Skip to main content
. 2022 Sep 25;22(19):7268. doi: 10.3390/s22197268

Table 6.

Comparison of the diabetes detection model outcomes with the previous studies.

Approach Train Test Split Result (%) Ref.
Decision tree
Random forest
Naive Bayes
70:30 train test ratio DT RF NB [13]
Accuracy
Precision
Sensitivity
Specificity
F1 score
AUC
74.78
70.86
88.43
59.63
78.68
78.55
79.57
89.40
81.33
75.00
85.17
86.24
78.67
81.88
86.75
63.29
84.24
84.63
RF
AdaBoost
Soft voting classifier
70:30
train test
ratio
RF Ada Voting classifier [10]
Accuracy
Precision
F1 score
Recall
AUC
77.48
71.21
64.38
58.75
78.10
75.32
68.25
60.13
53.75
74.98
79.08
73.13
71.56
70.00
80.98
RF Not mentioned RF ANN K mean
clustering
[2]
Accuracy
AUC
74.70
80.60
75.70
81.60
73.60
-
ANN
XGB
Not mentioned ANN XGB [12]
Accuracy
Sensitivity
Specificity
AUC
71.35
45.22
85.20
65.00
78.91
59.33
89.40
88.00
Naive Bayes
SVM
DT
10-fold
Cross-validation
NB SVM DT [11]
Precision
Recall
F1 score
Accuracy
75.9
76.3
76
76.3
42.4
65.1
51.3
65.1
73.50
73.80
73.60
73.82
Proposed soft voting classifier (XgBoost + RF) 5 fold
Cross-validation
Accuracy
Precision
Recall
F1 score
AUC
90
88
89
95
95
-