Skip to main content
. 2022 Sep 25;22(19):7268. doi: 10.3390/s22197268

Table A7.

Ensemble model’s performance for the five-fold cross-validation.

Target
Class
Precision Recall F1-Score AUC
Score
Taken
Weight
Accuracy Confusion
Matrix
Train Test
Fold 1 Class 0 0.93 0.91 0.92 -
4 (Xgb)
3 (RF)
- - True label Predicted label
Class 1 0.84 0.87 0.85 - - - 91 9
Average 0.88 0.89 0.89 0.94 .99 0.90 7 47
Fold 2 Class 0 0.93 0.87 0.90 - 1 2 - - True label Predicted label
Class 1 0.78 0.87 0.82 - - - 87 13
Average 0.85 0.87 0.86 0.94 1.00 0.87 7 47
Fold 3 Class 0 0.91 0.91 0.91 - 1 1 - - True label Predicted label
Class 1 0.83 0.83 0.83 - - - 91 9
Average 0.87 0.87 0.87 0.95 1.00 0.88 9 45
Fold 4 Class 0 0.96 0.91 0.93 - 1 4 - - True label Predicted label
Class 1 0.84 0.92 0.88 - - - 91 9
Average 0.90 0.92 0.91 0.96 1.00 0.91 4 49
Fold 5 Class 0 0.95 0.94 0.94 - 2 2 - - True label Predicted label
Class 1 0.89 0.91 0.90 - - - 94 6
Average 0.92 0.92 0.92 0.96 1.00 0.92 5 48
All folds’
average
0.88 0.89 0.89 0.95 0.99 0.90