Skip to main content
. 2022 Oct 8;22(19):7623. doi: 10.3390/s22197623

Table 6.

A comparative analysis of the previous research and the proposed work.

Reference Study Setting Classifier Accuracy
Liu et al. [28] 0-, 1-, 2- N-back LDA 64.4% (EEG)
55.6% (fNIRS)
68.1% (EEG+fNIRS)
Aghajani et al. [10] 0-, 1-, 2-, 3- N-back SVM 85.9% (EEG)
74.8% (fNIRS)
90.9% (EEG+fNIRS)
Nguyen et al. [38] Simulated driving system FLDA 73.7% (EEG)
70.5% (fNIRS)
79.2% (EEG+fNIRS)
Saadati et al. [29] N-back
DSR
Word generation
LHand vs. RHand
DNN, SVM 67.0% (EEG-DNN)
80.0% (fNIRS-DNN)
87.0% (EEG+fNIRS-DNN)
82% (EEG+fNIRS-SVM)
Chu et al. [39] Mental workload SVM, RF, DT 55.4% (EEG-RF)
69.2% (fNIRS-RF)
78.3% (EEG+fNIRS-RF)
Proposed study 0-, 2-, 3-back SVM 77% (0-back vs. 2-back)
83% (0-back vs. 3-back)
59% (2-back vs. 3-back)

Abbreviations: LDA—Linear discriminant analysis; SVM—Support Vector Machine; FLDA—Fisher Linear Discriminant Analysis; DNN—Deep Neural Network; RF—Random Forest; DT—Decision Tree; DSR—discrimination/selection response task.