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Abstract 

Ethnic differences in non-communicable disease risk have been described between individuals of South Asian and 
European ethnicity that are only partially explained by genetics and other known risk factors. DNA methylation is 
one underexplored mechanism that may explain differences in disease risk. Currently, there is little knowledge of 
how DNA methylation varies between South Asian and European ethnicities. This study characterised differences in 
blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based 
cohorts: Southall and Brent Revisited and Born in Bradford. DNA methylation differences between ethnicities were 
widespread throughout the genome (n = 16,433 CpG sites, 3.4% sites tested). Specifically, 76% of associations were 
attributable to ethnic differences in cell composition with fewer effects attributable to smoking and genetic variation. 
Ethnicity-associated CpG sites were enriched for EWAS Catalog phenotypes including metabolites. This work high-
lights the need to consider ethnic diversity in epigenetic research.
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Introduction
There are well-described ethnic differences in non-com-
municable diseases between migrants of South Asian 
genetic ancestry and their European ancestry counter-
parts [1, 2]. The most striking difference is the greater 
risk of cardiometabolic disease in South Asians com-
pared to Europeans (reviewed [3, 4]). In contrast, all-
cancer morbidity and mortality risks are lower in South 
Asian migrant groups compared to Europeans [2, 5]. 
Ethnic differences in non-communicable diseases are 
only partially influenced by known genetic or environ-
mental factors [4, 6–9]. Although beyond the scope of 

this paper, it is possible that the colonial history of UK 
South Asian people and persistent racism could affect 
their increased prevalence of chronic diseases such as 
type 2 diabetes and coronary heart disease, for example 
through psychosocial paths [10, 11] and through inequi-
table treatment within health services [12]. Focussing on 
molecular mechanisms, DNA methylation is one of the 
underexplored epigenetic mechanisms that may explain 
differences in disease risk.

In recent years, Epigenome-Wide Association Stud-
ies (EWASs) have associated DNA methylation with 
diverse health-related outcomes such as cancer [13–
16], diabetes [17–19], rheumatoid arthritis [20], psy-
chosis and schizophrenia [21], blood pressure [22, 23], 
circulating metabolic measures [24] and BMI [25–28]. 
DNA methylation has also proved a useful biomarker 
of lifestyle exposures, for example smoking [29–32] and 
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alcohol intake [33, 34]. Furthermore, DNA methylation 
may also be a predictor of future disease, for example, 
myocardial infarction and coronary heart disease [35] 
or all-cause mortality and time to death [36, 37]. Ethnic 
differences have been explored in the context of these 
EWAS. For example, a meta-EWAS of 1250 incident 
type 2 diabetes cases and 1950 controls drawn from five 
European cohorts identified 76 CpG sites associated 
with incident type 2 diabetes [38]. Of these findings, 64 
(84.2%) were directionally consistent in an independent 
cohort of Indian Asians. The evidence therefore sug-
gests that many but not all DNA methylation associa-
tions with exposures or outcomes are consistent across 
populations indicating a possible role for DNA meth-
ylation as a mediator of excess disease risk between 
population groups.

Studies have begun to identify ethnic differences in 
DNA methylation patterns across the genome [39–41]. 
These studies highlight that ethnic differences in DNA 
methylation are likely to be frequent in the genome and 
Galanter et al. [39] suggested they arise as a consequence 
of both genetic and environmental factors. However, to 
our knowledge there has been no large-scale genome-
wide comparison of DNA methylation in South Asian 
and European ethnic groups.

The aim of this study was therefore to identify and 
characterise DNA methylation differences between 
healthy adult individuals of self-reported South Asian 
and European ethnicity resident in the UK. We did this 
by first identifying cross-sectional differences in genome-
wide DNA methylation and then assessing the stability of 
signals over time. We then measured ethnic differences in 
DNA methylation-derived estimates of cell composition 
and the methylation-derived neutrophil-to-lymphocyte 
ratio (mdNLR), an index of systemic inflammation. We 
report the relative contribution of genetic and environ-
mental sources of variance in ethnicity-associated DNA 
methylation and also explore sources of environmental 
variation. We finally assess whether ethnicity-associated 
CpG sites are functionally implicated in biological path-
ways (using publicly available databases) or disease end-
points or risk factors captured by the EWAS Catalog [42].

Analyses were conducted in the Southall And Brent 
Revisited (SABRE) cohort [3] and replicated in the Born 
in Bradford (BiB) cohort [43, 44]. These cohorts both 
include individuals of south Asian and Europeans in the 
UK, but they are distinct in that they recruited from dif-
ferent geographical areas of the UK with South Asians in 
SABRE predominantly of Indian origin and South Asians 
in BiB predominantly of Pakistani origin. SABRE and BiB 
also differ in age, sex and other exposures, for example, 
smoking behaviours. The inclusion of these two distinct 
cohorts is a strength of the study design, allowing the 

identification of ethnicity-associated DNA methylation 
sites that are likely to be generalisable.

Results
Cohort characteristics
A comparison of cohort and subgroup characteristics is 
shown in Table 1. All SABRE participants were male and 
recruited in middle age [3]. BiB participants were female, 
with DNA methylation measured on samples collected in 
pregnancy (24–28 weeks of gestation) [43, 44]. Distribu-
tions of age, BMI and smoking differed between the two 
studies and for some measures, between the two ethnic 
groups (see Table 1).

Concordance of self‑reported ethnicity with genetic 
ancestry
Principal components analysis (PCA) of SABRE, BiB and 
HapMap3 populations was used to assign individuals to 
groups with similar genetic ancestry (Additional file  1: 
Fig. S1).

Self-reported Europeans from SABRE and BiB cluster 
closely with Europeans from HapMap3 (Additional file 1: 
Fig. S1). Correspondingly, self-reported South Asians 
from SABRE and BiB cluster with or near HapMap3 
Gujarati Indians recruited from Houston, USA. PCA 
analysis on the self-reported South Asian and European 
individuals in SABRE and BiB show separate clustering 
by ethnicity. The genetic variation as estimated by genetic 
PCs appears higher in the South Asian group, where eth-
nicity subgroups can be separated on both the PC1 and 
PC2 axis. In SABRE, those indicating their ethnicity sub-
grouping as “Punjabi” or “Gujarati” cluster more closely 
together than other subgroups.

Concordance of self‑reported ethnicity with DNA 
methylation components
Principal components (PCs) were derived from the 
SABRE and BiB methylation matrices. When utilising the 
1000 or 10,000 probes with the greatest variance, PC1 
differentiated between South Asian and European indi-
viduals in both SABRE and BiB (Additional file 2: Fig. S2). 
There was no differential clustering by the ethnic group 
when using all independent probes from the array (nSA-

BRE = 21,023, nBiB = 19,438).

Identification of ethnic differences in DNA methylation
Ethnicity EWAS
In univariable analysis, differential methylation between 
SABRE individuals of self-reported South Asian or 
European ethnicity was identified at 32,435 CpG sites at 
p ≤ 1.03 × 10−7 (6.7% of the 484,781 sites assessed, Addi-
tional file  3: Table  S1). Effect sizes ranged from 0.08 to 
25.8% difference in DNA methylation between ethnic 
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groups. CpG sites associated with ethnicity were distrib-
uted throughout the genome (Fig.  1A, B), with hyper-
methylation amongst individuals of South Asian ethnicity 
being predominant (67% of CpG sites identified) when 
compared to Europeans (Fig. 1A, C).

In BiB, effect estimates correlated with those reported 
in SABRE (R2 = 0.88, see Fig.  2A). When considering p 
values, 13,803/30,095 (46%) of the individual CpG sites 
were replicated as defined by the maintenance of p values 
below the epigenome-wide threshold (Additional file  3: 
Table S1). We observed inflated λ values in both SABRE 
(λ = 2.93) and BiB (λ = 2.22) EWAS. λ values were recal-
culated as described previously [45] (see methods). λ was 
substantially reduced in both SABRE (λ = 1.53) and BiB 
(λ = 1.02), indicating inflation is likely to stem from the 
abundance of the true biological signal rather than sub-
stantial residual confounding.

Differentially methylated regions (DMRs)
DMR analysis was applied to the EWAS results to iden-
tify wider regions of DNA methylation that were associ-
ated with self-reported ethnicity. We identified 10,675 
DMRs containing 2 or more CpGs that differed between 
the two ethnic groups at adjusted p < 0.05 in SABRE 
(Additional file  4: Table  S2). Using the same analysis 
parameters, 5371 (50%) of DMRs identified in SABRE 
had at least 1 overlapping CpG with DMRs identified 

in BiB (Additional file  3: Table  S1 and Additional file  4: 
Table  S2). The modal number of CpGs amongst rep-
licated DMRs was 2 (n = 1870), and 73% of replicated 
DMRs contained fewer than 5 CpGs. The largest region 
identified in the DMR analysis was 1.1 kb in length and 
contained 31 CpG sites. This region on chromosome 11 
spans the upstream and exon 1 region of the imprinted 
KCNQ1DN locus and appears to contain CpG islands, 
DNase I hypersensitivity clusters, and transcription fac-
tor binding sites [46, 47].

All further analyses were restricted to a pool of 16,344 
unique CpG sites: 13,803 replicated CpG sites identified 
in the univariable EWAS of ethnicity in SABRE and BiB 
and 2541 CpGs representing replicated DMRs (the CpG 
with the lowest EWAS p value selected from each DMR, 
Additional file 3: Table S1).

Ethnic differences in DNA methylation are stable over time
Participants in the SABRE study attended a follow-up 
clinic approximately 20  years after baseline recruitment 
(n = 139), allowing an assessment of the temporal stabil-
ity of ethnicity-associated DNA methylation variation. 
Characteristics of individuals from the SABRE follow-up 
timepoint are shown in Table  1. Ethnicity EWAS effect 
estimates were compared between SABRE timepoints at 
replicated CpG sites (n = 16,344 CpGs). Effect estimates 
correlated with those reported at the SABRE baseline 
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(R2 = 0.89, Fig.  2B). Only 1685 (10.3%) CpG sites had 
effect estimates that changed by > twofold between time 
points.

Analysis of ethnic differences in methylation‑derived 
phenotypes
DNA methylation data were used to generate an index 
of biological ageing (using a variety of epigenetic clocks 
[48]), estimates of white blood cell counts [49] and an 
index of systemic inflammation [50]. Subsequent analy-
ses assessed whether these derived phenotypes differed 
between ethnic groups.

Ethnic differences in epigenetic age acceleration
Epigenetic age was computed using five clock algo-
rithms (see Methods). SABRE South Asians had higher 
age acceleration estimates amongst all clock measures 
(except the Hannum clock) compared to SABRE Europe-
ans in unadjusted tests (Additional file 4: Table S3). For 
both Extrinsic and Intrinsic Epigenetic Age Accelera-
tions (EEAA and IEAA), these differences were robust 
to adjustment for BMI and self-reported smoking in 
PhenoAge (EEAA: beta = 1.63, p = 7.62 × 10−5; IEAA: 
beta = 1.59, p = 6.39 × 10−5) and SkinBlood estimators 
(EEAA: beta = 0.75, p = 1.50 × 10−3; IEAA: beta = 0.75, 
p = 9.78 × 10−4). Evidence for an association between age 

acceleration and ethnicity in BiB was weak (Additional 
file 4: Table S3).

Ethnic differences in cell composition
Using a linear model where estimated cell proportion 
was the outcome, ethnicity was the predictor and age 
was included as a covariate (Additional file  4: Table  S4, 
model 1) we show that SABRE and BiB self-reported 
South Asian individuals had elevated estimated propor-
tions of B cells, CD8 + T cells, eosinophils and natural 
killer cells and reduced estimated proportions of Neu-
trophils compared to self-reported European individu-
als from the same cohort (Table  1). These relationships 
were unchanged when including smoking status as an 
additional covariate (Additional file 4: Table S4, model 2). 
Differences in the proportion of cell subgroups therefore 
exist between ethnic groups but these differences are not 
substantially explained by age or smoking status.

Ethnic differences in systemic inflammation
Methylation-derived neutrophil-to-lymphocyte ratio 
(mdNLR), an index of systemic inflammation, was 13.6% 
lower in SABRE South Asians compared to Europe-
ans (median (IQR): South Asians = 1.25 (0.70), Europe-
ans = 1.42 (0.73); p = 2.47 × 10−7). This relationship was 
unchanged by adjustment for age, smoking and BMI. 
Similar findings were observed in BiB, with mdNLR 
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18.1% lower in South Asians compared to Europeans 
(median (IQR): South Asians = 2.48 (1.04), Europe-
ans = 3.03 (1.14); p = 1.59 × 10−20) in univariable analy-
ses, and unchanged with adjustment for age, smoking or 
BMI.

Determinants of ethnic differences in DNA methylation
To explore the potential factors mediating the relation-
ship between self-reported ethnicity and DNA methyla-
tion, we undertook a series of further analyses in SABRE.

The contribution of ethnic differences in smoking, age 
and cell composition to observed ethnic differences in DNA 
methylation
There were marked differences in self-reported smoking 
behaviour between SABRE ethnic groups and European 
participants were slightly younger than South Asian par-
ticipants (see Table 1). Age and smoking status have both 
been shown to be associated with DNA methylation in 
previous studies [51, 52]. Adjusting the univariable eth-
nicity EWAS model for age did not alter effect estimates 
(R2 = 1.0, Additional file  3: Table  S1). Effect estimates 
when comparing the univariable ethnicity EWAS model 
with a model adjusted for age and self-reported smoking 
status were also highly correlated (R2 = 0.98, Additional 
file  3: Table  S1). However, the p values of 2995/16,344 
(18%) of CpG sites were attenuated (p > 1.03 × 10−7) fol-
lowing adjustment for age and smoking status; 9/16,344 
(0.05%) of CpG sites had effect estimates that changed 
by > twofold between models (Additional file 3: Table S1). 
Ethnicity-associated CpGs were compared to results 
from a large meta-analysis of smoking in adults [51]. We 
observed an increased proportion of smoking-associated 
CpGs amongst the ethnicity-associated CpG sites in 
SABRE compared to expected (chi-square test: 23.5% vs 
7.4%, p < 2.2e−16). We therefore conclude that smoking 
differences are likely to contribute to the observed eth-
nic differences in DNA methylation in up to 18% of CpG 
sites tested. Smoking-associated CpGs [51] are annotated 
in Additional file 3: Table S1.

Cell composition estimates were included as additional 
covariates in the univariable ethnicity EWAS model. In 
this analysis, effect estimates were correlated (R2 = 0.9) 
(Additional file 5: Fig. S3). The p values of 12,422/16,344 
(76%) of CpG sites were attenuated following adjust-
ment for cell subtypes (p > 1.03 × 10−7) and 4396/16,344 
(26.9%) of CpG sites had effect estimates that changed 
by > twofold between models (Additional file 3: Table S1 
Additional file 5: Fig. S3). Additional adjustment for age 
and smoking status had a minimal effect: p values of 
12,580/16,344 (77%) of CpG sites were attenuated follow-
ing adjustment for age, smoking status and cell subtypes 
combined (p > 1.03 × 10−7) and 3198/16,344 (19.6%) of 

CpG sites had effect estimates that changed by > twofold 
between models (Additional file 3: Table S1). Differences 
in cell composition therefore appear to be an important 
driver of ethnicity-associated methylation patterns and 
these differences are not strongly driven by differences in 
age or smoking status between ethnic groups.

Genetic contribution to ethnic differences in DNA 
methylation
Assessment of  genetic principal components  Genetic 
principal components generated by PCA (n = 20, see 
methods) were included as additional covariates in 
the univariable ethnicity EWAS model. None of the 
16,344 ethnicity-associated CpG sites had p values at 
p ≤ 1.03 × 10−7 following adjustment for genetic principal 
components.

Assessment of  mQTLs  Using the Genetics of DNA 
Methylation Consortium (GoDMC) data [53], 16,720 
mQTLs were identified (containing 15,566 unique SNPs 
and 10,171 unique CpGs) [53]. 62% of ethnicity-associ-
ated CpGs had at least one mQTL (10,171 of 16,344 CpGs 
queried, CpGs annotated in Additional file 3: Table S1). 
In GoDMC, 45% of tested CpGs had an mQTL, ethnic-
ity-associated CpGs in this study therefore appear to be 
enriched for mQTLs (OR = 1.00, 95%CI = 1.93–2.06, 
p = 0). A total of 8686 SNPs were available in the SABRE 
cohort which allowed us to further explore 9382 mQTLs 
across 8318 unique CpGs.

We tested each available SNP to identify differences 
in allele frequency between SABRE ethnic groups. We 
estimate that 2908 (33.5%) of the SNPs tested differ in 
allele frequency between populations (adjusted p < 0.05, 
ntests = 8686) (Additional file  4: Table  S5, annotated in 
Additional file  3: Table  S1). To investigate further, we 
included the respective mQTL genotype as a covariate 
in the univariable ethnicity EWAS model for each CpG 
with an mQTL (Additional file  4: Table  S5). Variance 
explained (measured by R2) by the models increased by 
a mean of 2.7% (SD = 5.3%) in CpGs with differences in 
allele frequency between populations and a mean of 1.7% 
(SD = 3.2%) in CpGs showing no differences in allele fre-
quency between populations.

We therefore conclude that ethnic differences in DNA 
methylation may be partially attributable to differences 
in allele frequency between ethnicities but overall the 
contribution of these genetic effects are small. Amongst 
CpGs with mQTLs that varied in allele frequency 
between ethnic groups, adjusting for the mQTL attenu-
ated the EWAS signal above the EWAS p value threshold 
in only 763/2908 (26.2%) of unique CpG sites (Additional 
file 4: Table S5).



Page 7 of 17Elliott et al. Clinical Epigenetics          (2022) 14:130 	

We also postulated that DNA methylation differences 
between ethnic groups may be driven by differences in 
the mQTL effect between ethnicities. We therefore tested 
each available SNP to identify interactions between 
mQTL and ethnic group on methylation using results 
from the GEM interaction model [54]. GxE models were 
run where methylation was the outcome variable, geno-
type x ethnicity was the predictor and age and smoking 
were included as covariates. We identified 67 interac-
tions (adjusted p < 0.05, ntests = 9382) between ethnic-
ity and mQTLs indicating that a small number of CpG 
associations with ethnicity may be attributable to eth-
nic-specific genetic effects (Additional file  3: Table  S1, 
Additional file 4: Table S6). None of the 61 unique inter-
action mQTLs overlaps with a multi-ethnic GWAS of cell 
composition [55]. We also compared the 66 unique CpG 
sites showing evidence of interaction between ethnicity 
and mQTLs with the univariable EWAS and the EWAS 
model which included cell composition as a covariate. 
The p values of 15/66 (23%) of CpG sites were attenuated 
(p > 1.03 × 10−7) following adjustment for cell composi-
tion but none of the effect estimates changed by > twofold 
between models (Additional file  3: Table  S1). This indi-
cates that interactions between ethnicity and mQTLs are 
not related to differences in cell composition.

Functional annotation of ethnicity‑associated CpG sites
We initially identified a pool of 16,344 unique CpG sites 
that were associated with an ethnic group in SABRE and 
replicated these in BiB. To characterise them in terms of 
biology and disease relevance we undertook a series of 
further analyses.

Ethnicity‑associated CpGs are depleted for CpGs in 3′UTRs 
and intronic regions
Ethnicity-associated CpGs were depleted for CpGs in 
3′UTRs (OR = 0.71, 95% CI = 0.64–0.78, p = 1.19 × 10−12) 
and depleted for CpGs in intronic regions (OR = 0.90, 
95% CI = 0.87–0.93, p = 2.32 × 10−10) based on ANNO-
VAR annotation compared to all CpGs on the 450 k array 
(Additional file 4: Table S7).

Ethnicity‑associated CpGs are enriched in multiple 
phenotype groups based on EWAS Catalog data
Results from the EWAS Catalog [42] were grouped 
into related phenotypes [56] and tested for enrich-
ment. The 16,344 ethnicity-associated CpGs are 
strongly enriched for CpG sites previously reported 
to be associated with metabolites (OR = 4.12, 
95%CI = 3.64–4.67, p = 3.14 × 10−129), smoking 
(OR = 2.20, 95%CI = 2.06–2.35, p = 1.13 × 10−130), alco-
hol (OR = 2.10, 95%CI = 1.80–2.43, p = 1.47 × 10−23), 
cancer (OR = 1.83, 95%CI = 1.77–1.90, p = 4.11 × 10−251) 

and perinatal phenotypes (OR = 1.89, 95%CI = 1.58–2.26, 
p = 1.00 × 10−12) and strongly depleted for autoimmune 
(OR = 0.34, 95%CI = 0.32–0.36, p = 1.31 × 10−278) and 
infection phenotypes (OR = 0.52, 95%CI = 0.48–0.57, 
p = 1.02 × 10−52) compared to all entries in the EWAS 
Catalog. CpG sites are also enriched for CpG sites asso-
ciated with ancestry (OR = 1.50, 95%CI = 1.24–1.82, 
p = 1.80 × 10−5) (Fig. 3).

Ethnicity‑associated CpG sites are highly enriched 
for cis‑eQTMs
In total, 1372 ethnicity-associated CpGs were expression 
quantitative trait methylation (eQTMs) based on BIOS 
data [57] and ethnicity-associated CpGs were highly 
enriched for eQTMs compared to the overall BIOS data 
set (OR = 2.72, 95% CI = 2.57, 2.88, p = 6.78 × 10−271). 
eQTMs are annotated in Additional file 3: Table S1.

Ethnicity‑associated CpG sites are enriched for several GO 
terms
We separated ethnicity-associated CpG sites into those 
with higher or lower levels of methylation in the South 
Asian compared to the European group. These are 
referred to as the “higher methylation set” and “lower 
methylation set”. There were 427 GO terms enriched at 
FDR < 0.05 amongst higher methylation set CpGs. There 
was enrichment for Biological Process terms includ-
ing several related to morphogenesis and develop-
ment. Others were related to synaptic signalling. There 
was also enrichment for cellular component terms 
“integral/intrinsic component of plasma membrane”, 
“plasma membrane” and “cell periphery” (Additional 
file  4: Table  S8). There were 50 GO terms enriched at 
FDR < 0.05 amongst the lower methylation set CpGs. 
Enrichment of Biological Process terms were predomi-
nantly terms related to immune response. Enrichment of 
Cellular Component terms were related to “cell surface” 
and “plasma membrane” (Additional file 4: Table S8).

We repeated the GO ontology enrichment analy-
sis, this time restricting to CpGs that were identified as 
eQTMs based on BIOS data (Additional file 4: Table S8). 
In this analysis, CpGs in the higher methylation set were 
enriched for 18 GO terms, almost all were Molecular 
Function terms. The most strongly enriched terms were 
“transcription regulatory region sequence-specific DNA 
binding”, “RNA polymerase II transcription regulatory 
region sequence-specific DNA binding”, “RNA poly-
merase II cis-regulatory region sequence-specific DNA 
binding” and “regulatory region nucleic acid binding”. 
Amongst CpGs in the lower methylation set, we detected 
enrichment of 54 GO terms predominantly of Biological 
Process terms relating to immune response (Additional 
file 4: Table S8 GO term enrichment).
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Fig. 3  Enrichment of EWAS Catalog phenotypes amongst ethnicity-associated CpG sites. Entries from the EWAS Catalog were reduced into 
categories of related phenotypes [56]. Group “other” contained CpGs not assigned categories and represented 0.24% of all unique CpGs across 
categories. SEP Socio-economic position
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Regulatory pathways overlap with the genomic position 
of ethnicity‑associated CpGs
Using LOLA, we identified regulatory elements over-
lapping with the genomic position of lower and higher 
methylation sets associated with ethnicity (Additional 
file  4: Table  S9). Overlaps in the higher methylation set 
include sites annotated to CpG islands, DNAse hypersen-
sitivity sites across multiple tissues including stem, brain, 
liver and hematopoietic cells and transcription factor 
binding sites (most strongly EZH2, a component of the 
polycomb repressive complex 2 (PRC2) which functions 
to methylate Lys-27 on histone 3). The higher methyla-
tion set also includes overlaps with histone modifications 
with the strongest evidence for overlaps with H3K4me1 
and H3K27me3 which indicate active enhancer regions 
[58]. This is also supported by overlaps with enhancer 
segments across multiple cell types.

In the lower methylation set, the overlaps were fewer 
than in the higher methylation set (n = 74 vs n = 299). 
Overlaps in the lower methylation set include those with 
repressed segments across multiple cell types and UCSC 
repeat regions. DNAse hypersensitivity site overlaps in 
the lower methylation set were observed predominantly 
in hematopoietic cells. Transcription factor binding site 
overlaps include c-Fos and C-Jun which combine to form 
activator protein-1, a transcription factor which coordi-
nates transcription in response to cytokines and infec-
tion by viruses and bacteria [59]. In contrast to the higher 
methylation set, there were no overlaps with histone 
modifications in the lower methylation set (see Addi-
tional file 4: Table S9).

Discussion
We observed genome-wide differences in DNA methyla-
tion between South Asian and European individuals at 
16,344 CpG sites and regions with effect sizes that were 
comparable in the magnitude of effect to those seen in 
EWAS of smoking [29, 31, 51]. These differences were 
replicated between two distinct cohorts: one of men 
in older adulthood and one of women in pregnancy. By 
using DNA samples given at follow-up clinics in SABRE, 
we showed temporal stability of ethnic differences in 
DNA methylation over a c.20-year period. We also 
observed lower levels of systemic inflammation (meas-
ured by mdNLR) in South Asians compared to Euro-
peans in both cohorts. Ethnic differences in epigenetic 
age acceleration were found for some of the estimators 
tested (namely PhenoAge and SkinBlood), but only in 
SABRE. Functional exploration of the ethnic differences 
observed indicated that ethnicity-associated CpG sites 
are depleted in 3’UTRs and intronic regions and highly 
enriched for eQTMs. By comparing ethnicity-associated 
CpG sites with EWAS Catalog entries, we identified that 

ethnicity-associated CpGs are enriched amongst multiple 
groups of traits including metabolites and autoimmune 
phenotypes that had previously been reported to be asso-
ciated with variation in DNA methylation. On further 
investigation within the SABRE cohort, we found that 
ethnic differences are predominantly explained by differ-
ences in cell composition, and to a lesser extent explained 
by smoking and genetic effects.

Initial exploration of genetic and DNA methylation 
variance using PCA demonstrated that individuals from 
each self-reported ethnic group were genetically and 
epigenetically distinct. Genetic variation estimated from 
genetic PCA is greater in South Asian compared to Euro-
pean individuals in SABRE and BiB. This is expected 
since South Asian individuals in these two cohorts have 
a recent migration history from a large geographical area 
into the UK. Methylation PCA analysis also separated 
self-reported ethnicities but this was less distinct than for 
genetic data.

Ethnicity associations in SABRE were temporally sta-
ble (effect estimates R2 = 0.9 over 20 years) although we 
acknowledge there may be a healthy survivor effect since 
around 25% of the cohort died between baseline and fol-
low-up clinics. In previous studies, CpG sites stable over 
time have been postulated to be driven by genetic effects 
[60]. However, our data suggest that genetic variation is 
not a strong determinant of ethnicity-associated differ-
ences in DNA methylation. We therefore suggest that the 
DNA methylation differences observed are likely to be 
predominantly environmentally determined and persist 
across the life course. For example, this hypothesis is con-
sistent with reported observations of early life exposures 
leaving a lasting impact on the methylome [61].

A number of studies have identified differences in epi-
genetic age acceleration between ancestries [62–64], 
although none has previously studied South Asian indi-
viduals. Self-reported South Asian individuals had higher 
age acceleration amongst all epigenetic clock measures 
than those in the European ethnic group in SABRE. For 
Levine PhenoAge and Horvath SkinBlood estimators, 
these differences were robust to adjustment for BMI and 
self-reported smoking. We did not replicate results in BiB 
but postulate this may be due to the younger age of BiB 
participants. It has been suggested that epigenetic clocks 
may contain ancestry-specific CpGs in their models so 
further exploration of clock models is required before 
concrete inferences can be made with respect to the bio-
logical or clinical significance of our observations [65].

An index of systemic inflammation derived from rela-
tive proportions of white blood cell types (mdNLR) was 
substantially lower in South Asians compared to Euro-
peans in both SABRE and BiB and the association was 
not explained by age, smoking or BMI. The presence of 
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differences between ethnicities in this cell count-derived 
measure accords with observations in this study of cell 
counts being the major determinant of ethnic differ-
ences in DNA methylation, as discussed below. Higher 
mdNLR has previously been associated with increased 
cancer [66–68], rheumatoid arthritis [69] and cardiovas-
cular disease risk [70]. In previous studies, differences in 
mdNLR by ethnicity have been reported with European 
ancestry groups having the highest level of mdNLR [50, 
71]. Our results include South Asian ancestries for the 
first time and support Europeans having elevated mdNLR 
compared to other ancestries. However, this result may 
represent higher systemic inflammation in Europeans 
compared to South Asians or may represent a difference 
in reference ranges between groups. It may also reflect 
sample selection within our cohorts, for example, the 
SABRE cohort was limited to individuals free from dia-
betes or coronary heart disease. In comparison with dis-
ease-free individuals, South Asians are typically healthier 
than European individuals, for example, reporting lower 
levels of smoking (see Table 1).

Exploration of EWAS results identified that ethnic dif-
ferences in cell composition were the major driver of 
ethnic differences in DNA methylation between South 
Asians and Europeans. This finding aligns with other 
research highlighting cellular composition as a major 
source of variation in DNA methylation measured in 
blood [72]. This highlights the importance of account-
ing for cell composition in epigenetic studies, especially 
when there may be the heterogeneity of genetic ances-
tries within a study.

We investigated the contribution of common genetic 
(SNP) effects to observed differences in DNA methyla-
tion between ethnic groups. In line with other studies 
[53], we identify that mQTL effects are common but 
small in magnitude. In addition, we identified 67 inter-
action effects between mQTLs and ethnicity indicat-
ing there may be associations between methylation and 
ethnicity that are attributable to ethnic-specific genetic 
effects. These findings are of interest and require further 
exploration particularly given the mQTL reference panel 
consisted of European ancestry individuals. We may not 
have therefore captured SNP effects specific to individu-
als of South Asian ethnicity within SABRE.

In addition to exploring the potential determinants of 
DNA methylation differences between Europeans and 
South Asian ancestral groups, we sought to investigate 
whether there was any evidence to support the hypoth-
esis that these ethnicity-variable CpG sites may be asso-
ciated with biological functions (using GO, eQTM and 
LOLA) or disease phenotypes or risk factors (using the 
EWAS Catalog). We acknowledged earlier that European 
and South Asian ethnic groups show marked discordance 

in their risk for some non-communicable diseases, and 
we postulate that variation in DNA methylation may 
contribute to this. We show that ethnicity-associated 
CpG sites are not randomly distributed throughout the 
genome and are more likely to be eQTMs than chance 
alone. Using LOLA, we identified overlaps between regu-
latory elements and CpG sites associated with ethnicity 
suggesting ethnicity-associated CpG sites were enriched 
in active enhancer regions. These findings suggest that 
ethnicity-associated CpG sites are enriched for function-
ally important sites.

Comparing ethnicity-associated CpG sites with those 
in the EWAS Catalog [42], we identified enrichment for 
CpG sites associated with ancestry. This gives further 
support to our EWAS results. We also observed enrich-
ment amongst CpG sites associated with sex and smok-
ing. Since our analyses are stratified by sex and adjusted 
for smoking this may suggest residual confounding or 
highlight that other studies reporting their associations 
in the EWAS Catalog may have not adjusted for these 
covariates. We observed strong enrichment amongst 
CpG sites associated with disease phenotypes, most 
prominently an enrichment of ethnicity-associated CpG 
sites associated with metabolites and a depletion of eth-
nicity-associated CpG sites amongst CpG sites associated 
with autoimmune diseases amongst others. This finding 
supports an avenue of further research to define ethnic-
specific risk. However, SABRE samples are restricted to 
healthy individuals (e.g. with no existing diabetes or car-
diovascular disease) so this limits the conclusions we can 
make on phenotype enrichment compared to the EWAS 
Catalog data.

Strengths and limitations
This is one of the largest studies to explore differences 
across the epigenome between South Asian and Euro-
pean populations and makes an important contribution 
to an emerging but still small literature on ethnic dif-
ferences in epigenetic markers. We have also replicated 
epigenome-wide ethnic differences in an independent 
cohort (BiB). That the replication sample (women only 
with DNA methylation measured on pregnancy samples) 
was very different to the discovery sample (men only in 
older age) has some advantage, in that where replication 
occurs this is likely to reflect robust ethnic differences. 
Additional strengths include the availability of genomic 
and other data in the two studies that enabled the explo-
ration of factors relating to ethnic differences in DNA 
methylation.

We acknowledge some key limitations. All reference 
data utilised is predominantly from data sets of European 
ancestry. For example, mQTLs from GoDMC were iden-
tified in individuals of European ancestry [53]. Therefore, 
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we may not have identified mQTLs specific to individuals 
of South Asian ancestry which would mean that genetic 
effects may be underestimated in our study. EWAS stud-
ies in the EWAS Catalog are also predominantly con-
ducted in European ancestry individuals. There may also 
be bias in methylation-derived variables (cell composi-
tion and mdNLR) which rely on a European ancestry 
reference set [49, 50]. The main EWAS was analysed in 
male participants and replication in females. There may 
therefore be sex-specific ethnic differences that we could 
not detect in this analysis. In addition, both SABRE and 
BiB samples are restricted to selected subsets of healthy 
individuals (see methods). This potentially introduces 
selection bias [73] and limits the conclusions we can 
make on phenotype enrichment compared to the EWAS 
Catalog data. Finally, individuals in SABRE and BiB were 
recruited in the UK, with South Asian individuals rep-
resenting migrant populations. This may limit generalis-
ability to non-migrant South Asians vs Europeans.

This study has only made comparisons between two 
self-reported ethnic groups and models a limited num-
ber of phenotypes. Wider efforts are required to increase 
population diversity in epigenetic studies.

Conclusions
This study aimed to define and characterise differences 
in DNA methylation between individuals of European 
and South Asian self-reported ethnicity. This is impor-
tant research because there are little epigenetic data 
collected across global populations and very few cross-
ancestry comparisons made. This study highlights wide-
spread differences in DNA methylation throughout 
the genome between South Asians and Europeans. We 
estimate that 76% of ethnic differences observed in this 
study are attributable to differences in cell composition. 
Surprisingly, little ethnicity-associated variation in DNA 
methylation was explained by underlying genetic differ-
ences between the groups. We also identified that South 
Asians have lower levels of systemic inflammation (using 
the methylation-derived neutrophil-to-lymphocyte 
ratio), but in the older SABRE cohort we also observed 
higher age acceleration in South Asian individuals com-
pared to Europeans. We used public databases to charac-
terise ethnicity-associated CpG sites and show they are 
enriched for eQTMs and GO terms, depleted in 3’UTRs 
and intronic regions and have overlaps with regulatory 
markers. This study demonstrates that epigenetic differ-
ences between ethnicities are widespread. It highlights 
the need to consider cell composition, genetic variation 
and lifestyle confounders in population studies, particu-
larly in studies with participants from different ances-
tries. This study also identifies that there are many CpG 
sites that are associated with methylation independently 

of these factors. Further exploration of these ethnicity-
associated CpG sites could improve our understanding of 
disease aetiology and refine predictive models which rely 
on epigenetic data.

Methods
Study populations
SABRE
Samples were derived from the extensively characterised 
population-based Southall And Brent REvisited (SABRE) 
cohort [3]. The SABRE cohort includes 1711 first-gener-
ation South Asian migrants and 1762 European-origin 
individuals aged between 40 and 69 living in west Lon-
don, UK. Initial investigations were carried out between 
1988 and 1991 with follow-up clinics c.20 years later.

DNA was extracted from peripheral blood samples 
collected at baseline and follow-up visits. A random 
sample of 800 men from the SABRE cohort at baseline 
clinic was selected for this study. Sampling was limited 
to individuals free from diabetes or coronary heart dis-
ease with good-quality DNA available at baseline. Sam-
ples were stratified across two age groups (cut at the 
median of 52 years) and across two self-reported ethnic 
groups (South Asian and European). Samples were ran-
domly selected to give equal numbers of samples in each 
stratum. Repeat DNA was collected at follow-up clinics 
where possible (n = 139/800 individuals).

The study was approved by St Mary’s Hospital Research 
Ethics Committee (07/H0712/109) and all participants 
provided written informed consent.

Born in Bradford
Born in Bradford (BiB) is a multi-ethnic pregnancy and 
birth cohort that recruited pregnant women largely dur-
ing an oral glucose tolerance test (24–28 weeks of gesta-
tion) in Bradford, UK, between 2007 and 2010 [43]. The 
cohort has been described in detail elsewhere [43, 44, 74]. 
In total 12,453 women, who gave birth to 13,818 infants 
were recruited. DNA was extracted from peripheral 
blood samples. DNA methylation was generated from a 
non-random subsample of 1000 BiB maternal DNA sam-
ples, that prioritised the two largest (self-reported) eth-
nic groups (White British and Pakistani) and included 
women who had a singleton pregnancy and where both 
mother and their child had genome-wide data. Samples 
were selected to give equal numbers of self-reported 
white British (n = 444) and Pakistani (n = 472) mother–
offspring pairs.

Ethical approval for the data collection was granted 
by Bradford Research Ethics Committee (Ref 07/
H1302/112). All participants gave written informed 
consent.
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Methylation data
DNA from SABRE participants was analysed using 
HumanMethylation450 BeadChips (Illumina, San Diego, 
CA, USA). Approximately 500  ng of DNA was bisul-
phite modified using EZ DNA methylation kits (Zymo 
Research, Orange, CA, USA). The manufacturer’s pro-
tocol was followed using the alternative incubation con-
ditions recommended when using Illumina BeadChips. 
BeadChips were processed according to the manufac-
turer’s protocol and Illumina iScan software v3.3.28 was 
used to scan the arrays. Quality control and process-
ing were conducted according to the pipeline described 
previously [75] but with more stringent quality control 
parameters using meffil.qc.parameters(): The detection 
p value threshold was reduced to 0.1 for samples and 
probes, bead number threshold was reduced to 0.1 for 
samples and probes, sample genotype concordance was 
reduced to 0.8 and sex outliers < 5 SD were removed. In 
total, 11 samples and 1644 probes were removed from the 
data set. SABRE data were normalised using 15 control 
probe PCs derived from the technical probes informed by 
meffil scree plots [75]. During normalisation of raw data, 
batch effects (defined as 450  k slide ID) were removed 
where the slide was modelled as a random effect. Cell 
composition was estimated from methylation data using 
the Houseman method [49, 76]. Statistical analyses were 
performed on β values throughout. Samples with missing 
genetic data or admixture (Additional file 1: Fig. 1) were 
also removed leaving 747 samples and 484,781 probes 
available for analysis.

In BiB, the data generation pipeline was analogous to 
that of SABRE, but the methylation array used was the 
HumanMethylationEPIC BeadChip (Illumina, San Diego, 
CA, USA). Following QC steps, 922 samples and 860,750 
probes were available for analysis.

Methylation principal components
CpG sites were pruned by ranking on variance and 
removing CpGs with correlation R2 > 0.2. In each cor-
related pair the CpG with the highest variance was 
retained. This pruning resulted in a reduced data set of 
21,023 CpGs (SABRE) and 19,438 CpGs (BiB). Principal 
component analysis (PCA) then was performed to gener-
ate methylation principal components using prcomp.

Genetic data
DNA from 2980 SABRE participants were genotyped 
using the UCL druggable target array, comprising the 
Illumina Human 1679 Core Bead Chip (~ 240 K genome-
wide markers) and an additional custom set of 200  K 
markers on genes encoding proteins involved in drug 
handling, drug action, and druggable targets. This was 
developed in collaboration with the London School of 

Hygiene and Tropical Medicine and the European Bioin-
formatics Institute.

For both the SABRE South Asian and European 
sub-cohorts, individuals were excluded on the basis 
of incorrect sex assignment, high missingness (> 5%), 
abnormal heterozygosity (het > mean (het) + 3*sd (het) 
or het < mean (het) − 3*sd (het)), cryptic relatedness 
(pihat ≥ 0.9999 identified 20 cases of sample mislabel-
ling which were excluded) and non-concordant ancestry 
(detected via Principal Components Analysis).

SABRE phasing was performed using Eagle and ethnic-
ity-specific imputation was performed using Minimac3 
against the HRC reference panel (http://​www.​haplo​type-​
refer​ence-consortium.org/) [77].

SABRE genotypes were filtered to have a MAF > 0.01, 
imputation info score > 0.8 and HWE p < 0.00001. After 
data cleaning and QC, 1527 participants of European 
ethnicity and 1210 participants of South Asian ethnicity 
had available 6,912,559 and 6,046,044 SNPs, respectively.

For BiB participants, DNA was genotyped using either 
Infinium Human Core Exome-24 v1.1 arrays or Infinium 
global screen-24 + v1.0 arrays (Illumina, San Diego, CA, 
USA). Samples were pre-processed using GenomeStu-
dio 2011.1. Samples with Call Rate < 0.95 were excluded. 
Poorly performing SNPs were identified based on Call 
Freq < 0.97, Cluster Sep ≤ 0.3, AB R Mean ≤ 0.2, BB R 
Mean ≤ 0.2, AA R Mean ≤ 0.2, 10% GC Score ≤ 0.2, MI 
Errors < 2 and Rep Errors < 2.

After quality control, a VCF containing 15,628 BiB par-
ticipants and 459,340 genomic variants was submitted to 
the Sanger Imputation Service using the “UK10K + 1000 
Genomes Phase 3” as a reference panel and "pre-phase 
with EAGLE2 and impute" as the pipeline. The 1000 
Genomes Phase 3 panel was chosen as it contains sam-
ples originating from several global populations [78]. The 
resultant imputation data set contains 15,628 partici-
pants and 87,558,135 variants.

Genetic principal components
For the SABRE cohort, we combined European and 
South Asian populations on intersecting imputed SNPs 
(n = 5,539,760) and the availability of DNA methyla-
tion data. In total, 749 European and South Asian indi-
viduals were included in the genetic principal component 
analysis.

For the BiB cohort, there were 875 individuals after 
sub-setting for participants with available DNA methyla-
tion and genetic data.

The HapMap Phase 3 (HapMap3) reference data 
set contains around 1.5 million SNPs genotyped in 
1397 individuals from a variety of populations. This 
data set is available from the HapMap FTP site (ftp://​
ftp.​ncbi.​nlm.​nih.​gov/​hapmap/). We used LiftOver to 

http://www.haplotype-reference
http://www.haplotype-reference
ftp://ftp.ncbi.nlm.nih.gov/hapmap/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/


Page 13 of 17Elliott et al. Clinical Epigenetics          (2022) 14:130 	

convert HapMap3 genomic positions from Build 36 to 
37 (hg18 to hg19 chain file) and merged with the SABRE 
and BiB cohort independently on intersecting SNPs 
(N = 1,032,847 (SABRE) and N = 1,348,525 (BiB)) giving 
a final sample of 2146 individuals for SABRE and Hap-
Map3 combined, and 2272 individuals for BiB and Hap-
Map3 combined.

Principal component analysis (PCA) was performed 
to generate the first 20 genetic principal components 
(PCs) for i) the SABRE cohort and BiB cohorts (indepen-
dently) and ii) each cohort merged with HapMap3 using 
Plink 1.90 [79]. There were 1,032,847 SNPs intersect-
ing between SABRE and HapMap3 and 1,348,525 SNPs 
intersecting between BiB and HapMap3. After prun-
ing for independent SNPs (window size = 50 SNPs, step 
size = 5 SNPs, VIF = 1.5, and excluding long-range LD 
regions); 103,973 and 120,671 SNPs were taken forwards 
for PCA in the SABRE cohort and combined SABRE and 
HapMap3, respectively. For BiB, there were 212,061 and 
252,916 SNPs taken forwards for PCA in the BiB cohort 
and combined BiB and HapMap3, respectively.

Derived phenotypes
Measures of epigenetic age and age acceleration were 
generated using the methylclock R package [48]. The 
following estimators were utilised: Horvath, Hannum, 
Alfonso and Gonzalez, Horvath Skin and Blood, Levine 
PhenoAge [80–85]. Extrinsic Epigenetic Age accelera-
tions (EEAAs) for each method were calculated as the 
residuals from a linear model where DNAmAge was the 
outcome and chronological age was the predictor. Intrin-
sic epigenetic age accelerations (IEAA) were calculated 
as the residuals from a linear model, where DNAmAge 
was used as the outcome and chronological age and cell 
counts were predictors [36].

The methylation-derived neutrophil-to-lymphocyte 
ratio (mdNLR) is an epigenetic estimate of neutrophil-
to-lymphocyte ratio [50]. Using cell count estimates, 
the neutrophil count was divided by the lymphocyte cell 
count (calculated as the sum of B cells, CD4 + T cells, 
CD8 + T cells and natural killer cells) to provide the 
mdNLR.

Statistical analysis
Baseline characteristics comparing South Asians and 
Europeans were conducted using t tests for continuous 
and chi-squared tests for categorical variables.

EWAS were conducted utilising meffil, where methyla-
tion was the outcome and ethnicity was the predictor. 
Covariates in each model are described in the results. 
Differentially methylated regions (DMRs) were identified 
by combining EWAS test statistics between consecutive 

CpG sites (maximum distance between sites = 500 base 
pairs) using the R package dmrff [86].

To replicate our findings in an alternative cohort, we 
conducted an EWAS and DMR analysis of self-reported 
ethnicity amongst individuals from the Born in Bradford 
cohort.

To investigate inflation of observed λ values we used a 
method described previously [45] where lambdas were 
recalculated in SABRE using CpGs which had p > 0.2 
in the corresponding BiB EWAS and vice versa where 
lambdas were recalculated in BiB using CpGs which had 
p > 0.2 in the corresponding SABRE EWAS.

For epigenetic age analyses, linear models were used to 
identify differences in age acceleration between SABRE 
and BiB ethnic groups where ethnicity was the predictor 
and age acceleration was the outcome. In adjusted mod-
els, BMI and smoking were included as additional covari-
ates in the models as these are common disease risk 
factors and differed by ethnicity in SABRE and BiB.

For mdNLR analyses, linear models were used to iden-
tify differences in mdNLR between SABRE and BiB eth-
nic groups where ethnicity was the predictor and mdNLR 
was the outcome. In adjusted models, BMI, smoking and 
age were included as additional covariates in the mod-
els as they are possible mediators in the relationship 
between ethnicity and mdNLR.

The Genetics of DNA Methylation Consortium 
(GoDMC) database (http://​mqtldb.​godmc.​org.​uk/) [53] 
was used to identify mQTLs of ethnicity-associated 
CpG sites identified in SABRE. The mQTLs retrieved 
were restricted to those at p < 1 × 10–8 (cis mQTLs) 
or p < 1 × 10−14 (trans-mQTLs) in accordance with the 
GoDMC meta-analysis protocol [53]. For SNP analyses, 
allele frequencies were compared between populations 
using Fisher’s tests. In regression models, SNPs were 
coded as additive effects.

Genetic associations with methylation and gene–envi-
ronment interactions were modelled using GEM, using 
self-reported ethnicity as the environmental component 
[54].

Genomic region information was annotated through 
ANNOVAR [87]. CpG sites were annotated into func-
tional categories including downstream, exonic, exonic/
splicing, intergenic, intronic, ncRNA_exonic, ncRNA_
exonic/splicing, ncRNA_intronic, ncRNA_splicing, splic-
ing, upstream, upstream/downstream, UTR3, UTR5 
and UTR5/UTR3. Enrichment was assessed using chi-
squared tests.

Ethnicity-associated CpG sites were compared to those 
listed in EWAS Catalog (http://​www.​ewasc​atalog.​org/) 
in June 2021. The EWAS Catalog contains EWAS stud-
ies analysing at least 100,000 CpG sites using a mini-
mum sample size of 100 individuals. Catalog entries were 

http://mqtldb.godmc.org.uk/
http://www.ewascatalog.org/
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reduced into related categories [56], and enrichment was 
assessed using Wald odds ratio and chi-squared tests.

We assessed whether ethnicity-associated CpG sites 
were also cis-expression quantitative trait methylation 
(cis-eQTMs). Cis-eQTM data were extracted from BIOS 
consortium analyses of methylation and gene expres-
sion from blood samples in 2101 Dutch individuals [57]. 
Enrichment was assessed using Wald odds ratio and chi-
squared tests.

Biological enrichment analyses were run using unique 
CpG sites identified from the EWAS and DMR analyses 
as input. Since increased and decreased levels of meth-
ylation at CpG sites in our analysis were likely to be bio-
logically distinct, we stratified our enrichment analyses 
accordingly. This approach has been used previously [88]. 
Gene ontology enrichment [89, 90] was conducted using 
missMethyl R package [91]. Further enrichment analyses 
were conducted using the LOLA R package [92]. LOLA 
input was the genomic coordinates of ethnicity-associ-
ated CpG sites and the background set was the genomic 
coordinates of all array CpG sites included in the EWAS. 
The LOLA core region set was used to test for enrich-
ments. For each LOLA analysis, results were filtered to 
retain enriched region sets where the support (i.e. num-
ber of regions overlapping) ≥ 5 and the q value was < 0.05.

Analyses were conducted in R, version 4.1.2 (http://​
www.r-​proje​ct.​org).
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Additional file 1. Figure S1. Principal component analysis of SABRE 
genetic data. The upper panels show PCs 1 and 2 generated from 
SABRE or BiB data. The lower panels show PCs 1 and 2 generated from 
SABRE + HapMap3 data or BiB + HapMap3 data. Colours indicate 
self-reported ethnic group or subgroup (SABRE, BiB) or population 
group (HapMap3). Axis labels show the variance explained by each PC. 
HapMap3 populations have been collapsed: South Asian = GIH; Euro-
pean = CEU + TSI; African = ASW + LWK + MKK; Mexican = MEX; South 
East Asian = CHB + CHD + JPT. In the lower panel (SABRE), two outliers 
self-reporting as South Asian in SABRE data appear intermediate between 
African groups from HapMap3 and the remaining South Asian cluster. 
Both of these individuals reported their country of birth as an African 
country indicating possible genetic admixture in these individuals. These 
two individuals were removed from all other analyses. In the lower panel 
(SABRE), “other South Asian” individuals predominantly identify their coun-
try of birth as South Asia (India, Pakistan, Bangladesh, Sri Lanka), n = 42/50.

Additional file 2. Figure S2. Principal component analysis of SABRE DNA 
methylation data. The upper panel shows PCs 1 and 2 generated from 
the 1000 most variant probes in SABRE or BiB. The lower panel shows PCs 
1 and 2 generated from the 10000 most variant probes in SABRE or BiB. 
Colours indicate self-reported ethnic subgrouping (SABRE, BiB). Axis labels 
show the variance explained by each PC.

Additional file 3. Table S1. EWAS results.

Additional file 4. Table S2. DMR results. Table S3. Epigenetic age 
acceleration results. Table S4. Cell count differences. Table S5. Effects of 
adjustment for mQTL and allele frequency differences. Table S6. Effects 
of adjustment for mQTL and allele frequency differences. Table S7. 

ANNOVAR enrichment. Table S8. GO term enrichment. Table S9. LOLA 
enrichment.

Additional file 5. Figure S3. Comparison of effect sizes for cell composi-
tion adjustment of EWAS. Each CpG is represented by a point on the 
graph with 95% confidence intervals for effect estimates. Red dashed 
line: linear regression between data sets. Black dashed line: line of equal-
ity. Orange highlighted estimates: p ≤ 1.03 × 10−7 cell adjusted EWAS 
(n = 3922/16,344 CpG sites).
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