Table 3.
Training | Prediction | ||||||
---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Bal. Accuracy | Sensitivity | Specificity | Bal. Accuracy | ||
FFTi | M | 0.767 | 0.723 | 0.745 | 0.698 | 0.695 | 0.696 |
SE | (0.0008) | (0.0008) | (0.0002) | (0.0011) | (0.0009) | (0.0003) | |
FFTd | M | 0.815 | 0.756 | 0.786 | 0.698 | 0.71 | 0.704 |
SE | (0.0025) | (0.0024) | (0.0007) | (0.0032) | (0.0028) | (0.0010) | |
UDT | M | 0.896 | 0.784 | 0.840 | 0.625 | 0.694 | 0.660 |
SE | (0.0005) | (0.0005) | (0.0002) | (0.0010) | (0.0007) | (0.0004) | |
LogReg | M | 0.792 | 0.803 | 0.798 | 0.632 | 0.749 | 0.690 |
SE | (0.0004) | (0.0003) | (0.0003) | (0.0007) | (0.0004) | (0.0003) |
M—mean, SE—standard error of the mean, FFTi—fast-and-frugal tree construction using the ifan algorithm, FFTd—fast-and-frugal tree construction using the dfan algorithm, UDT—unconstrained decision tree based on the CART algorithm, LogReg—logistic regression.