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Abstract: Forgery and tampering continue to provide unnecessary economic burdens. Although new
anti-forgery and counterfeiting technologies arise, they inadvertently lead to the sophistication of
forgery techniques over time, to a point where detection is no longer viable without technological
aid. Among the various optical techniques, one of the recently used techniques to detect counterfeit
products is HSI, which captures a range of electromagnetic data. To aid in the further exploration
and eventual application of the technique, this study categorizes and summarizes existing related
studies on hyperspectral imaging and creates a mini meta-analysis of this stream of literature. The
literature review has been classified based on the product HSI has used in counterfeit documents,
photos, holograms, artwork, and currency detection.

Keywords: hyperspectral imaging; forgery detection; artwork authentication; document authentication;
counterfeit currency detection; photo authentication; hologram authentication

1. Introduction

Counterfeiting and forgery are salient issues which plague the global economy. It is
estimated that losses from counterfeit checks in the U.S. alone have exceeded $20 billion,
whereas public losses from counterfeit dollar notes were estimated at $80 million [1].
Moreover, the cost of re-designing the currency every 7–10 years as the counter-forgery
measurement must also be considered [2]. While not as common as currency, artworks are
also vulnerable to forgery, as they are usually authenticated by experts, thereby leading
to much human error [3–5]. Considering the enormous size of the global art market
amounting to €51 billion, a more systematic and scientific method of artwork authentication
is therefore necessary [6]. In contrast, document forgeries are considered major issues in
police departments because they cause economic problems and pose an actual danger to
the public as they can be involved in crime [7,8].

Methods used in the forgery technologically evolve on a constant basis and are becom-
ing harder to verify the legitimacy of a document [9]. The human eye can only detect colors
that are combinations of red, blue, and green (RGB) [10]. Meanwhile, hyperspectral imaging
(HSI) detects lights with any wavelength ranging from ultraviolet (UV) to far-infrared (FIR)
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ones. Additionally, it can also distinguish between the two different materials emitting
identical RGB values, based on their spectral fingerprints [11].

HSI has been successfully applied in various applications. In medical fields, its ap-
plication varies from visual aids for diagnostic purposes, and clinical analysis, to cancer
detection [12–31]. In agriculture, it is often used for quality control and inspection pur-
poses [32–43]. In military applications, it is often used for countermeasure detection and
recognition of camouflaged targets [44–58]. Material sciences uses HSI to detect and iden-
tify the materials using their spectral signature [59–71]. In remote sensing, it is used for
geological exploration and soil characterization from a distance [72–79]. HSI paired with its
remote sensing capability is often used in the field of astronomy for astronomic observation
and space surveillance purposes [80–90]. In addition to these, environmental applications
such as drought stress measurement, pollution detection, water resource analysis, space
science, and vegetation monitoring also prove HSI’s reliability [91–104].

However, only a few studies have used HSI for artwork authentication, document
forgery detection, counterfeit currency detection, image authentication, and hologram
authentication. One artwork authentication technique that uses HSI is pigment identifica-
tion [105]. It identifies the pigment used in the painting and inspects if the pigment used is
chronologically accurate. In document forgery detection, HSI is used to differentiate the
different inks and their aging [106–109]. Meanwhile, when detecting a counterfeit currency,
HSI builds a spectral library of authentic banknotes, which is then compared with the
hyperspectral fingerprints of banknotes [110]. For image authentication, HSI differentiates
the brand of the film that the image was taken with using the hyperspectral fingerprint
of each film [111]. Hence, two images taken from two different films are merged become
easily detectable. As per the hologram authentication, HSI can obtain the hyperspectral
fingerprints of the hologram’s reflection from different incident angles, which can then be
compared with the hologram in question [112,113].

With the increase of HSI application in forgery detection, this review aims to provide
a foundation for the application of HSI in forensic image analysis by deducing frequent
issues and comparing data based on its numerical results. Hence, it focuses on different
applications of HSI for the detection of forged artwork, documents, holograms, currency,
and image detection.

2. Criteria for Study Selection

The studies included in this review must have had definite numerical accuracy. All
research must have been written in English and have been published in SCI and Scopus
indexed journals. All research must have been published in journals with impact factors of
more than 3 and H-Indexes above 50. The study must have been published within the last
5 years. Narrative reviews, studies with incomplete data, systematic review/meta-analysis,
comments, proceedings, or study protocols were excluded and only a selected number of
conference papers with complete data and conclusions were included. See Supplementary
Materials, Figure S1 to find the complete flowchart of study inclusion process of this review.

3. HSI for Artwork Authentication

Artwork authentication is a field where HSI is used as means of forgery detection
technology [114]. Due to their nature as cultural heritages, artworks cannot simply be put
through any form of authentication process except for those considered as non-destructive
testing (NDT). Before HSI, only a handful of NDTs, such as Fourier transform infrared
(FTIR), Raman spectroscopy, and X-ray fluorescence, were used for artwork authentica-
tion [115–117]. Therefore, the introduction of HSI would provide further variety to the
possible options that can be used for artwork authentication.

Identifying pigments in the painting is one method which has been traditionally used
for artwork authentication [118]. While it may not be able to prove the authenticity of a
certain artwork, it can, however, prove its inauthenticity when the chronologically incorrect
pigment is detected from the drawing [119]. Polak at el. used an active, laser-based, MIR
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hyperspectral imager (Firefly IR) and a passive hyperspectral camera operating in NIR (Red
Eye 1.7) to capture the images of paintings. Spectral data of different pigments obtained
from imaging the paintings were then used to construct a spectral library. Afterwards,
a classification algorithm was developed and trained. For this research, Support Vector
Machine (SVM) was chosen as the algorithm [120–122]. Once fully developed and trained,
the algorithm was tested in a controlled laboratory environment and yielded a 67% (6 out
of 9) and 78% (7 out 9) accuracy in pigment identification using data from Firefly IR and
Red Eye 1.7, respectively.

Mirroring the spectral library constructed in the research completed by Polak et al.,
Casini et al., created a reference database of red lake pigment using HSI [123]. Cochineal
and brazilwood paints were reconstructed through a historically accurate process and was
captured by the HSI device operating in the Visual-NIR (VNIR) range. To compare results
with the method that was commonly used at the time, they created a reference database of
the same pigments using fiber optic reflectance spectroscopy (FORS). Subsequent compari-
son showed that the data acquired with HSI were accurate and greatly coincided with that
of FORS. However, no exact numerical data was provided by the researchers.

Meanwhile, Daniel et al., used HIS for material identification and mapping of paintings
in the Museum of Zaragoza [124]. To test the analytical suitability of different HSI systems,
two systems using “pushbroom” and “mirror-scanning” were evaluated in this research,
respectively, where both systems operated in otherwise identical parameters. Spectral
data of both systems were captured in range of VNIR and processed using spectral angle
mapper (SAM). They concluded that while HSI was applicable for artwork analysis, a new
algorithm will be required to overcome some interpretation difficulties.

Likewise, Deborah et al. attempted to address crack detection in paintings with spec-
tral processing expressed in a full-band or vector approach, as other available approaches
at the time of the research were either processing the information in a marginal way or
post strong data reduction [125]. Therefore, a multivariate top-hat transform, referred to as
spectral convergence mathematical morphology (SCMM), was developed and compared in
an experiment against two pre-existing methods, namely grayscale top-hat on a distance-
map (DM) and marginal top-hat (Marg.). Results illustrated that while it was robust in
the crack detection, they did not show much of an improvement in comparison to the
existing approaches.

Wang et al. proposed an HSI-feature based fusion method in identifying fake modern
Chinese paintings [126]. An HSI camera operating in the range of 400–900 nm was used
to scan and differentiate between fake and real Chinese paintings. Then, spectral features
were extracted with the use of singular spectrum analysis (SSA), while spatial features were
extracted with the use of both principal component analysis (PCA) and convolution neural
network (CNN). Once through, features were classified with the use of SVM wherein
the proposed method yielded an accuracy of 84.6% by averaging the 10 test results of
classification of random 2500 samples out of 5000 samples.

Another study that utilizes the pigment analysis approach in artwork authentication
using HSI was completed by Grabowski et al. [127]. One of the most difficult challenges of
pigment identification is that of similar color and elemental composition [105]. Therefore,
the current study focused on the development of an algorithm for distinction among
different pigments that have similar elemental compositions. The HSI camera used in
the data gathering process operates in a push-broom geometry and collects 256 spectral
bands in the range of short wavelength infrared (SWIR). The accuracy of the researchers’
algorithm is tested by 4 different types of paper painted with 5 different pigments in a
checkered pattern. The experiment yielded an overall accuracy of 91.16%, 89.76%, 62.83%,
and 79.36% for each type of paper, respectively. While most of the combinations showed
over 50% of accuracy, Chrysocolla on oil paper and Egyptian green on oil canvas were
found to yield less than satisfactory results.

Table 1 shows the comparison of studies classified under artwork authentication in
terms of year published, dataset used, acquisition range, processing method used, and
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accuracy. Based on the years of publication, it can be inferred that only few advancements
have been made recently. All studies classified under artwork authentication included
infrared (IR) wavelength in their acquisition range. Use of IR range can help improve
the visibility of concealed features that cannot be seen with naked eye as well as help
distinguish pigments with similar hue [128,129]. Evidently, most of the studies employed
multiple processing methods. The treatment of an HS image is completed in multiple
stages and different processing methods can be employed in each stage [130,131].

Table 1. Comparison of studies (Artwork).

Authors Year Dataset Range (Acquisition) Methods (Processing) Accuracy

Polak et al. 2017 Own dataset
MIR (Firefly IR) PCA, SVM 67%

NIR (Red Eye 1.7) PCA, SVM 78%

Casini et al. 2015 Own dataset VNIR Customized Software N/A

Daniel et al. 2016
CNR-IFAC open-access

on-line database of
reflectance spectra

VNIR SAM N/A

Deborah et al. 2015 Own dataset HSI-ALL
DM N/A

Marg. N/A
SCMM N/A

Wang et al. 2016 Own dataset VNIR

SSA (Spectral-Only) 80.6%
PCA (Spatial-Only) 72.5%

Combination 84.6%
CNN (Spatial-Only) 58.4%

Grabowski
et al.

2017 Own dataset

SWIR (Tempera canvas) Own Algorithm 91.16%
SWIR (Tempera paper) Own Algorithm 89.76%

SWIR (Oil canvas) Own Algorithm 62.83%
SWIR (Oil paper) Own Algorithm 79.36%

4. HSI for Document Forgery Detection

HSI is used as a means of document forgery detection. Similar to artworks, destructive
examinations are generally discouraged for documents to avoid the compromise of its
originality [132]. One most commonly used document forensic analysis method is chemical
analysis, such as thin-layer chromatography (TLC), which is destructive and invasive [133].
To overcome this, researchers have come up with various NDT and non-invasive methods
to replace the previous method, with the most widely used being Raman spectroscopy due
to its accuracy [134]. his, although not as accurate as Raman spectroscopy, is comparatively
more efficient in image mapping [135]. Therefore, using HSI for document authentication
possibly enhances the currently used methods.

C.S. Silva et al. explored the use of HSI in the near-infrared range (HSI-NIR) in
the application of forensic analysis of document forgery. To evaluate its accuracy, they
employed three different types of simulated forgeries, namely line crossing, obliterating text,
and adding text. Prepared sample images were mapped at the spectral resolution of 6.3 nm
and spatial resolution of 10 µm, while the selected range was at 928–2524 nm. For data-
processing, PCA and multivariate curve resolution-alternating least squares (MCR-ALS)
were used for obliterating and adding text, while MCR-ALS and Partial Least Squares-
Discriminant Analysis (PLS-DA) were used for crossing lines. The experiment yielded
43%, 82%, and 85% accuracy for the obliterating text, adding text, and crossing lines
forgeries, respectively.

In a study by J.F. Pereira et al., HSI was used in both NIR and middle infrared range
(MIR) [136]. A total of 16 different pens were used as samples and PCA and Projection
Pursuit (PP) were used as data processing methods. The accuracy was tested by matching
the numbers written from different pens on both white paper and bank check paper with
sample 2 cm straight lines drawn by each pen. Using his-MIR, PP, and PCA showed an ac-
curacy of 97.5% (73 out of 75) and 87.5% (60 out of 75), respectively whereas using HSI-NIR
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only yielded an accuracy of 83.3% (5 out of 6) and 76.7% (21 out of 36), respectively. When
HSI-MIR was used complementarily with HSI-NIR, both methods yielded an accuracy of
90%. They then concluded that the last configuration was best based on practicality.

Z. Khan et al. also demonstrated the use of HSI to detect mismatching inks in a
handwritten note [137]. Instead of pre-selecting the band, a novel joint sparse band selection
(JSBS) technique was developed to help select the most informative band for forgery
detection. Likewise, an end-to-end camera-based document HSI system was specifically
developed for mapping. Samples were not created but were instead acquired from a
database of hand-written notes. When all bands were selected, the algorithm yielded
detection accuracy of 75.4% and 74.7% for blue and black inks, respectively. However, the
use of JSBS lead to an accuracy yield of 86.7% and 89%, respectively.

Another study completed by Khan et al., proposed a deep learning method for ink
mismatch detection in HS document images [138]. HS images from the dataset were
reshaped in CNN-friendly image formats with the help of deep learning methods and were
then fed into the CNN for classification. This new method yielded detection accuracies of
98.2% and 88% for blue and black ink, respectively.

Luo et al. tried to address the major limitations in the detection of ink mismatch,
which required prior knowledge on the number of inks to be distinguished and uniformity
in relative proportions in the inspected image [106]. These limitations were addressed
using anomaly detection combined with unsupervised clustering and was then put into
test. This new method yielded a detection accuracy of 89.0% and 82.3% for blue and black
ink, respectively.

A.R. Martins et al. speculated that determining the chronological order of crossed lines
was a recurrent problem in forensic analysis of documents [139]. To provide easy to execute
analysis protocol for this problem, the hyperspectral mode of the VSC6000 was used for
mapping. The sample used included a total of 49 crossings drawn on white paper from
7 different brands of blue ballpoint pens, while the band selected was from 400 to 1000 nm.
HYPER-Tools was also used for analysis, while univariate analysis (UA) and MCR-ALS
were the processing used herein. The developed protocol determined the chronological
order of 31 out of 49 crossings (with an accuracy of 63%).

Table 2 shows the comparison of studies classified under document authentication
in terms of year published, dataset used, acquisition range, processing method used, and
accuracy. It can be inferred that the application of HSI in document forgery detection
remained relevant to the current research trend as some studies were recently published.
Acquisition range used in this topic varied, but stayed within the most common spectral
ranges from VIS to IR. Over half of the studies classified under this topic employed PCA as
part of its processing method. Dimension reduction using PCA helped with speeding up
the following processes and increased the overall processing performance [140].

Table 2. Comparison of studies (Documents).

Authors Year Dataset Range
(Acquisition) Methods (Processing) Accuracy

Silva et al. 2014 Own dataset NIR

PCA, MCR-ALS
(Obliterating) 42%

PCA, MCR-ALS (Adding) 82%
MCR-ALS, PLS-DA

(Crossing) 85%

Pereira et al. 2016 Own dataset

MIR PP
PCA

97.5%
87.5%

NIR PP
PCA

83.3%
76.7%

Combination 90%
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Table 2. Cont.

Authors Year Dataset Range
(Acquisition) Methods (Processing) Accuracy

Khan et al. 2015
UWA Writing Ink

Hyperspectral Image Database

JSBS
JSPCA (Blue ink) 86.7%
JSPCA (Black ink) 89%

VIS
JSPCA (Blue ink) 75.4%
JSPCA (Black ink) 74.7%

Khan et al. (2) 2018
UWA Writing Ink

Hyperspectral Image Database VIS
CNN (Blue ink) 98.2%
CNN (Black ink) 88%

Luo et al. 2015
UWA Writing Ink

Hyperspectral Image Database VIS
Own Algorithm (Blue ink) 89.0%
Own Algorithm (Black ink) 82.3%

A. R. Martins
et al. 2019 Own dataset VNIR UA, MCR-ALS 63%

5. HSI for Counterfeit Currency Detection

HSI is rarely used in the field of currency forgery detection because there are other
quicker and easier methods of fake currency detection, such as UV light and digital signa-
ture [141,142]. Meanwhile, currency forgery detection with HSI, while slower and much
more complex, does not require the presence of security features to detect fake currency
because it utilizes spectral data taken from image of said currency instead of security
features. Therefore, his may provide an alternative and possibly more efficient method in
detecting currencies, which lack security features, such as coins and outdated banknotes.

S. Baek et al. classified 20 different denominations of (such as the EU Euro, Indian
Rupee, US Dollar) with the help of low-resolution multispectral images [143]. Contact
image sensor (CIS) was used for the image acquisition using 6 different wavelengths
covering RGB to IR channels. The algorithm first sorted out obvious fakes through global
classification then checked the security feature of remaining banknotes using local feature
classification. Same samples were classified with the method discussed in the study
completed by Kang et al., and comparisons were then made. As a result, it yielded a 99.89%
(27,484 out of 27,764) classification accuracy, while the method proposed by Kang et al.
only yielded 98.66% (27,392 out of 27,764).

Kang et al. proposed a counterfeit banknote detection system using multispectral
images in visual (VIS) and IR spectrum [144]. Banknotes were divided into various blocks
and features were extracted from each to reduce processing time. It was classified post data
processing with the help of Gaussian ML classifier. The experiment yielded 99.97% (8546
out of 8549) of accuracy.

Correia et al. developed in their study a portable NIR spectroscopy device for the
purpose of discriminating authentic and counterfeit Brazilian real banknotes [145]. In total,
11 different regions of interest were selected and analyzed with PCA and PLS-DA, with the
latter showing 100% (12 out of 12) efficiency in distinction.

Vila et al. proposed the development of a fast and non-destructive procedure for
characterizing and distinguishing between original and fake Euro notes using attenuated
total reflectance (ATR)-FTIR [146]. Next, 4 different regions of interests were selected, and
data was processed using GRAMS 32 Software and PCA. Upon completion, the proposed
procedure turned out to be fast, non-destructive, and robust.

H.T. Lim and V.M. Murukeshan explored the possibility of applying HSI for classifica-
tion and authentication of polymer banknotes by building spectral library. A pushbroom
HS imager was used to scan the region of interest (ROI) of sample banknotes. PCA was
then applied to the images to plot 99% confidence ellipses, which were used as classifica-
tion criteria. A classification map drawn through this process closely matched the actual
features of selected ROI. However, the actual detection accuracy using the spectral library
acquired remains to be explored.
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J.M. del Hoyo-Meléndez et al. attempted to authenticate the outdated banknotes from
years 1932 and 1934 using different techniques [147]. As per HSI, a SPECIM HS system
working in a pushbroom was set-up and collected 776 spectral bands with a 400–100 nm
range being used. The images were then corrected for dark current and normalized using a
white reference and were then processed using Envi 5.0 software. HSI analysis revealed
that different types of papers were used to print the banknotes and observe the clear
spectral differentiation from two suspicious banknotes. The study did not, however, test
detection accuracy.

Table 3 shows the comparison of studies classified under counterfeit currency detection
in terms of the year published, dataset used, acquisition range, processing method used,
and accuracy. While most studies under this topic were published relatively recently, only
a few were presented with definite numerical results. Acquisition ranges and processing
methods seemed to follow the trend of studies classified under document forgery detection.
Contrasting these studies however, processing methods employed in studies classified
under counterfeit currency detection seemed to focus on simplifying and speeding up
the process rather than on accuracy. This may have been due to practicality, as other
methods used in counterfeit currency detection only took a fraction of a second to yield
the result [148,149].

Table 3. Comparison of studies (Currency).

Authors Year Dataset Range
(Acquisition)

Methods
(Processing) Accuracy

Baek et al. 2018 Own dataset
VNIR PCA, SVM 99.89%

VIS, IR Own Algorithm 98.66%

Kang et al. 2016 Own dataset VIS, IR Own Algorithm 99.97%

Correia et al. 2018 Own dataset NIR PCA, PLS-DA 100%

Vila et al. 2006 Own dataset IR PCA N/A

Lim et al. 2017 Own dataset NIR Own Algorithm N/A

Hoyo-Meléndez et al. 2016 Own dataset VNIR Envi 5.0 N/A

6. HSI for Photo Authentication

The photo forensics process was often as simple as observing the photo carefully with
the naked eye since simply focusing on such geometric, optical, and physical features may
lead one to a clear conclusion [150]. Even when the forgery was completed flawlessly,
the pixel level inspection almost always revealed the inconsistency hidden within the
image [151]. That said, the application of HSI in the field of photo forensics may seem
unnecessary to some. However, the expansion of variety of the possible options may
introduce furtherment of its techniques.

A. Tournié et al. used NIR HS signatures of chromogenic color photographs to identify
the manufacturers of each film [111] with chromogenic color photographs from 3 different
manufacturers (Agfa, Fuji, Kodak) chosen as samples. The range used was 1000–2500 nm.
Data was then processed using linear discriminant analysis (LDA) and (PCA). Depending
on the paper type, the research yielded an identification accuracy of 82%–96% (114 out of
118, 127 out of 148, 70 out of 85).

Leshem et al. proposed that by using the HSI, an enhanced face recognition tech-
nology could be developed to overcome the current vulnerability that was inherent to
2D image [152]. Multiple layers could be created from a single HS image and encrypting
each layer and creating a binary string based on this encryption generated a unique image
signature. Said signature could then be used in facial recognition processes by comparing
the image-signature of registered facial image with the newly input facial image.

A. Martins et al. also proposed that NIR spectroscopy and multivariate analysis could
be used to date fiber-based gelatin silver prints [153]. PCA and spectral interpretation were
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used to determine the correlation between the print date and film’s composition. After
analyzing a total of 152 film stills from 1914 to 1986 using PLS, they successfully predicted
the printing date of 66 film stills with only 6 years of prediction error.

M. Picollo et al.’s review explained how HSI was used in the Memoria Fotografica
project to restore photographs [154]. It started by analyzing the photographic materials
such as dyes and emulsions using HSI. For the acquisition, a range of 400–900 nm was
used. Uniform manifold approximation and projection for dimension reduction (UMAP)
was then used to optimize the spectroscopic study of acquired images. While this did not
immediately concern image authentication, given the similarities of photographic material
analyzation and artwork pigment analyzation, its potential in the field of photo forensics
may also be explored.

Table 4 shows the comparison of studies classified under photo authentication in
terms of year published, dataset used, acquisition range, processing method used, and
accuracy. Acquisition ranges and processing methods used in these studies follow the trend
of studies classified under document forgery detection and counterfeit currency detection.
There were a limited number of studies available and only one of the studies was presented
with definite numerical results. A lack of research interest may be due to availability of
alternative technologies. Tampered images are easily detectible even without the help of
HSI and alternative methods are often cheaper and faster in comparison [155–157].

Table 4. Comparison of studies (Photo).

Authors Year Dataset Range
(Acquisition)

Methods
(Processing) Accuracy

Tournié et al. 2016 Own dataset SWIR

LDA, PCA (Agfa) 86%
LDA, PCA (Fuji) 96.3%

LDA, PCA
(Kodak) 82.5%

Leshem et al. 2020 Own dataset N/A N/A N/A

A. Martins et al. 2011 Own dataset NIR PCA, PLS-DA N/A

Picollo et al. 2020 Dainelli archive VNIR UMAP N/A

7. HSI for Hologram Authentication

Rainbow holograms have been on the market for a considerable amount of time but
remain widely used for security and forgery detection purposes [158]. However, over
time, the technology for hologram production became readily available and the hologram
itself became a subject of forgery [159]. Various techniques and anti-counterfeit measures
such as fine-grained glass, image swapping, random optical phase retardation, and use of
specific patterns have been introduced over the years to overcome this problem. However,
each measure adds more complexity and cost to the production and verification, therefore
making the use of hologram more obsolete than before [160–163]. That being said, the
introduction of HSI to hologram authentication may provide a cost-efficient and effective
alternative to other currently used methods.

S. Sumriddetchkajorn et al. proposed to develop an HSI-based optical structure for
hologram authentication on credit cards. Hyperspectral images of credit cards were taken
multiple times, and each time, the light source was placed at a different incident angle.
Mapped images were then processed using a feed-forward backpropagation neural network
(FFNN) with 38 genuine and 109 counterfeit credit cards being used as the data set. The
developed structure was able to yield false rejection rates of 5.26% and 0.92% for genuine
and counterfeit credit cards, respectively (94.74% and 99.08% accuracy, respectively).

D. Soukup et al. presented a mobile setup they designed for photometric hologram
acquisition [164]. A right-light was used as the light source in the image acquisition process,
whereas a mobile device was used as the data processor to process the acquired images.
A new analysis algorithm was then developed to capture and compress the essential
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appearance properties of holograms with the use of deep learning. While an already
existing photometric hologram descriptor requires both genuine and fake samples, the
researchers’ design only requires genuine samples to configure its parameters. Nevertheless,
it showed better reliability in fake detection.

No table was prepared for hologram authentication as only two outdated studies were
classified under this topic. Lack of research interest in this topic may be due to limitations
in its application as security holograms are primarily implemented as an anti-forgery
technology that can be examined with the naked eye [165]. Other cheaper, easier, and faster
countermeasures against hologram counterfeiting similar to photo authentication may also
be the reason [162,166,167].

8. Discussion

Reviewing the applications of HSI in the field of forgery and tampering detection
reconfirms the vast potential of HSI that is yet to be realized in this field. Use of HSI
provides detailed spectral data, which, with the help of well-configured algorithms, can
be used to reliably detect forgeries and tampering without the need of destructive and
invasive procedures that are conventionally employed [168]. This is well-represented
in the research where HSI is applied for the purpose of counterfeit currency detection.
Overall, these studies yielded an average accuracy of 99.97%. This was due to the abundant
anti-counterfeit measures present in banknotes which acted as region of interests for
expeditious feature extraction and allowed classification algorithms to perform much
accurate classification [169–172]. However, it is also noteworthy that this result does
not necessarily imply the superiority of HSI over other methods in counterfeit currency
detection in terms of detection accuracy because results from existing studies using other
methods also show similarly high accuracy [173–183]. Performing a comparative analysis
of different counterfeit currency detection methods may soon provide HSI’s effectivity
relative to other methods.

Another factor that greatly affected the detection accuracy of HSI was wavelength
selection. Selecting broader wavelengths across the spectrum usually yielded higher
detection accuracy and it was also evidenced in this review as those studies which selected
multiple wavelength ranges yielded the highest average accuracy of 92.87%. That said, a
random acquisition of inordinate volume of data may result in a mostly redundant dataset,
which can render the processing of these data virtually ineffective. Moreover, processing
a large volume of data can be both costly and time-consuming [184–186]. Selecting an
appropriate wavelength for the given purpose, therefore, is essential in maximizing its
efficiency. Based on the previous studies reviewed on this paper, most commonly selected
wavelengths for the purpose of artwork and document authentication belongs to the IR
region. It is due to the fact that most of the fake artwork, forged, and tampered documents
are made to be nearly indistinguishable with the naked eye and, therefore, usually return
spectral signatures similar to that of the authentic counterpart when in VIS region. While
some studies selected broader wavelengths extended until the MIR region in an attempt
to acquire a detailed spectral signature, most of the studies selected a wavelength that
only extended until the NIR region due to the operating limitation of the equipment. For
counterfeit currency detection on the other hand, the most commonly selected wavelengths
belonged to VIS region. Counterfeit currency detection is a time-critical task that requires
processing of often very large samples in a short span of time. In order to achieve this, only
a narrow range of wavelength must be selected to minimize the processing time. Since
anti-counterfeit measures presented on a banknote are mostly designed to be verifiable with
the naked eye, selecting wavelengths that only belong to VIS may be sufficient [187]. While
there are clear trends in wavelength preferences depending on their purpose, not a lot of
studies have made a comparison between different wavelengths to test their effectivity,
let alone specified the parameter for their wavelength selection. Further research in this
prospect in the future may provide a clearer picture on the effectivity of wavelengths
depending on their purpose.
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An appreciable amount of studies incorporated in this review were concerning the
introduction of novel processing method in this application. A lot of studies have incorpo-
rated machine learning algorithms in their image classification but the type of algorithm
used were different depending on the given parameters. In studies where sample size is
relatively limited, parametric algorithms such as MLC and LDA were commonly used.
These algorithms yield higher classification accuracy when the sample size is limited but
are incapable of handling complex dataset [188]. In studies where sample size is relatively
larger however, non-parametric algorithms such as SVM were commonly used. Unlike
parametric algorithms, non-parametric algorithms can classify complex dataset such as
those incorporating non-HSI data. However, their performance can be affected when
heterogeneity is found in data classifications [189]. For the dimension reduction algorithm,
PCA, regardless of the parameters, was the most commonly used algorithm. This may
be due to its effectivity in dimension reduction, which is completed by eliminating the
correlation and similarities, leaving only the significance. However, it is only effective
when the pre-processing of data is completed correctly. Otherwise, noises inherent in data
may result in false significance [190]. In addition to these findings, it was also observed
that combining multiple dimension reduction algorithms yielded higher accuracy.

Computing the average accuracies for each year the studies were published, studies
published in 2018 had the highest average accuracy of 96.95%, followed by 2016 with
84.30% accuracy, 2015 with 82.85% accuracy, 2017 with 78.02% accuracy, 2014 with 69.67%
accuracy, and 2019 with 63% accuracy. A sudden surge of accuracy in year 2018 and sudden
dip in 2019 were observed, but upon closer inspection, it was revealed that only five
accuracy values were used in the calculation of average accuracy in 2018. Moreover, only
one accuracy value was considered in calculation of 2019’s average accuracy. Therefore, no
particular trend concerning years in which the studies were published was found. While the
latest research incorporated in this review was published in 2020, it must be noted that the
vast majority of recent studies that were available were excluded following inclusion and
exclusion criteria. New studies are continuously being introduced to this field, including
the follow-up studies of research incorporated in this review [191,192]. A more detailed
breakdown of the accuracies, including those of each topic classification, wavelength,
processing method, as well as their calculations can be found in Supplementary Materials,
Figures S2–S24 and Supplementary Materials, Tables S1–S22.

Despite the fact that HSI had previously proven its efficacy in the real world setting,
it was still not as routinely used for the purpose of forgery and tampering detection as
other traditional methods. This may be attributed to its relative inferiority in availability,
convenience, cost, turnaround time, and reliability. For example, while the chromatography
system may be as costly as the HSI system, it may be more accessible as chances are many
of forensic science labs are already equipped with one. It would take less time and effort
as it would not require the process of making the algorithm and processing the data. It
also would yield more accurate result. Similarly, UV sensors, which only cost a fraction of
an HSI system, could detect counterfeit currency just as accurately, if not more so than, as
a HSI system would. That said, distinctive features of his, such as non-invasiveness and
spectral library, still grant a unique advantage for HSI. Therefore, with continuous research
for more effective application, and constant advancement of HSI technology in general, it
has potential to eventually overcome its inferiority and prove its practicality.

9. Conclusions

While not all topics under HSI application in forgery and tampering detection dis-
played a promising performance, prospected use of it remains largely optimistic. This
review reveals that HSI application in counterfeit currency detection exhibited outstanding
detection accuracy. Further related studies, such as comparative research between other
counterfeit currency detection technologies and HSI, may be useful in evaluating the effi-
cacy of HSI in such application. Moreover, selecting an appropriate wavelength can further
enhance the performance of HSI in application of forgery and tampering detection. This
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is evidenced by the fact that when multiple range selection led to its detection accuracy
greatly increasing. If selecting multiple ranges is unfeasible due to the limitations, selecting
a specific spectral range based on its purpose also displayed high performance. It also found
that using a combination of two or more machine learning algorithm greatly increased the
detection accuracy, otherwise, no interdependence was found in this review between the
processing method used and the performance. Although the practicality of HSI application
in forgery and tampering detection is inadequate at the moment, continuous improvement
will eventually prove this statement otherwise given its potential and unique advantages.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197308/s1, Figure S1: Study Inclusion Flowchart; Figure S2:
Accuracy Chart of Articles (Artwork); Figure S3: Accuracy Chart of Articles (Document); Figure
S4: Accuracy Chart of Articles (Currency); Figure S5: Accuracy Chart of Articles (Photo); Figure
S6: Accuracy Chart of Topic Classifications; Figure S7: Accuracy Chart of Wavelengths; Figure S8:
Accuracy Chart of Processing Methods; Figure S9: Accuracy Chart of Year Published; Figure S10:
Forest Plot of Articles (Artwork); Figure S11: Forest Plot of Articles (Document); Figure S12: Forest
Plot of Articles (Currency); Figure S13: Forest Plot of Articles (Photo); Figure S14: Forest Plot of
Topic Classifications; Figure S15: Forest Plot of Wavelengths; Figure S16: Forest Plot of Processing
Methods; Figure S17: Forest Plot of Year Published; Figure S18: Deeks’ Funnel Plot of Articles
(Artwork); Figure S19: Deeks’ Funnel Plot of Articles (Document); Figure S20: Deeks’ Funnel Plot of
Articles (Currency); Figure S21: Deeks’ Funnel Plot of Topic Classifications; Figure S22: Deeks’ Funnel
Plot of Wavelengths; Figure S23: Deeks’ Funnel of Processing Methods; Figure S24: Deeks’ Funnel
Plot of Year Published. Table S1: Forest Plot of Articles (Artwork); Table S2: Forest Plot of Articles
(Document); Table S3: Forest Plot of Articles (Currency); Table S4: Forest Plot of Articles (Photo);
Table S5: Forest Plot of Topic Classifications; Table S6: Forest Plot of Wavelengths; Table S7: Forest
Plot of Processing Methods; Table S8: Forest Plot of Year Published; Table S9: Deeks’ Funnel Plot of
Articles (Artwork); Table S10: Deeks’ Funnel Plot of Articles (Document); Table S11: Deeks’ Funnel
Plot of Articles (Currency); Table S12: Deeks’ Funnel Plot of Topic Classifications; Table S13: Deeks’
Funnel Plot of Wavelengths; Table S14: Deeks’ Funnel Plot of Processing Methods; Table S15: Deeks’
Funnel Plot of Year Published; Table S16: P value of Articles (Artwork); Table S17: P value of Articles
(Document); Table S18: P value of Articles (Currency); Table S19: P value of Topic Classifications;
Table S20: P value of Wavelengths; Table S21: P value of Processing Methods; Table S22: P value of
Year Published.
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152. Martins, A.; Daffner, L.A.; Fenech, A.; McGlinchey, C.; Strlič, M. Non-destructive dating of fiber-based gelatin silver prints using
near-infrared spectroscopy and multivariate analysis. Anal. Bioanal. Chem. 2012, 402, 1459–1469. [CrossRef]

153. Picollo, M.; Cucci, C.; Casini, A.; Stefani, L. Hyper-spectral imaging technique in the cultural heritage field: New possible
scenarios. Sensors 2020, 20, 2843. [CrossRef]

154. Zheng, Y.; Cao, Y.; Chang, C.-H. A PUF-based data-device hash for tampered image detection and source camera identification.
IEEE Trans. Inform. Forensics Secur. 2019, 15, 620–634. [CrossRef]

155. Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning rich features for image manipulation detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1053–1061.

156. Thakur, R.; Rohilla, R. Recent advances in digital image manipulation detection techniques: A brief review. Forensic Sci. Int. 2020,
312, 110311. [CrossRef]

157. Benton, S.A. Method for Making Reduced Bandwidth Holograms. U.S. Patent 3,633,989, 1 November 1972.
158. McGrew, S.P. Hologram counterfeiting: Problems and solutions. In Proceedings of the Proc. SPIE, Spokane, WA, USA, 1 April

1990; pp. 66–76.
159. Dausmann, G.J.; Menz, I.; Gnaedig, K.; Yang, Z. Copy-proof machine-readable holograms for security application. In Proceedings

of the Optical Security and Counterfeit Deterrence Techniques, San Jose, CA, USA, 15 March 1996; pp. 198–201.
160. Huang, P.P. Holographic anticounterfeit method and device with encoded pattern. In Proceedings of the Diffractive and

Holographic Technologies, Systems, and Spatial Light Modulators VI, San Jose, CA, USA, 1 June 1999; pp. 61–67.
161. Aggarwal, A.; Kaura, S.K.; Chhachhia, D.; Sharma, A. Concealed moiré pattern encoded security holograms readable by a key

hologram. Opt. Laser Technol. 2006, 38, 117–121. [CrossRef]
162. Huang, W.-J.; Tsai, C.-H.; Chen, T.-J.; Kuan, M.-t.; Wen, C.-H. Development of the random-retardation-encoding anti-counterfeiting

technology. In Proceedings of the Optical Security and Counterfeit Deterrence Techniques VI, San Jose, CA, USA, 9 February
2006; pp. 209–217.

163. Soukup, D.; Huber-Mörk, R. Mobile hologram verification with deep learning. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 1–6.
164. Ruffato, G.; Rossi, R.; Massari, M.; Mafakheri, E.; Capaldo, P.; Romanato, F. Design, fabrication and characterization of computer

generated holograms for anti-counterfeiting applications using OAM beams as light decoders. Sci. Rep. 2017, 7, 18011. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.patcog.2015.04.008
http://doi.org/10.1117/1.JEI.27.5.053001
http://doi.org/10.1016/j.forsciint.2019.01.021
http://www.ncbi.nlm.nih.gov/pubmed/30711847
http://doi.org/10.3390/rs12111698
http://doi.org/10.1364/OE.17.022054
http://doi.org/10.1016/j.dsp.2018.03.015
http://doi.org/10.1016/j.forc.2018.02.003
http://doi.org/10.1016/j.aca.2005.11.084
http://doi.org/10.1016/j.forsciint.2016.06.018
http://www.ncbi.nlm.nih.gov/pubmed/27371798
http://doi.org/10.1016/j.procs.2016.03.050
http://doi.org/10.1007/s00216-011-5566-2
http://doi.org/10.3390/s20102843
http://doi.org/10.1109/TIFS.2019.2926777
http://doi.org/10.1016/j.forsciint.2020.110311
http://doi.org/10.1016/j.optlastec.2004.10.010
http://doi.org/10.1038/s41598-017-18147-7
http://www.ncbi.nlm.nih.gov/pubmed/29269750


Sensors 2022, 22, 7308 18 of 18

165. McGrew, S. Countermeasures against Hologram Counterfeiting. 2000. Available online: www.iea.com/nli/publications/
countermeasures.htm (accessed on 13 August 2022).

166. Rajput, S.K.; Kumar, D.; Nishchal, N.K. Photon counting imaging and phase mask multiplexing for multiple images authentication
and digital hologram security. Appl. Opt. 2015, 54, 1657–1666. [CrossRef]

167. Aginsky, V. Forensic examination of “slightly soluble” ink pigments using thin-layer chromatography. J. Forensic Sci. 1993,
38, 1131–1133. [CrossRef]

168. Hardwick, B.; Jackson, W.; Wilson, G.; Mau, A.W. Advanced materials for banknote applications. Adv. Mater. 2001, 13, 980–984.
[CrossRef]

169. Wang, Y.-C.; Chiang, Y.-W.; Jiang, Y.-Y.; Chang, Y.-H. Development of Bill-Counterfeit Prevention Technology for Multi-Function
Peripherals. In Proceedings of the IMECS, Hong Kong, 20–22 June 2006; pp. 603–608.

170. Nakamura, C. The Security Printing Practices of Banknotes. Available online: https://digitalcommons.calpoly.edu/grcsp/15/
(accessed on 13 August 2022).

171. Kaczmarek, A.M.; Liu, Y.Y.; Wang, C.; Laforce, B.; Vincze, L.; Van Der Voort, P.; Van Hecke, K.; van Deun, R. Lanthanide
“Chameleon” Multistage Anti-Counterfeit Materials. Adv. Funct. Mater. 2017, 27, 1700258. [CrossRef]

172. Bruna, A.; Farinella, G.M.; Guarnera, G.C.; Battiato, S. Forgery detection and value identification of Euro banknotes. Sensors 2013,
13, 2515–2529. [CrossRef]

173. Pham, T.D.; Park, C.; Nguyen, D.T.; Batchuluun, G.; Park, K.R. Deep learning-based fake-banknote detection for the visually
impaired people using visible-light images captured by smartphone cameras. IEEE Access 2020, 8, 63144–63161. [CrossRef]

174. Khairy, R.S.; Hussein, A.; Alrikabi, H. The detection of counterfeit banknotes using ensemble learning techniques of AdaBoost
and voting. Int. J. Intell. Eng. Syst. 2021, 14, 326–339. [CrossRef]

175. Choi, W.-J.; Min, G.-H.; Lee, B.-H.; Eom, J.-H.; Kim, J.-W. Counterfeit detection using characterization of safety feature on
banknote with full-field optical coherence tomography. J. Opt. Soc. Korea 2010, 14, 316–320. [CrossRef]

176. Berenguel, A.; Terrades, O.R.; Lladós, J.; Cañero, C. Banknote counterfeit detection through background texture printing
analysis. In Proceedings of the 2016 12th IAPR Workshop on Document Analysis Systems (DAS), Santorini, Greece, 11–14 April
2016; pp. 66–71.

177. Jadhav, M.; kumar Sharma, Y.; Bhandari, G. Currency identification and forged banknote detection using deep learning. In
Proceedings of the 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET),
Shegoaon, India, 27–28 December 2019; pp. 178–183.

178. Park, C.; Cho, S.W.; Baek, N.R.; Choi, J.; Park, K.R. Deep feature-based three-stage detection of banknotes and coins for assisting
visually impaired people. IEEE Access 2020, 8, 184598–184613. [CrossRef]

179. Mohamad, N.S.; Hussin, B.; Shibghatullah, A.; Basari, A. Banknote authentication using artificial neural network. In Proceedings of
the International Symposium on Research in Innovation and Sustainability, Malacca, Malaysia, 15–16 October 2014; pp. 1865–1868.

180. Tessfaw, E.A.; Ramani, B.; Bahiru, T.K. Ethiopian banknote recognition and fake detection using support vector machine. In
Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT),
Coimbatore, India, 20–21 April 2018; pp. 1354–1359.

181. Pachón, C.G.; Ballesteros, D.M.; Renza, D. Fake banknote recognition using deep learning. Appl. Sci. 2021, 11, 1281. [CrossRef]
182. Han, M.; Kim, J. Joint banknote recognition and counterfeit detection using explainable artificial intelligence. Sensors 2019,

19, 3607. [CrossRef]
183. Varshney, P.K.; Arora, M.K. Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2004.
184. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral

images. Proc. IEEE 2012, 101, 652–675. [CrossRef]
185. Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [CrossRef]
186. Guin, U.; Forte, D.; Tehranipoor, M. Anti-counterfeit techniques: From design to resign. In Proceedings of the 2013 14th

International Workshop on Microprocessor Test and Verification, Austin, TX, USA, 11–13 December 2013; pp. 89–94.
187. Chutia, D.; Bhattacharyya, D.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral remote sensing classifications: A perspective

survey. Trans. GIS 2016, 20, 463–490. [CrossRef]
188. Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote

Sens. 2007, 28, 823–870. [CrossRef]
189. Wu, Z.; Li, Y.; Plaza, A.; Li, J.; Xiao, F.; Wei, Z. Parallel and distributed dimensionality reduction of hyperspectral data on cloud

computing architectures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2270–2278. [CrossRef]
190. Khan, M.J.; Khurshid, K.; Shafait, F. A spatio-spectral hybrid convolutional architecture for hyperspectral document authentication.

In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia,
20–25 September 2019; pp. 1097–1102.

191. Islam, A.U.; Khan, M.J.; Asad, M.; Khan, H.A.; Khurshid, K. iVision HHID: Handwritten hyperspectral images dataset for
benchmarking hyperspectral imaging-based document forensic analysis. Data Brief 2022, 41, 107964. [CrossRef]

192. Islam, A.U.; Khan, M.J.; Khurshid, K.; Shafait, F. Hyperspectral image analysis for writer identification using deep learning. In
Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, WA, Australia, 2–4 December
2019; pp. 1–7.

www.iea.com/nli/publications/countermeasures.htm
www.iea.com/nli/publications/countermeasures.htm
http://doi.org/10.1364/AO.54.001657
http://doi.org/10.1520/JFS13516J
http://doi.org/10.1002/1521-4095(200107)13:12/13&lt;980::AID-ADMA980&gt;3.0.CO;2-F
https://digitalcommons.calpoly.edu/grcsp/15/
http://doi.org/10.1002/adfm.201700258
http://doi.org/10.3390/s130202515
http://doi.org/10.1109/ACCESS.2020.2984019
http://doi.org/10.22266/ijies2021.0228.31
http://doi.org/10.3807/JOSK.2010.14.4.316
http://doi.org/10.1109/ACCESS.2020.3029526
http://doi.org/10.3390/app11031281
http://doi.org/10.3390/s19163607
http://doi.org/10.1109/JPROC.2012.2197589
http://doi.org/10.1109/79.974718
http://doi.org/10.1111/tgis.12164
http://doi.org/10.1080/01431160600746456
http://doi.org/10.1109/JSTARS.2016.2542193
http://doi.org/10.1016/j.dib.2022.107964

	Introduction 
	Criteria for Study Selection 
	HSI for Artwork Authentication 
	HSI for Document Forgery Detection 
	HSI for Counterfeit Currency Detection 
	HSI for Photo Authentication 
	HSI for Hologram Authentication 
	Discussion 
	Conclusions 
	References

