Skip to main content
. 2022 Sep 25;22(19):7268. doi: 10.3390/s22197268

Table A6.

AdaBoost classifier’s performance for the five-fold cross-validation.

Target
Class
Precision Recall F1-Score AUC Score Accuracy Confusion
Matrix
Train Test
Fold 1 Class 0 0.92 0.80 0.86 - - - True label Predicted label
Class 1 0.70 0.87 0.78 - - - 80 20
Average 0.81 0.84 0.82 0.95 0.86 0.82 7 47
Fold 2 Class 0 0.94 0.80 0.86 - - - True label Predicted label
Class 1 0.71 0.91 0.80 - - - 80 20
Average 0.83 0.85 0.83 0.95 0.87 0.83 5 49
Fold 3 Class 0 0.93 0.85 0.89 - - - True label Predicted label
Class 1 0.76 0.89 0.82 - - - 85 15
Average 0.85 0.87 0.86 0.95 0.87 0.86 6 48
Fold 4 Class 0 0.94 0.82 0.88 - - - True label Predicted label
Class 1 0.73 0.91 0.81 - - - 82 18
Average 0.83 0.86 0.84 0.95 0.88 0.85 5 48
Fold 5 Class 0 0.94 0.76 0.84 - - - True label Predicted label
Class 1 0.67 0.91 0.77 - - - 76 24
Average 0.80 0.83 0.80 0.96 0.86 0.81 5 48
All folds’
average
0.82 0.85 0.83 0.95 0.86 0.83