Table 2.
Training | Prediction | ||||||
---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Bal. Accuracy | Sensitivity | Specificity | Bal. Accuracy | ||
FFTi | M | 0.693 | 0.682 | 0.688 | 0.578 | 0.644 | 0.611 |
SE | (0.0013) | (0.0013) | (0.0002) | (0.0015) | (0.0014) | (0.0003) | |
FFTd | M | 0.751 | 0.689 | 0.720 | 0.562 | 0.625 | 0.593 |
SE | (0.0037) | (0.0037) | (0.0007) | (0.0044) | (0.0040) | (0.0011) | |
UDT | M | 0.868 | 0.738 | 0.803 | 0.52 | 0.626 | 0.573 |
SE | (0.0006) | (0.0006) | (0.0002) | (0.0010) | (0.0007) | (0.0004) | |
LogReg | M | 0.737 | 0.747 | 0.742 | 0.581 | 0.692 | 0.637 |
SE | (0.0004) | (0.0003) | (0.0003) | (0.0007) | (0.0004) | (0.0003) |
M—mean, SE—standard error of the mean, FFTi—fast-and-frugal tree construction using the ifan algorithm, FFTd—fast-and-frugal tree construction using the dfan algorithm, UDT—unconstrained decision trees based on the CART algorithm, LogReg—logistic regression.