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Abstract: Large and unaccounted numbers of victims in disasters, events, or fires are often trapped in
buildings or debris, and must be located and rescued as soon as possible. This study transforms smart-
phones into indoor locating tools without extra modification or complicated program installation,
considering smartphones are likely to be carried when disasters strike. The study creates a system
that converts smartphones into a lifesaving tool for trapped victims and rescuers. This study employs
the Bluetooth beacon in smartphones to send signals using its low power consumption feature.
The signal could continue transmitting for rescuers to locate trapped victims for longer. Rescuers
could use the Bluetooth function on a regular notebook computer to search such signals without any
hardware implementation or modification, allowing them to locate and determine the position of
many trapped victims simultaneously. Implementing this system will decrease the search and rescue
team’s need to enter unsafe areas and increase their rescue speed, a critical factor for the survival of
trapped victims. Furthermore, when disasters strike, the smartphone calling function might not work,
and the trapped victim might be too weak to call for help. Thus, autoreply messages from victims’
smartphones could help them be located within a 2-m error, even if covered by fallen debris such as
wood piles or tiles. This effort will increase the chance of finding trapped victims within the golden
rescue hours and reduce the exposure time of search and rescue teams in unsafe environments.

Keywords: smartphone; Bluetooth; locating; hazard; victims

1. Introduction

Earthquakes often strike in major cities around the seismic belt, with casualties in-
creasing as population density increases over time [1]. Disasters such as earthquakes
and volcanic ruptures cause damage and endanger victims worldwide; thus, search and
rescue are an international concern. Collapsed buildings after bomb blasting, either from
war or terrorist attacks, can also trap victims. These circumstances, whether natural or
human-induced disasters, require indoor positioning and search and rescue efforts. In-
door positioning systems consist of Bluetooth, Wi-Fi, WLAN, or radar signal transmitters
and receivers [2,3], often requiring multiple machines or sophisticated system integration.
Though the available indoor positioning systems can locate trapped victims within tens
of centimeters error, they often require vast electrical power to operate, thus reducing the
standby time of smartphones.

Since disaster can strike without notification, there is no telling where and when
a future hazardous event may occur. For such reasons, any indoor positioning system
that requires pre-installation is not suitable for the task of quickly recovering trapped
victims. Another issue in locating trapped victims is the persistence and availability of
the necessary system; the chances of finding trapped victims are proportional to these
two features. Furthermore, system availability is decided by the price, special hardware,
working environment, and training personnel. This study converted smartphones with
Bluetooth and regular NB into an indoor trapped victim locating system to fulfill such
requirements. This is beneficial because there is no requirement for on-site electricity,
internet access, or auxiliary devices. The operating system is simplified so anyone with
basic computer skills can handle it. The most notable contribution of this work is to remove
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the technical and financial barriers to trapped victim locating systems and simplify the
steps to reduce computing time. With adequate NB and rescue personnel, the likelihood
of locating trapped victims suffering from major catastrophic hazards as soon as possible
increases. Therefore, the chance of saving lives could be vastly improved.

To locate trapped victims, traditional search and rescue teams are equipped with
rescue dogs, life detectors, sonar life detectors, and listening devices [4]. In addition
to these measures, other devices search for life signs by detecting the trapped victims’
movement sounds (including breathing, beating, and calling). Since this type of equipment
is stored at fire stations, it may not be quickly accessed; even in a major earthquake disaster,
such as the Chi-Chi earthquake in Taiwan, only one-quarter of the personnel in search and
rescue teams had the necessary equipment to detect life signs [5].

Shortage of firefighting personnel due to limited funds and old equipment is a common
obstacle that downgrades the efficiency of search and rescue worldwide. As a result of
inadequate equipment, firefighters are exposed to danger for a longer time during disaster
relief duty. Although many international search and rescue teams have advanced rescue
equipment, the quantity is often limited. When disaster strikes, international teams need
time to reach the scene, which can take days to arrive. According to statistical data from
Japan, earthquake victims’ survival rate is 80% on the first day. It drops rapidly to 30% on
the second day, and only 10% to 15% of victims would survive if found on the third day [6].
Therefore, the time spent on the rescue effort is a crucial factor in determining the survival
rate of victims.

Deploying more personnel and facilities is a common way to reduce rescue time.
Fire brigades from various regions could assist in disaster relief if their equipment is
adequate and suitable. This study proposes an affordable and effective rescue system using
smartphones to replace expensive life-detecting equipment, thus, equipping sufficient
personnel with a limited budget. People are so highly attached to their smartphones that
they even put them by their beds at night [7]. With this study design, smartphones can
automatically activate the Bluetooth beacon when a disaster strikes and then transform
into a locating tool to aid rescue missions. The search and rescue personnel only need
a regular notebook computer with Bluetooth to locate nearby victims by taking signal
strength measurements at three locations. This system’s tens of centimeters accuracy could
significantly reduce the needed sweep time of traditional victim search and rescue tactics.
This study proposes an affordable, effective, and universal rescue system that could be in
situ to deploy tens or hundreds more personnel than expensive life-detecting machines.
The low power consumption of Bluetooth and the 10-m signal transmitting distance make
it a perfect tool for the low-cost lifesaving tool of locating trapped victims.

2. Related Works

Search and rescue efforts often employ various helpful strategies. The joint effort of
search dogs with wearable equipment and trained personnel can locate trapped victims
via the position returned from the dog’s equipment [8]. However, the system stability
is affected by the training of dogs or complex environmental factors. Therefore, it is not
a consistent system under various external conditions, which does not offer qualified
reliability. Improvements can be made to existing search and rescue efforts using wireless
signals, such as smartphone networks; for instance, carrying small smartphone base stations
on drones and using mini base stations to locate the smartphones of trapped victims [9].
However, this design not only increases the search and rescue cost but also depends on
drones to find the smartphone wireless signal of a trapped person that requires the GPS
or Wi-Fi signals to pinpoint victims [10]. Some employ drones to find the Wi-Fi signal
associated with GPS for locating [11] and use the Wi-Fi signal of UAVs for transmitting
information [12].

However, these methods are not designed for indoor search and rescue, considering
that smartphone base stations might not work properly at the disaster site. Further, GPS
signal is usually poor indoors. Another limitation of the current technologies employed is
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when rescue systems use drones with Bluetooth Low Energy (BLE): operators must wear a
BLE device to operate the system [13]. Since disaster areas often have affected environments,
the network connections may be unstable in many cases. Therefore, specific client-server
architecture methods are not always reliable in disaster areas. Although some solutions use
mobile phones and Bluetooth [14] to design the rescue system, the network system in the
disaster area is often unstable. Some research will first deploy the Bluetooth beacon, Wi-Fi,
or other sensors in the building [15–20] and use the signal strength of the sensor between
the cell phone/receiver to estimate the distance. Then, the cell phone or receiver transmits
signal data to the server for calculation. However, this method is challenging to employ
in a disaster area environment. Strong earthquakes can cause buildings to collapse, and
pre-deployed sensors will deviate from their original position; relative positions obtained
could be problematic in transmitting signals. Another drawback is that networks might not
work after an earthquake for the mobile phone or receivers to send the signal to the server.
Therefore, indoor pre-deployed sensors are not suitable to rely on during a post-earthquake
environment. There are also ways to use non-wireless signals, such as using lasers and
robots to construct positioning maps [21] or using sound to locate trapped people [22].
All the above systems are expansive and require special training, which is unlikely to be
deployed to all rescue units. An occupancy detection method that uses BLE smartphone
devices to perform zone-level occupant localization. The proposed method uses a network
of BLE beacons to record the received signal strength indicator (RSSI) values of neighboring
devices, which were consolidated and pre-processed to obtain a set of RSSI tuples [23].
Occupation profile and density could be gathered if the building is equipped with sensors
and routers. This could provide the pre-event information for the quantities of occupants
that have been trapped inside the building.

Many life detectors are commercially available products and have different principles,
such as imaging equipment with optical fibers to connect the camera and display screen [24].
With the probe pole, the image can be used to find the trapped person, but the disadvantage
of detection distance is limited by the length of the probe pole, about 2.4 to 3.7 m. The
vibration sensor that detects breathing, tapping, and calling signals to identify the victim’s
location is also available [25]. This sensor is categorized into two types: one is an eight-
meter short-distance wired connection, and the other is a 100-m wireless connection.

A disadvantage of the vibration-type life detector is that disaster sites have many
vibrations, interfering with the signals and affecting detection accuracy. Another issue is
that the batteries of life detectors typically last for only 2.5 h, and it takes 3.5 h to charge
them. Carrying more battery sets around disaster sites is not a practical option because of
crowded spaces and the carrying weight limit of rescue personnel.

In this study’s proposed system, the BLE beacon can be passively activated if the victim
has pre-installed the required app. The most significant advantage of the BLE beacon is
its low power consumption, which can prolong the system’s operation and increase the
probability of finding trapped victims. In addition, the rescue personnel only need a
regular notebook computer (NB) instead of special gear. Ultimately, it is an affordable and
effective system that could significantly deploy many rescue personnel to improve their
search capacities.

3. Localization Method

This study’s designed method allows an individual to estimate the location of a
trapped person via triangulation by locating the BLE beacon signal source. The system
architecture turns the smartphone of the trapped person into a beacon that can send
the signal. Then, using a notebook computer to measure the signal strength from the
beacon at three locations, the trapped person’s position can be found according to the
signal attenuation with increased distance. The detailed function of an individual unit is
described as follows.
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3.1. Signal Source of Cell Phone

Different signals on smartphones can be used to attract the attention of search and
rescue personnel, such as the smartphone signal, voice, and GPS. During indoor search
missions, it is necessary to have a search and rescue system that relies on the existing
signals of smartphones. The signals suitable for search and rescue targets are Wi-Fi, NFC,
and BLE [26]. The transmission distance of the NFC signal is too short, only around 10 cm.
On the other hand, while the Wi-Fi signal coverage is 100 m, its power consumption is too
high, shortening the functional time of a victim’s smartphone and reducing the available
rescue time. The BLE signal covers a range of 10–50 m, and it has a low power consumption
that makes it suitable for search and rescue missions, considering the searching distance
and system endurance.

The Beacon simulator application transformed the iPhone 11 into a BLE beacon in
our experiment. A power consumption measurement for the smartphone in the disaster
environment was performed to examine the BLE power consumption on the smartphone.
When the Beacon simulator application is turned on, the phone switches to flight mode
and turns off 4G and Wi-Fi. The smartphone screen must remain on and cannot enter
the auto-off mode while the Beacon simulator application is in use. We found that the
iPhone 11 consumes about 2% power per hour. After four hours of testing, the total power
consumption was around 9%. If a smartphone’s battery is fully charged, it can support more
than 40 h of such operation, greatly extending the likelihood of finding a trapped person.

3.2. Detect System on Notebook Computers

Once the BLE beacon is selected as the signal to detect a target, a compatible detec-
tion and computing platform must be established. Since the environment of the search
and rescue scene changes over time and place, the size of the search and rescue system
should preferably be light, thin, and short in size. The system includes BLE signal mea-
surement, signal classification, and locating function components, considering that the
BLE signal measurement function needs to obtain signals at three locations in different
disaster environments.

The existing locating processing parameters must be adjusted according to the sit-
uation. It requires working with the original Received Signal Strength Indicator (RSSI)
signal [27]. Through offline training and online filtering, the locating errors were about
1.5 m [28]. While this application installed on the smartphone can obtain the estimated
distances from beacon signals, further data processing is beyond the capability of current
smartphones. In addition, the position estimation function also requires advanced com-
puting routines, such as MATLAB or Python. It requires advance computing skills with
a battery that provides adequate endurance and pre-installed special software, making it
impossible to requisition general NB for signal detecting at disaster sites. The proposed
search and rescue operations can be accomplished on a regular NB without needing to
access the server system via the internet since it cannot guarantee internet access to upload
data for cloud computing during a search and rescue scenario.

The Bluetooth signal detection module was rewritten from the Universal Beacon
Library [29] to record the BLE signal strength since the library does not provide a long-term
logging function.

The Bluetooth module analyzes the collected signal and handles the individual en-
vironmental influence on the Bluetooth signal. Figure 1 shows four signals at different
distances that reveal various signal strengths. The distance estimated formula based on the
Bluetooth signal is shown below.

d = 10
RSSI(d0)−RSSI(d)

10n (1)
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Figure 1. User Interface of Bluetooth signal captured App.

Measure distance is denoted as d, RSSI(d) is the referencing signal strength in an
environment, and the RSSI(d0) is the Bluetooth signal strength measured at nearby locations.
The value of n has different effects due to environmental factors [30]. Therefore, when
establishing a system, it is necessary to confirm whether the measurements are located
within the same level and verify whether the measurements perform better at the vertical
or horizontal plane to reduce possible locating errors.

A drawing of the measured signal strength at different points with vertical separating
intervals is presented in Figure 2. The other datasets measured at the horizontal intervals
are shown in Figure 3. We found that the horizontal measurement signal was relatively
stable compared to the vertical counterpart. The numerical analysis found a possible
significant locating error in the vertical than the horizontal plane, as shown in Table 1. For
the same amount of separation of 200 cm, the dBm changing range is 18~22 dBm at the
vertical plane and 10~18 dBm at the horizontal plane.

Table 1. Numerical analysis of various settings of Bluetooth signal.

STD Value Max Value Min Value Data Range

Vertical Interval of 200 cm 3.7377 −60 −78 18
Vertical Interval of 0 cm 3.4842 −61 −83 22

Horizontal Interval of 0 cm 2.4491 −55 −65 10
Horizontal Interval of 100 cm 3.7732 −51 −69 18
Horizontal Interval of 200 cm 4.9416 −54 −69 15
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The Bluetooth signal was carried out through sweep frequency; the recorded sig-
nal fluctuated randomly. There were two groups of signal strength within the signal
measurements—one group had stronger signal strength, and the other was weaker. The
strength of recorded signals is illustrated in Figure 4, showing the two randomly caused
distinct signal strengths.

The Bluetooth ranging theory dedicates the possible distance from the radio wave
attenuation through formula conversion. However, Bluetooth is carried out by sweeping
the frequency, so the tested object and the observation point might have diverse radio
waves and travel paths within a disaster scenario. If one uses all the collected points to
calculate the distances of the test object to the observation point, there will be too many
combinations. Therefore, the obtained distance was measured from the centroid of the
strong or weak signal group. As shown in Figure 5, the signal strength was separated into
two categories after the k mean grouping method. The two centroids of these two categories
represent the strongest and weakest signals from the observation point.
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Figure 5. Two Bluetooth signal distribution groups after k mean clustering.

The complicated situation of disaster sites leaves room for measured distance biases
via the Bluetooth signal decay method. For one, the N value of the Bluetooth estimation
formula of Equation (1) will change due to environmental alterations. The measured
distance biases at the same observation point are caused by the disturbed signal and have
about a meter of inaccuracy. As shown in Table 2, the N value was adjusted to improve the
accuracy of the estimated distance. Then, the error was reduced to tens of centimeters via
this adjustment.
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Table 2. The setting value of N for various wave value.

N Wave Value

1 >−69
2 <−70 and >−79
3 <−80

With one distance measurement from the target located within a circle, the trilateral
measurement method at three not collinear points can offer the target point solution [31].
The uncertainty of the disaster environment and the sensitivity of the Bluetooth signal
makes the absolute position of objects impossible to obtain. Therefore, the wave signals
must be observed at three randomly selected points in the disaster site to overcome such a
deficit. Then, the ‘findminsearch’ function of MATLAB is applied to estimate the position
with the minimum solution matches.

4. Results

The system was validated by simulating different disaster environments by measuring
signal decay and fluctuation. The experimental condition was to place a mobile phone
in the coordinate axis system unit in meters. The phone was placed at the position of
(x, y, z) = (0, 6.4, 0). The simulated observation positions of the search and rescue personnel
were at (2.4, 2.4, 1) (0, 0, 1), and (2.4, 0, 1), respectively. There are no obstructions around
the smartphone signal transmitter in the first situation. In the second test, the source of
the smartphone signal is shielded by the wooden board, as shown in Figure 6. The third
situation was done by shielding the source of the smartphone signal with tiles, as shown in
Figure 7.
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Figure 7. The experimental set of shielded signals by tiles.

After the calculation, the possible positions of the trapped persons under different
shielding conditions were obtained. The following figures denote various combinations;
the red, blue, and green circles are the three observation points (0, 0, 1), (2.4, 0, 1), and
(2.4, 2.4, 1). Figure 8 shows the testing result without any source signal breakage. The
estimated error is around 4.5 m to 2.4 m. The results of the source signals blocked by
wood are illustrated in Figure 9; the estimated locating error is about 5.1 to 2 m in this case.
Figure 10 denotes that tiles have blocked the source signals, and the estimated locating
error is also around 2.9 to 2.4 m. Therefore, it is evident that the system can indeed exert
the ability of rapid search and rescue within a feasible range—an alternative to conducting
a ground-based search at a disaster site. The results were acquired while the observation
points were not evenly spread around the target. If improved observation geometry could
be evenly distributed, then the accuracy of locating is around 1 m.
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5. Conclusions

Existing passive signal life-detecting systems are often too expansive or require special
training, making their universal deployment impossible, especially within non-wealthy
counties. Smartphones have become an essential part of modern life. When disasters
strike, there is a high probability that trapped victims will be carrying their smartphones
compared to other technology. In this study, the established search and rescue system
could quickly alter smartphones into beacon emitters. By converging the Bluetooth signal
beacon into the needed ranges for rescuers, they can reduce the search time and improve
the chance of finding victims in time. Based on the simulation test results, this system
could locate victims within a two meter-error even in the worst condition, such as under
wood piles or tile blockages, and not evenly distributed observation points. The simplified
algorithms need three measurements at various locations and take a few seconds to locate
the trapped victim via entry-level NB without any extra hardware.

The design and operation of our system are straightforward; any person with basic
computer skills could handle them by following the manual instruction. Any entry-level
computer with Bluetooth could run this inexpensive solution. Thus, this system is a feasible
solution requiring very little budget; most rescuers could be equipped with regular NB
computers to expand their rescue capacities. In any historical major catastrophic event, not
all rescuers are adequately equipped; the rescue’s golden time is spent on turning system
deployment or waiting for shipping from overseas. The proposed system’s low cost and
easy operating features could overcome previous drawbacks and find more trapped victims
within the first 72 h of golden rescue time. Any volunteer civilian could use their own NB
to install the proposed APP via USB stick, and then an extra detecting unit is established.

Furthermore, a Public Warning System (PWS) [32] in Taiwan sends early warning
text messages indicating disaster. The received text message could be set to activate the
smartphone Bluetooth function; it could immediately transform into a beacon emitter
for the trapped victims. This will prevent people from forgetting to activate the Beacon
function due to nervousness or panic and help trapped victims who cannot move or stay
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conscious. Since Bluetooth consumes little power from smartphones, the beacon could emit
a signal for more than 48 h if fully charged, significantly improving the chance of finding
trapped victims. In addition, trapped victims could also save physical strength without
the need to shout and continuously call for help to attract the rescuers’ attention, thereby
increasing the possibility of being rescued. Mobile phones can link to the health watch,
and Bluetooth Beacon packets can send that specific information outwards. Since persons
typically wear smartphones and watches, the trapped victim’s heartbeat and blood oxygen
level could be remotely accessed. Rescuers could allocate priority to those people with low
blood oxygen or shortness of breath to increase their survival chances.
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