearing against the 
wall of the arena. The task was adapted from Roome 
et  al. [61]. Forelimb use is defined by the placement of 
the whole palm on the wall of the arena, which indicates 
its use for body support. Forelimb contacts while rearing 
were scored with a total of 20 contacts recorded for each 
animal. Three parameters were analyzed which include 
paw preference, symmetry, and paw dragging. Paw pref-
erence was assessed by the number of impaired forelimb 
contacts to the total forelimb contacts. Symmetry was 
calculated by the ratio of asymmetrical paw contacts to 
total paw contacts. Paw dragging was assessed by the 
ratio of the number of dragged impaired forelimb con-
tacts to total impaired forelimb contacts.

Single pellet grasping
All animals were trained to reach with their right paw 
for 14 days prior to stroke induction over the left motor 
cortex. Baseline measurements were taken on the day 
before surgery (0dpo) and test days started at 4 dpo and 
were conducted weekly thereafter (7, 14, 21, 28 dpo). 
For the duration of behavioral training and test periods, 
animals were food restricted, except for 1 day prior to 
3 days post-injury. Body weights were kept above 80% 
of initial weight. The single pellet reaching task was 
adapted from Chen et al. [62]. Mice were trained to reach 
through a 0.5-cm-wide vertical slot on the right side of 
the acrylic box to obtain a food pellet (Bio-Serv, Dust-
less Precision Pellets, 20 mg) following the guidelines of 
the original protocol. To motivate the mice to not drop 
the pellet, we additionally added a grid floor to the box, 
resulting in the dropped pellets to be out of reach for the 
animals. Mice were further trained to walk to the back 
of the box in between grasps to reposition themselves 
as well as to calm them down in between unsuccessful 
grasping attempts. Mice that did not successfully learn 
the task during the 2 weeks of shaping were excluded 
from the task (n = 2). During each experiment session, 
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the grasping success was scored for 30 reaching attempts 
or for a maximum of 20 min. Scores for the grasp were 
as follows: “1” for a successful grasp and retrieval of the 
pellet (either on first attempt or after several attempts); 
“0” for a complete miss in which the pellet was misplaced 
and not retrieved into the box; and “0.5” for drag or 
drops, in which the animal successfully grasped the pel-
let but dropped it during the retrieval phase. The success 
rate was calculated for each animal as end score = (total 
score/number of attempts × 100).

DeepLabCut (DLC)
Video recordings were processed by DeepLabCut (DLC, 
v. 2.1.5), a computer vision algorithm that allows auto-
matic and markerless tracking of user-defined features. 
A relatively small subset of camera frames (training data-
set) is manually labeled as accurately as possible (for each 
task and strain, respectively). Those frames are then used 
to train an artificial network. Once the network is suffi-
ciently trained, different videos can then be directly input 
to DLC for automated tracking. The network predicts the 
marker locations in the new videos, and the 2D points 
can be further processed for performance evaluation and 
3D reconstruction.

Dataset preparation
Each video was migrated to Adobe Premiere (v. 15.4) and 
optimized for image quality (color correction and sharp-
ness). Videos were split into short one-run-sequences 
(left to right or right to left), cropped to remove back-
ground and exported/compressed in H.264 format. This 
step is especially important when analyzing the overall 
gait performance of the animals because pauses or unex-
pected movements between the steps may influence the 
post-hoc analysis.

Training
The general networks for both behavioral tests were 
trained based on ResNet-50 by manually labeling 120 
frames selected using k-means clustering from multi-
ple videos of different mice (N = 6 videos/network). 
An experienced observer labeled 10 distinct body parts 
(head, front toe tip, wrist, shoulder, elbow, back toe, back 
ankle, iliac crest, hip, tail; Additional file  1: Fig. S10) in 
all videos of mice recorded from side views (left, right) 
and 8 body parts (head, right front toe, left front toe, 
center front, right back toe, left back toe, center back, 
tail base) in all videos showing the bottom view, respec-
tively (for details, see Additional file  1: Fig. S1, 2). We 
then randomly split the data into training and test set 
(75%/25% split) and allowed training to run for 1,030,000 
iterations (DLC’s native cross-entropy loss function pla-
teaued between 100,000 and 300,000 iterations). Labeling 

accuracy was calculated using the root-mean-squared 
error (RMSE) in pixel units, which is a relevant perfor-
mance metric for assessing labeling precision in the train 
and test set. This function computes the Euclidean error 
between human-annotated ground truth data and the 
labels predicted by DLC averaged over the hand locations 
and test images. During training, a score-map is gener-
ated for all keypoints up to 17 pixels (≈0.45 cm, distance 
threshold) away from the ground truth per body part, 
representing the probability that a body part is at a par-
ticular pixel [27].

Refinement
Twenty outlier frames from each of the training videos 
were manually corrected and then added to the training 
dataset. Locations with a p <0.9 were relabeled. The net-
work was then refined using the same numbers of itera-
tions (1,030,000). For the ladder rung test, frames were 
manually selected with footfalls to ensure that DLC reli-
ably identifies missteps as they occur rarely in healthy 
mice and are important for the analysis.

All experiments were performed inside the Anaconda 
environment (Python 3.7.8) provided by DLC using 
NVIDIA GeForce RTX 2060.

Data processing with R
Video pixel coordinates for the labels produced by DLC 
were imported into R Studio (Version 4.04 (2021-02-15) 
and processed with custom scripts that can be assessed 
here: https://​github.​com/​rustl​ab1/​DLC-​Gait-​Analy​sis 
[63]. Briefly, the accuracy values of individual videos 
were evaluated and data points with a low likelihood 
were removed. Representative videos were chosen to 
plot a general overview of the gait. Next, individual steps 
were identified within the run by the speed of the paws 
to identify the “stance” and “swing” phase. These steps 
were analyzed for synchronization, speed, length, and 
duration from the down view over a time course. Addi-
tionally, the angular positioning between the body center 
and the individual paws was measured. From the lateral/
side view, we next measured average and total height dif-
ferences of individual joins (y-coordinates) and the total 
movement, protraction, and retraction changes per step 
(x-coordinates) over the time course. Next, we measured 
angular variability (max, average, min) between neigh-
boring joints including (hip-ankle-toe, iliac crest-hip-
back-ankle, elbow-wrist-front toe, shoulder-elbow-wrist). 
More details on the parameter calculation can be found 
in Additional file 2: Table S1.

All >100 generated parameters were extracted to per-
form a random forest classification with scikit-learn 
[64] (ntree = 100, depth = max). We split our data into 

https://github.com/rustlab1/DLC-Gait-Analysis
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a training set and a test set (75%/25% split) and deter-
mined the Gini impurity-based feature importance. To 
evaluate the prediction accuracy that was generated on 
the training data, we cross-validated the predictions on 
the test data with a confusion matrix. The same proce-
dure was also applied in a subgroup analysis between 
baseline vs. 3 dpi (acute injury) and baseline vs. 21 dpi 
(long-term recovery). The most five important parame-
ters were used to perform a principal component anal-
ysis to demonstrate separation of these parameters.

Parameter calculations for pose estimation
Bottom analysis

Speed of steps  The speed of a step was defined by the 
horizontal distance covered between two frames. Pixel 
units (1 cm = 37.79528 pixel) were converted in cm and 
frames converted to time (60 frames = 1s). Within a step, 
we classified stance and swing periods. A swing period 
was defined when the speed of a step was higher than 10 
cm/s. The speed of steps was also used to determine indi-
vidual steps within a run.

Duration of steps  We calculated the average duration of 
steps from the number of frames it took to finish a step 
cycle. We further calculated the duration for each indi-
vidual paw from the number of frames it took to start and 
finish a step cycle for each individual paw. The duration 
of a swing and a stance phase was determined by cal-
culating the number of frames until a swing period was 
replaced by a stance period and vice versa.

Stride length  The stride length was calculated as an 
average horizontal distance that was covered between 
two steps.

Synchronization  We assume that for proper synchro-
nization the opposite front and back paws (front-left 
and back right and front-right and back left) should be 
simultaneously in the stance position. We calculated the 
total time of frames when the paws are synchronized 
(totalSync) and the total time when the paws are not syn-
chronized (totalNotSync). Then we used the formula: 1 – 
[totalSync/(totalSync + totalNotSync)]. A full synchroni-
zation would be the value of 0, the more it goes towards 1 
the steps become asynchronous.

Side‑view analysis

Average height and total vertical movement of individual 
body parts  We calculated the height (differences in the 

y axis) of each tracked body part during a step from the 
left and right perspective. For the average height, we cal-
culated the average value for the relative y coordinate 
within a step, whereas for the total vertical movement we 
subtracted the highest y-value from the lowest y-value 
during a course of a step.

Step length, length of protraction, and retraction  We 
calculated the step length (differences in the x axis) of 
each tracked body part during a step from the left and 
right perspective. For the average step length, we calcu-
lated the average distance in the x coordinate covered by 
a step, whereas for the total horizontal movement we sub-
tracted the highest x-value from the lowest x-value dur-
ing a course of a step. We defined the phase of protraction 
when the x-coordinates of a paw between 2 frames was 
positive, and retraction was defined when the x-coordi-
nate of a paw between 2 frames was negative. Then, we 
calculated the maximum distance (x-coordinate) between 
the beginning of the protraction and retraction.

Angles between body parts
The angles were calculated based on three coordinates. 
The position of body part 1 (P1), body part 2 (P2), and 
body part 3 (P3). The angle can be calculated using arctan 
formula using the x and y coordinates of each point, for 
example, the position of the left elbow (P1), left shoulder 
(P2), and left wrist (P3). The angle can be calculated using 
arctan function: Angle= atan2(P3.y − P1.y, P3.x − P1.x) 
− atan2(P2.y − P1.y, P2.x − P1.x). Details to all other 
angles between body parts can be found in Additional 
file 2: Table S1.

Additional details for each individual parameter cal-
culation can be found in Additional file  2: Table  S1 for 
each and in the Github code https://​github.​com/​rustl​ab1/​
DLC-​Gait-​Analy​sis [63].

Statistical analysis
Statistical analysis was performed using RStudio (4.04 
(2021-02-15). Sample sizes were designed with adequate 
power according to our previous studies [7, 42, 57] and 
to the literature [8, 12]. Overview of sample sizes can be 
found in Additional file 2: Table S2. All data were tested 
for normal distribution by using the Shapiro-Wilk test. 
Normally distributed data were tested for differences 
with a two-tailed unpaired one-sample t-test to compare 
changes between two groups (differences between ipsi- 
and contralesional sides). Multiple comparisons were 
initially tested for normal distribution with the Shapiro-
Wilk test. The significance of mean differences between 
normally distributed multiple comparisons was assessed 

https://github.com/rustlab1/DLC-Gait-Analysis
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using repeated measures ANOVA with post-hoc analy-
sis (p adjustment method = holm). For all continues 
measures: Values from different time points after stroke 
were compared to baseline values. Variables exhibiting 
a skewed distribution were transformed, using natu-
ral logarithms before the tests to satisfy the prerequisite 
assumptions of normality. Data are expressed as means ± 
SD, and statistical significance was defined as ∗p < 0.05, 
∗∗p < 0.01, and ∗∗∗p < 0.001. Boxplots indicate the 25 to 
75% quartiles of the data (IQR). Each whisker extends to 
the furthest data point within the IQR range. Any data 
point further was considered an outlier and was indicated 
with a dot. Raw data, summarized data, and statistical 
evaluation can be found in the supplementary informa-
tion (Additional file 2: Tables S3-S37).
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