Skip to main content
. 2022 Sep 23;22(19):7227. doi: 10.3390/s22197227

Table 1.

State of the Art.

Author Year Methods/Classifiers Datasets Evaluation
Parameters
Highest Accuracy%
[36] 2022 LR, NB, RF REP, M5P Tree, J48, JRIP Hungarian and Statlog (heart) dataset RMSE, MAE RF 99.81%
[37] 2021 RF, DT, LR UCI Cleveland database Accuracy LR 92.10%
[38] 2021 AB, ET, LR, MNB, CART, LDA, SVM, RF, XGB Heart Dataset
(UCI repository)
Accuracy AB 90%
[39] 2021 SVM, NB, DT Heart Dataset
(UCI repository)
Accuracy DT 90%
[40] 2022 KNN, DT, LR, NB, SVM Heart Dataset
(UCI repository)
Accuracy, Specificity, Sensitivity, F1-Score LR 92%
[41] 2022 RF into fetal echocardiography Congenital heart disease database of 3910 Singleton Fetuses Sensitivity, Specificity sensitivity 0.85, specificity 0.88,
[42] 2022 LR, Evimp functions, Multivariate adaptive regression DiScRi dataset Accuracy, Sensitivity, Specificity 94.09%
[43] 2022 LR, KNN, SVM, RF Pathogen, Host feature Accuracy RF 99%
[44] 2022 DT, LR, XGB, NB, GB, RF, SVM, PEM Cardiovascular disease dataset (Mendeley Data Center) Accuracy EM 96.75%
[45] 2021 NB, LM, LR, DT, RF, SVM, HRFLM Heart Cleveland
(UCI repository)
Accuracy, Precision, Specificity, Sensitivity, F-Measure HRFLM 88.4%
[47] 2021 RF, LR, KNN, SVM, DT, XGB Public Health Dataset Accuracy, Specificity, Sensitivity SVM 84%
[48] 2022 K-NN, DT, RF, MLP, NB, L-SVM, IoT based Produced Data Accuracy L-SVM 92.30%,
RF 92.30%
[49] 2022 DT, NB, KNN, RF, ANN, Ada, GBA Heart Disease (Kaggle Repository) Accuracy, Precision, recall, f1-score RF 86.89%
In our Proposed Scheme
Proposed Methodology 2022 LR, SVM, NB, RF, XGB, DT, NN, RBF, KNN, GBT, MLP Heart Disease (UCI Repository) Accuracy, Precision (specificity), Recall (sensitivity), F-Measure RF 96.28%