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Abstract: A novel wearable multi-sensor data glove system is developed to explore the relation
between finger spasticity and voluntary movement in patients with stroke. Many stroke patients
suffer from finger spasticity, which is detrimental to their manual dexterity. Diagnosing and assessing
the degrees of spasticity require neurological testing performed by trained professionals to estimate
finger spasticity scores via the modified Ashworth scale (MAS). The proposed system offers an
objective, quantitative solution to assess the finger spasticity of patients with stroke and complements
the manual neurological test. In this work, the hardware and software components of this system
are described. By requiring patients to perform five designated tasks, biomechanical measurements
including linear and angular speed, acceleration, and pressure at every finger joint and upper limb are
recorded, making up more than 1000 features for each task. We conducted a preliminary clinical test
with 14 subjects using this system. Statistical analysis is performed on the acquired measurements to
identify a small subset of features that are most likely to discriminate a healthy patient from patients
suffering from finger spasticity. This encouraging result validates the feasibility of this proposed
system to quantitatively and objectively assess finger spasticity.

Keywords: stroke; voluntary movement; spasticity; inertial measurement unit; wearable; modified
Ashworth scale

1. Introduction

Finger spasticity is a common motor disorder, which causes involuntary muscle con-
traction and severely affects patients with stroke in their daily activities [1,2]. Research has
shown that quantifying finger spasticity is critical for the early intervention, rehabilitation,
and treatment of patients with stroke [3].

The modified Ashworth scale (MAS) [4] is typically used for assessing the severity
of spasticity in medical institutions due to its convenience. The physician stretches part
of the participant’s body and assesses the resistance during passive stretching to obtain
measurements of MAS [5]. Although the MAS is convenient to apply, it is subjective and
has poor interrater reliability [6], that is, the results from one evaluator may differ from
those of other evaluators. Although the interrater reliability of MAS has been reported in
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the previous studies, it is still the most accepted clinical tool to measure the increase in
muscle tone [7]. Moreover, the conventional MAS assessment focused on the measurement
of muscle tone during passive stretching but did not investigate the relations between
spasticity and voluntary movements, which is critical for investigating how spasticity
affects the participants’ daily movements. Therefore, the development of an objective
spasticity assessment system is necessary for assisting physicians in assessing the spasticity
severity of fingers during voluntary movements.

To date, several automatic systems using various sensors, such as inertial measurement
units (IMUs) and surface electromyography (sEMG) systems, have been proposed for
assisting the assessment of the upper-limb spasticity. In 2012, Park et al. [8] developed
a machine that could record position, velocity, and torque data during quick passive
stretching. Four tactile models were then developed to standardize passive stretching
and enhance interrater reliability. In 2018, Ang et al. [9] proposed an objective evaluation
system for the severity of spasticity. Three IMUs on the upper limb were used to collect
information of joint angle, velocity, and acceleration from the upper-limb motion; these
data were applied to an upper-limb model to predict a velocity-dependent tonic stretch
reflex threshold. The results revealed that the predicted threshold was strongly correlated
with the MAS and could be regarded as an indicator of spasticity. In 2019, Park et al. [10]
proposed a system that uses a multilayer perceptron to predict MAS scores. Manual
spasticity evaluation was performed to record the joint angle and force when a patient’s
forearm was passively stretched. Nine features were extracted from the angle and force
information, and the extracted features were input to a multilayer perceptron to predict the
patient’s MAS score. The critical features for evaluating the MAS were also determined in
the studies of Park et al. Zhang et al. [11] used IMUs and sEMG to collect data on patients
with various MAS scores during an assessment through quick passive stretching. The
system combined single-variable and multivariable linear regression with support vector
regression to predict MAS scores. In 2020, Kim et al. [12] used IMUs to collect acceleration
and rotation information of patients’ elbows during stretching by physicians, and the
collected information was input into five common machine learning models for automatic
MAS score prediction. The results of the five models were compared to determine which
model performed the best. These studies have all focused on using the kinematic and force
information during passive forearm stretching to assess the severity of upper-limb spasticity
but did not assess spasticity of fingers. Moreover, the aforementioned studies assessed the
upper-limb spasticity by collecting the sensor data when the therapist performed quick
passive stretching on the patients, which could not reveal how the spasticity affects the
voluntary movements.

Therefore, to research how upper-limb spasticity affects the patient’s voluntary move-
ment, few studies have proposed wearable systems to assess voluntary movements by
patients with stroke. Koh et al. [13] presented an approach based on stepwise regression
to investigate the recovery progress of voluntary movement. Bai et al. [14] proposed a
system of assessing the upper-limb voluntary motion before and after botulinum toxin
treatment, which is a common treatment for spasticity. Chen et al. [15] used data on
voluntary movements to assess spasticity at the elbow. IMUs and sEMG were used to
collect information about the movements while participants performed repetitive tasks.
The collected information was input to the random forest algorithm to predict MAS scores.
The predicted MAS scores were compared with the physician-assessed MAS scores and had
an accuracy of 0.979. However, although the aforementioned system assessed the spasticity
with voluntary movements, they only assessed the spasticity of wide joints of upper-limb
but did not assess the spasticity of fingers, which also greatly impedes the patient’s manual
dexterity when they perform delicate tasks with their fingers. Furthermore, the wearable
devices adopted in the previous research were not suitable to be applied to detect the
movement of fingers. Therefore, a new wearable device for detecting the hand movement
is needed.
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To investigate the difference of the upper-limb motion among different levels of finger
spasticity, this study proposes a wearable system that combines multiple sensors, including
IMUs and a pressure ball, to capture the motion and force data for the subject’s upper-
limb voluntary movement. Seven patients with stroke with low-to-moderate spasticity
and seven healthy participants were asked to wear the wearable system and voluntarily
perform five tasks, and several features based on descriptive statistics were extracted from
the collected sensor data. The significant features for differentiating patients with different
spasticity scores were investigated with statistical approach.

2. Materials and Methods
2.1. Hardware Design

The architecture of the proposed system is presented in Figure 1. A prototype of the
proposed system is displayed in Figure 2. The system includes an upper limb motion
capture device (UMCD) and a pressure ball module. The UMCD comprises a nine-axis
sensory glove and a motion tracking device for the upper arm (MTD-UA). The nine-
axis sensory glove contains 18 IMUs (MPU9250, InvenSense, San Jose, CA, USA) for
capturing hand motion. The sensory glove combined with the pressure ball is used to
detect differences in air pressure in a soft tennis ball caused by a participant gripping
the ball. In the MTD-UA, an IMU is used to capture the motion of the upper arm. The
microcontrollers (MCUs; MSP430F5438A, Texas Instruments, Dallas, TX, USA) on the
mainboard of the sensory glove and the MCU of the MTD-UA collect information from
the aforementioned sensors and encapsulate the data into a packet. Packets are sent to the
host program through Bluetooth (HL-MD08R-C2-AT, Hotlife, Taipei, Taiwan) at a sampling
frequency of 50 Hz. The data from the packet are extracted at the host using a software
program and then stored.
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2.1.1. UMCD

The UMCD comprises the nine-axis sensory glove and an MTD-UA. Eighteen IMUs
are fixed on the sensory glove to detect hand motions, and one IMU is placed on the MTD-
UA to capture the motion of the upper arm. The positions of the 19 IMUs are displayed
in Figure 3.
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The design of the nine-axis sensory glove was introduced in [16]. Each IMU provides
three-axis acceleration, angular velocity, and magnetic field data. The adaptor board for
the sensory glove was modified and is combined with the pressure ball module (Figure 4).
H1–H5 have the same functions as those in [16]; they can communicate with the five flexible
IMU boards. The air pressure connector is used to communicate with the air pressure sensor
through the inter-integrated circuit (I2C) interface. The purpose of the main connector is to
combine the data from the five flexible IMU boards and air pressure sensor and to send the
combined data to the MCU.
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The MTD-UA is a mainboard without the sensory glove module. The purpose of the
MTD-UA is to capture the motion of the upper arm while the participant is performing a
task. The data from the upper arm can be combined with the data from the IMU on the
mainboard of the sensory glove to calculate the angle of the elbow. By combining the data
from the sensory glove and MTD-UA, the system can capture the elbow, wrist, and hand
motions simultaneously.

2.1.2. Pressure Ball Module

The pressure ball module comprises four parts, namely an air pressure sensor (MPRLS
Ported Pressure Sensor Breakout, Adafruit Industries, New York City, NY, USA) [17], a
high-pressure hose, a disposable needle, and a soft tennis ball. The air pressure sensor is
connected to an adapter board to communicate with the MCU on the mainboard of the
sensory glove. A photograph of the pressure ball module is presented in Figure 5. The
purpose of the pressure ball module is to detect air pressure in the soft tennis ball when
it is squeezed by the participant. When the participant applies force to the ball, the air in
the ball reaches the air pressure sensor though the high-pressure hose. The air pressure
sensor detects this air pressure and sends the detected value to the MCU on the mainboard
through the I2C. The MCU then combines the air pressure value with the data from the
sensory glove into a packet and sends the packet to the host program through Bluetooth.
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Because atmospheric pressure (AP) varies between times and locations, the initial air
pressure and hardness of the ball vary; therefore, calibration of the ball is necessary. Before
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the participant performs the task, a disposable needle (Figure 5) is removed from the ball
and exposed to the air to detect the current AP; this value is used as a reference. The needle
is then reinserted into the pressure ball, and the difference between the AP and the pressure
in the pressure ball is calculated according to the following formula:

p′ = p− pa (1)

Here, p is the air pressure value in the air pressure sensor, pa is the current AP, and p′

is the difference between p and pa. To ensure that the ball has similar hardness in every
environment, a threshold value of p′ (±0.5% pa) was adopted. If p′ is less than−0.5% pa, the
pressure ball is too soft, and more air is required; if p′ is greater than 0.5% pa, the pressure
ball is too hard, and some air must be released from the pressure ball. Through the use of
this calibration process, the hardness of the pressure ball can be adjusted in accordance
with the current AP.

2.2. Software Design

The program is developed in C# programming language and runs on the host laptop.
After receiving the packets from the UMTS, the program immediately parses the data
packet into the values of the acceleration, angular velocity, magnetic field, and air pressure.
After parsing the data packet and obtaining the data from all the sensors, the calibration
of each sensor is performed to ensure the reliability of the sensor data. Additionally, the
calibrated sensor data are then processed using the sensor fusion algorithm to estimate the
quaternion of attitude at the current time. The Euler angle of each IMU sensor and the joint
angle between every two adjacent IMU sensors can be calculated from the quaternion of
attitude. Furthermore, the calibrated air pressure is simultaneously calculated from the
data from the air pressure sensor.

Figure 6 demonstrates nine-axis raw data collected from the IMU on the distal segment
of middle finger (IMU8) while performing 20 repetitions of ball squeezing. The nine-axis
data includes three-axis acceleration, three-axis angular velocity, and three-axis magnetic
field, which are presented in Figure 6a–c. It can be clearly noticed that there are 20 peaks
and valleys in angular velocity magnetic field on x-axis because the finger flexes and
extends mainly around the x-axis of the IMU.
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2.2.1. Sensor Calibration

Because the noise exists in all the IMUs, to obtain more reliable values from the
IMUs, all the IMUs had to be calibrated before being used. The calibration process of the
accelerometer and gyroscope is automatically conducted when the sensor glove is switched
on and lay on the desk. Since the magnetometers are easily affected by the magnetic
disturbance in the environment, it is important to calibrate the magnetometer before using
the value from the magnetometer data. To reduce the complexity of computation when
calibrating magnetometer, an effective calibration method was adopted [18]. The calibration
process of magnetometer is performed on the program. The sensor glove and MTD-UA
were rotated in 8-shape to collect the first 2000 samples of magnetic field data for each
axis when the devices started to transmit data to the host program. After obtaining the
2000 samples of magnetic field, two steps of calibration, including hard-iron and soft-iron
calibrations, were performed. Hard-iron calibration eliminates the distortion due to the
constant magnetic field caused by the earth’s magnetic field. Soft-iron calibration eliminates
the distortion due to the existing magnetic field. The formulas to obtain the offsets for
hard-iron and soft-iron calibration are expressed in (2) to (5). Sx, Sy, and Sz denote the
2000 magnetic field data series along three axes, respectively. αx, αy, and αz denote the
bias of hard-iron distortion along three axes, respectively. βx, βy, and βz denote the scale
factor to rescale the magnetic data along three axes, respectively. σx, σy, and σz denote
the max chord of length of the three axes, respectively. After obtaining the bias and scale
factor, the calibrated magnetic field data can be calculated by (5). m′y, and m′z represented
the calibrated magnetic field data.αx

αy
αz

 =
1
2
·

maxSx + minSx
maxSy + minSy
maxSz + minSz

 (2)
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σx
σy
σz

 =
1
2
·

maxSx −minSx
maxSy −minSy
maxSz −minSz

 (3)

βx
βy
βz

 =
σx + σy + σz

3
·


1
σx
1
σy
1
σz

 (4)

m′x
m′y
m′z

 =

βx(mx − αx)
βy
(
my − αy

)
βz(mz − αz)

 (5)

2.2.2. User Interface for Data Collection

After connecting with and receiving data from the UMTS, the software showed the
IMU data, estimated joint angle and air pressure in real-time on the GUI. A drop-down
menu let users select the IMU data they would like to observe. For example, if IMU 8 is
selected, the nine-axis data and current attitude of IMU8 will be presented on the GUI. All
the estimated joint angles are also shown on the GUI for clinicians to observe the subject’s
movement of the specific finger segment. In addition to the data of IMUs, the current air
pressure detected by the air pressure module is also shown on the GUI.

3. Clinical Experiments and Data Analysis

Seven healthy participants (N1–N7) and seven patients with stroke (S1–S7) were re-
cruited in this study. All experiments were performed in the Chi-Mei Medical Center,
Tainan, Taiwan. All procedures and measurements were performed in accordance with
the World Medical Association’s Declaration of Helsinki: Ethical Principles for Medical
Research Involving Human Subjects (version October 2013) and approved by the Institu-
tional Review Board (IRB) of Chi-Mei Medical Center, Tainan, Taiwan (IRB code: 11002-007).
Prospective participants were included if they (1) were aged 20–80 years and (2) could sit on
a chair for at least 40 min. A prospective participant was excluded if they (1) had symptoms
of unilateral neglect or attention deficit, (2) had cognitive or language impairments and
could not understand and perform the specified tasks, (3) had upper-limb impairment
caused by bone joints or peripheral nervous system lesions prior to onset of stroke, or
(4) had been diagnosed with dementia or depression. After the participant signed the
informed consent, one therapist tested the spasticity of metacarpophalangeal (MCP) joints
for the participant’s index, middle, ring, and little fingers simultaneously on the affected
side according to MAS. The demographic characteristics of the participants are listed in
Table 1. The mean and standard deviation of the age of the healthy participants were 38.78
± 18.64 years old, whereas those of the patients with stroke were 60.00 ± 13.36 years old.
All participants were right-handed. The right sides of four of the patients with prior stroke
were affected; the left side was affected in the other three patients.

After the MAS scores of fingers were obtained, the researcher assisted the participant
in putting on the UMCD and ensured that the IMUs were in the correct position on the
finger segments and upper arm without misalignment. After the participants put on the
UMCD, the researchers then asked the participant to perform five tasks: cone stacking (CS),
slow flexion and extension (S-FE), fast flexion and extension (F-FE), slow ball squeezing
(S-BS), and fast ball squeezing (F-BS). The five tasks were selected because they are the
most common tasks for occupational therapy, which means that most stroke patients are
familiar with the specified tasks and could understand how to perform the tasks more
easily. The patients with stroke performed the five tasks with their affected side, and the
healthy participants performed the five tasks with their dominant side. Before each task,
the participant placed the test hand on a table of height 75–80 cm. The height of the table
was adjusted according to the participant’s height, and the legs of the table were fastened
to the floor to prevent unexpected movement.
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Table 1. Demographic information of the participants.

No. Age Gender Dominant Side Months
Since Stroke Type of Stroke Affected Side MAS of

Fingers’ MCP

N1 21 Female Right None None None 0
N2 21 Female Right None None None 0
N3 21 Female Right None None None 0
N4 21 Male Right None None None 0
N5 43 Male Right None None None 0
N6 50 Female Right None None None 0
N7 44 Male Right None None None 0
S1 50 Male Right 33 Infarct Right 1
S2 80 Female Right 12 Infarct Left 1
S3 58 Female Right 44 Infarct Right 0
S4 70 Male Right 9 Infarct Right 0
S5 47 Male Right 11 Hemorrhage Left 2
S6 66 Female Right 26 Infarct Left 2
S7 57 Female Right 59 Infarct Right 2

3.1. CS Task

The experimental setup and initial position of the participant for the CS task is pre-
sented in Figure 7. Two bases for the cones were placed 20 cm from the edge of the table.
The distance between the two bases was 20 cm. Before the task, ten cones were placed on
the base on the side opposite to the participant’s test side, that is, if the left side were to
be tested, the ten cones were placed on the cone base on the right side. The participants
were asked to sit on a chair without a backrest. The chair was adjusted to the height of the
participant. On receiving the signal to start the test, the participant moved the cones one
by one from one cone base to the other as quickly as possible. The participants were not
allowed to lean their trunks to any side during the test. After moving all the cones, the
participant returned the test hand to the initial position.
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Figure 7. Setup and initial position for the cone-stacking task.

3.2. S-FE Task

The tool for S-FE was a wooden platform of dimensions 36 × 20 × 3 cm3. A C-clamp
was used to fasten the wooden platform to the table if necessary. The participant placed the
test forearm on the wooden platform such that the palm faced inward and the hand was
not in contact with the platform or table. The initial position for the task is presented in
Figure 8a. The participant had to flex and extend their fingers over their maximum range
of motion 50 times at a pace of once per second (Figure 8).
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Figure 8. Demonstration of finger flexion and extension: (a) full extension and (b) full flexion.

3.3. F-FE Task

The setup for the F-FE task was the same as for the S-FE task (Figure 8). The participant
placed the test forearm on the wooden platform with the palm in the air. The participant
then flexed and extended their fingers 50 times as quickly as possible after hearing the
signal to begin the experiment. The participants had to ensure that their fingers reached
their maximum joint angles during flexion and extension.

3.4. S-BS Task

The setup for the S-BS task was the same as that for the S-FE and F-FE tasks. The
participant placed the forearm of the test side on the wooden platform with the palm
hanging freely in the air. The participant held the tennis ball lightly without applying force,
as presented in Figure 9a. The participant then squeezed the tennis ball with the maximum
force that they could muster 50 times slowly (Figure 9b).
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3.5. F-BS Task

The setup for the F-BS task was the same as that for the S-BS task. The participant was
asked to place their forearm on the wooden platform with the palm free in the air. The
participants held the soft tennis ball lightly without applying force (Figure 9a). They then
squeezed the ball 50 times as quickly as possible (Figure 9b).

3.6. Statistical Analysis

This pilot study aimed to investigate whether the proposed system can assess the
severity of spasticity in patient with stroke fingers. Therefore, statistical data for charac-
terizing participant voluntary movement was obtained for analysis. The total magnitude
of the acceleration, angular velocity, and magnetic field were calculated because the hand
movements are in three dimensions.

After the magnitudes of the raw data were obtained, several time-domain and frequency-
domain features based on descriptive statistics were extracted from the dataset and their
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utility for differentiating the two groups of participants was investigated because descrip-
tive statistics can quantitatively describe the features from a collection of information,
which was also adopted in our previous study relating map motion features to energy
expenditure [19]. For time-domain features, three types of features were extracted, namely,
centrality, variability, and shape. Centrality features were the mean and median of the data
series; variability features were the interquartile range (IQR), standard deviation (SD), coef-
ficient of variation (CV), and root-mean-square (RMS); and shape features were skewness
and kurtosis. For the frequency-domain features, the fast Fourier transform was applied to
the time-series data to obtain the main frequency and amplitude of data in the frequency
domain. Twelve features, including the first six main frequencies and their amplitudes,
were adopted. For the BS tasks, the aforementioned 20 features were also extracted from
the raw data of air pressure.

In total, 1140 features were extracted for CS, S-FE, and F-FE, and 1160 features were
extracted for S-BS and F-BS. Because few people participated in the pilot study, the Wilcoxon
signed-rank test [20] was adopted to determine the significant features for discriminating
between healthy participants and patients with stroke. A feature was significant if p < 0.05.

4. Results

All participants completed the CS, S-FE, F-FE, S-BS, and F-BS tasks. S6 and S7 could
not finish the CS task. S3 and S4 were patients with stroke but without spasticity; thus, S3
and S4 were considered healthy participants in the statistical analysis.

4.1. Significant Features of CS

Table 2 presents the significant features for every IMU during the CS task. For all
IMUs, the only significant centrality feature was the mean of the gyroscope data; the signif-
icant variability features were the IQR, SD, and RMS of angular velocity; the significant
frequency features were the amplitude of all main frequencies of acceleration, which are
significant. The sixth main frequency of angular velocity and the amplitude of all main
frequencies of angular velocity were significant. This result also reveals that shape fea-
tures were nonsignificant for differentiating healthy participants from patients with stroke
with spasticity.

Table 2. The significant features to discriminate patients of stroke and healthy subjects for CS task.

Feature Type Sensor Type Statistics

Centrality Gyroscope Mean

Variability
Gyroscope IQR
Gyroscope SD
Gyroscope RMS

Frequency
Accelerometer Amp1 to 6

Gyroscope Mainfreq6
Gyroscope Amp1 to 6

4.2. Significant Features of FE Tasks

Table 3 presents the significant features for all IMUs during the S-FE and F-FE tasks.
For S-FE, the significant centrality features were the mean and median of angular velocity
for all IMUs; the only significant variability feature was the IQR of angular velocity. The
shape and frequency features were nonsignificant for differentiating between the healthy
participants and the patients with stroke with spasticity in S-FE.
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Table 3. The significant features to discriminate patients of stroke and healthy subjects for FE tasks.

Feature Type Sensor Type Statistics

S-FE
Centrality Gyroscope Mean

Gyroscope Median

Variability Gyroscope IQR

F-FE

Centrality Gyroscope Mean

Variability

Accelerometer SD

Gyroscope SD

Gyroscope RMS

Frequency
Accelerometer Amp1 to 6

Gyroscope Mainfreq2 to 3
Gyroscope Amp1, Amp3 to Amp6

For the F-FE task, for all IMUs, the only significant centrality feature for all IMUs was
the mean of angular velocity; the significant variability features were the SD of acceleration
and angular velocity and the RMS of angular velocity. The significant frequency features
were the amplitude of all main frequencies of acceleration, the second and third main
frequencies of angular velocity, and the amplitudes of the first and third through sixth
main frequencies of angular velocity. Shape features were nonsignificant for differentiating
between the healthy participants and the patients with stroke with spasticity in this test.

4.3. Significant Features of BS Tasks

Table 4 presents the significant features for all IMUs during the S-BS and F-BS tasks.
For S-BS, no feature was significant for all IMUs. However, the pressure ball features
were significant. The significant variability features were the IQR, SD, CV, and RMS of air
pressure. The only significant shape features were the skewness of pressure. The significant
frequency features were the first through fourth main frequencies and the amplitudes of all
main frequencies.

Table 4. The significant features to discriminate patients of stroke and healthy subjects for BS tasks.

Feature Type Sensor Type Statistics

S-BS

Variability Pressure Ball

IQR
SD
CV

RMS

Shape Pressure Ball Skewness

Frequency Pressure Ball
Mainfreq1 to 4

Amp1 to 6

F-BS

Centrality Pressure Ball Median

Variability Pressure Ball
SD

CV

Shape Pressure Ball Skewness

Frequency

Gyroscope Amp1

Pressure Ball Mainfreq1 to 5

Pressure Ball Amp1 to 6

For the F-BS task, the only significant centrality feature was the median pressure. The
significant variability features were the SD and CV of air pressure. The only significant
shape feature was the skewness of air pressure. The significant frequency features were
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the amplitude of the first main frequency of angular velocity, the first through fifth main
frequencies, and the amplitudes of all main frequencies of air pressure.

4.4. Comparison among Participants with Different Finger Spastic Scores

The Wilcoxon signed-rank test was used to identify significant features for discrimi-
nating between healthy participants and patients with stroke with spasticity. However, the
final goal of this research is to determine the severity of finger spasticity between patients.
Hence, the most significant feature for each task was selected according to the p value of
the Wilcoxon signed-rank test. The most significant features were defined as the features
with the smallest p value. The same smallest p value was shared among several features;
thus, one of the kinematic features was selected as the representative for each task for the
comparison. However, it does not mean this feature is the only significant one for the task.
The Kruskal–Wallis test was adopted to test whether the selected feature could be used to
classify the participants into three levels of spasticity based on MAS score [21]. The average
value of the selected feature was also calculated for the participants with each spasticity
score to visualize the differences between groups. For the BS tasks, the most significant
force features were also used for comparison. The selected features and their p value in
the two tests for each task are listed in Table 5. The kinematic features selected for CS,
S-FE, F-FE, S-BS, and F-BS were the SD of the angular velocity of IMU9 (GyroXYZ_9_SD),
IQR of the angular velocity of IMU8 (GyroXYZ_8_IQR), skewness of the acceleration of
IMU7 (AccXYZ_7_Skewness), amplitude of the first main frequency of the magnetic field of
IMU10 (MagXYZ_10_Amp1), and the first main frequency of the angular velocity of IMU12
(GyroXYZ_12_Mainfreq1). The force feature selected for S-BS and F-BS was the CV of air
pressure (Ball_Offset_CV) because it was the most significant feature for both S-BS and
F-BS. As indicated in Table 5, the features for differentiating the healthy participants from
patients with stroke with spasticity and the features for differentiating spasticity scores
all had p values under 0.05, indicating that the selected features can be used to classify
the participants.

Table 5. The most significant features for each task.

Task Selected
Feature

p-Value
For Two Spastic Levels

p-Value
for Three Spastic Levels

CS GyroXYZ_9_SD 0.013 0.042

S-FE GyroXYZ_8_IQR 0.003 0.009

F-FE AccXYZ_7_Skewness 0.003 0.011

S-BS
MagXYZ_10_Amp1 0.003 0.010

Ball_Offset_CV 0.003 0.009

F-BS
GyroXYZ_12_Mainfreq1 0.003 0.009

Ball_Offset_CV 0.003 0.009

5. Discussion

This pilot study introduces a novel wearable system and investigated which kinematic
features obtained from the system can be used to assess finger spasticity. The participants
were asked to perform five voluntary movements, and the corresponding kinematic and
force data were collected. The results in Tables 2 and 3 reveal that the centrality and
variability of angular velocity of all IMUs significantly differed between healthy participants
and patients with stroke with spasticity in the CS, S-FE, and F-FE tasks. The participant
faces no external resistance in these three tasks. Therefore, the participant can undertake
their maximum range of motion, and the data can be further used to assess if movement
is affected by spasticity. In particular, the mean of angular velocity was significant for
every sensor in the three tasks; thus, it is a key feature for differentiating between healthy
participants and patients with spasticity. Moreover, the variability of the IMUs data is also
a key characteristic for differentiation. A possible reason is that the patients with stroke
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with spasticity cannot perform the three tasks quickly due to abnormal muscle contractions;
this effect would not be present in healthy participants.

Table 4 indicates that the pressure ball features were more significant than those from
the IMUs for the BS tasks. The variability, shape, and frequency features for the pressure
ball were all significant for differentiating between healthy participants and patients with
spasticity in these tasks. This result is reasonable because the two tasks focused on ball
squeezing instead of finger movement quality. Furthermore, the resistance of the pressure
ball might affect joint movement, resulting in only features from certain IMUs being
significant. The overall results also indicate that S-FE had the fewest significant features
for all IMUs. Therefore, only the CS, F-FE, S-BS, and F-BS tasks should be adopted in
further studies.

Table 5 presents the selected features and p values for differentiating between two or
three different spasticity scores. The results reveal that the p value for all selected features
were less than 0.05, indicating that these features are differentiating ones. The overall
results indicate that the data collected by the wearable system has potential for assessments
of the spasticity scores in future research.

Table 6 shows the comparison between our proposed system and other related works
using IMUs to assess spasticity. Among all the studies, only Ang et al. applied IMUs to
assess the lower-limb spasticity, whereas the other studies applied IMUs to assess upper-
limb spasticity. Regarding the devices, our system adopted most sensors among all the
related studies, indicating that this system can measure and analyze most joints compared
to other studies. Besides kinematic data, our system can also measure force data, which
is the first study to combine the two aspects of information in one system. Our system
also had higher portability and extensibility compared to the other systems, meaning that
our system can be combined with more sensors in future works. Moreover, our system
and the system proposed by Zhang et al. adopted in our study were customized, which
would be cheaper than the business products adopted by the other studies. For the type of
transmission, Choi et al., Kim et al. and our system used Bluetooth wireless transmission,
which is more flexible than Zhang et al. and Ang et al., who adopted the wired transmission.
Moreover, it is also superior to the radio frequency (RF) communication adopted by Chen
et al. since RF requires the other platform to receive all the information from the sensors.
It is also superior to the 2.4 GHz wireless connection adopted by Ang et al., which also
requires a platform to receive the data. For the type of task, we and Chen et al. evaluated
the spasticity through voluntary movement, which has higher potential to apply to residual
rehabilitation, whereas the other studies assessed spasticity through passive movement,
which can only be performed by therapists in the follow-up appointment. Lastly, other
studies mainly focused on assessing wide joints, such as shoulder, elbow, wrist, and thumb,
whereas our study focused on assessing finger spasticity. In conclusion, this is the first
study to develop a wearable system for discovering the relations between finger spasticity
and voluntary movement, which was crucial but seldom discussed in the related research.

To the best of our knowledge, the developed system is the first wearable system for
assessing finger spasticity. This pilot study had few participants because its purpose was to
verify the feasibility of the new wearable system for assessing finger spasticity. For a new
customized wearable system, verifying whether the kinematic and force data collected from
the wearable system are reliable for assessing the finger spasticity is crucial before future
studies are conducted. The features extracted from the data obtained from the wearable
system could be used to differentiate between participants with different finger spasticity
scores. However, the number of subjects in this study is insufficient for training a machine
learning model. Thus, in the future, more subjects’ information will be collected using
the developed system for building the machine learning model to assess the spasticity.
Furthermore, because more significant features were obtained from the CS, F-FE, S-BS, and
F-BS, these four tasks should be adopted to efficiently collect kinematic and force data in
future studies.
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Table 6. Comparison between our proposed system and other related works.

Our System Choi et al.
[22]

Ang et al.
[9] Zhang et al. [11] Kim et al.

[12]
Chen et al.

[15]

Devices 19 IMUs +
1 Pressure Ball 2 IMUs 3 IMUs +

1 sEMG
1 IMU +
2 sEMG 1 IMU 3 IMUs +

3 sEMG

Portability High High High Low High Low

Extensibility High Low Low Low Low Low

Cost Low High High Low High High

Observed Joints 16 2 4 1 1 1

Collected Data Type Kinematic + Force Kinematic Kinematic Kinematic + EMG Kinematic Kinematic + EMG

Transmission Bluetooth
v2.1+EDR

Class 2
Bluetooth

2.4 GHz
Wireless Wired Bluetooth

v2.1+EDR
Radio Frequency
communication

Type of Tasks Voluntary Passive Passive Passive Passive Voluntary

Assessed Joints Fingers Knee, Ankle Shoulder, Elbow,
Wrist, Thumb Elbow Elbow Elbow

6. Conclusions

This study proposed a novel system that employs multiple sensors to assess finger
spasticity in patients with stroke. The results reveal that the significant features extracted
from five tasks can be used to discriminate the participants with different finger spastic
levels. The results demonstrate a close relationship between spasticity and voluntary
movement. In particular, more significant features were obtained from the CS, F-FE, S-BS,
and F-BS tasks, indicating that the four tasks can be adopted in further studies for collecting
information from more participants. Since the aim of this study was to investigate the
feasibility of the proposed system, the number of participants recruited in this study was
insufficient for building a model to assess finger spasticity. Therefore, more participants
should be recruited in a future study to construct a robust model for MAS score prediction
for fingers.

Author Contributions: Conceptualization, B.-S.L., P.-C.H. and S.-Y.Y.; Formal analysis, S.-Y.Y.,
C.-Y.C. and Y.-F.H.; Funding acquisition, B.-S.L., P.-C.H. and M.-H.Y.; Methodology, I.-J.L.; Project ad-
ministration, B.-S.L. and P.-C.H.; Resources, P.-C.H. and S.-H.L.; Software, I.-J.L.; Supervision, B.-S.L.
and Y.H.H.; Validation, B.-S.L. and I.-J.L.; Writing—original draft, B.-S.L. and I.-J.L.; Writing—review
and editing, Y.H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly supported by Ministry of Science and Technology in Taiwan,
under grants MOST 109-2314-B-305-001, MOST 110-2314-B-305-001, and MOST 109-2221-E-305-
001-MY2. This research was also partly supported by University System of Taipei Joint Research
Program, under grants USTP-NTPU-NTOU-110-01, Faculty Group Research Funding Sponsorship
by National Taipei University, under grants 2021-NTPU-ORDA-02, and “Academic Top-Notch and
Features Field Project” Funding Sponsorship of National Taipei University, Taiwan (R.O.C), under
111-NTPU_ORDA-F-004. This research was also partly supported by Chi Mei Medical Center, under
grant CMFHR11042.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Chi-Mei Medical Center, Tainan,
Taiwan (protocol code: 11002-007; date of approval: 8 April 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sommerfeld, D.K.; Gripenstedt, U.; Welmer, A.K. Spasticity after stroke: An overview of prevalence, test instruments, and

treatments. Am. J. Phys. Med. Rehabil. 2012, 91, 814–820. [CrossRef] [PubMed]

http://doi.org/10.1097/PHM.0b013e31825f13a3
http://www.ncbi.nlm.nih.gov/pubmed/22760104


Sensors 2022, 22, 7212 16 of 16

2. Dietz, V.; Sinkjaer, T. Spastic movement disorder: Impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007,
6, 725–733. [CrossRef]

3. Plantin, J.; Pennati, G.V.; Roca, P.; Baron, J.-C.; Laurencikas, E.; Weber, K.; Godbolt, A.K.; Borg, J.; Lindberg, P.G. Quantitative
Assessment of Hand Spasticity after Stroke: Imaging Correlates and Impact on Motor Recovery. Front. Neurol. 2019, 10, 836.
[CrossRef]

4. Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207.
[CrossRef] [PubMed]

5. Craven, B.C.; Morris, A.R. Modified Ashworth scale reliability for measurement of lower extremity spasticity among patients
with SCI. Spinal Cord 2010, 48, 207–213. [CrossRef]

6. Ansari, N.N.; Naghdi, S.; Arab, T.K.; Jalaie, S. The interrater and intrarater reliability of the Modified Ashworth Scale in the
assessment of muscle spasticity: Limb and muscle group effect. NeuroRehabilitation 2008, 23, 231–237. [CrossRef] [PubMed]

7. Meseguer-Henarejos, A.B.; Sánchez-Meca, J.; López-Pina, J.A.; Carles-Hernández, R. Inter- and intra-rater reliability of the
Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 576–590. [CrossRef]

8. Park, H.S.; Kim, J.; Damiano, D.L. Development of a haptic elbow spasticity simulator (HESS) for improving accuracy and
reliability of clinical assessment of spasticity. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 361–370. [CrossRef] [PubMed]

9. Ang, W.S.; Geyer, H.; Chen, I.M.; Ang, W.T. Objective Assessment of Spasticity with a Method Based on a Human Upper Limb
Model. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1414–1423. [CrossRef] [PubMed]

10. Park, J.-H.; Kim, Y.; Lee, K.-J.; Yoon, Y.-S.; Kang, S.H.; Kim, H.; Park, H.-S. Artificial Neural Network Learns Clinical Assessment
of Spasticity in Modified Ashworth Scale. Arch. Phys. Med. Rehabil. 2019, 100, 1907–1915. [CrossRef] [PubMed]

11. Zhang, X.; Tang, X.; Zhu, X.; Gao, X.; Chen, X.; Chen, X. A regression-based framework for quantitative assessment of muscle
spasticity using combined emg and inertial data from wearable sensors. Front. Neurosci. 2019, 13, 398. [CrossRef]

12. Kim, J.-Y.; Park, G.; Lee, S.-A.; Nam, Y. Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial
Sensors. Sensors 2020, 20, 1622. [CrossRef]

13. Koh, C.-L.; Pan, S.-L.; Jeng, J.-S.; Chen, B.-B.; Wang, Y.-H.; Hsueh, I.-P.; Hsieh, C.-L. Predicting recovery of voluntary upper
extremity movement in subacute with severe upper extremity paresis. PLoS ONE 2015, 10, e0126857. [CrossRef] [PubMed]

14. Bai, L.; Pepper, M.G.; Yan, Y.; Phillips, M.; Sakel, M. Quantitative measurement of upper limb motion pre-and post-treatment
with Botulinum Toxin. Measurement 2021, 168, 108304. [CrossRef]

15. Chen, Y.; Yu, S.; Cai, Q.; Huang, S.; Ma, K.; Zheng, H.; Xie, L. A Spasticity Assessment Method for Voluntary Movement using
Data Fusion and Machine Learning. Biomed. Signal Process. Control 2021, 65, 102353. [CrossRef]

16. Lin, B.-S.; Lee, I.-J.; Chen, J.-L. Novel Assembled Sensorized Glove Platform for Comprehensive Hand Function Assessment by
Using Inertial Sensors and Force Sensing Resistors. IEEE Sens. J. 2020, 20, 3379–3389. [CrossRef]

17. MPRLS Ported Pressure Sensor Breakout. Available online: https://cdn-learn.adafruit.com/downloads/pdf/adafruit-mprls-
ported-pressure-sensor-breakout.pdf (accessed on 1 September 2022).

18. Simple and Effective Magnetometer Calibration. Available online: https://github.com/kriswiner/MPU6050/wiki/Simple-and-
Effective-Magnetometer-Calibration (accessed on 1 September 2022).

19. Lin, B.-S.; Wang, L.-Y.; Hwang, Y.-T.; Chiang, P.-Y.; Chou, W.-J. Depth-Camera-Based System for Estimating Energy Expenditure
of Physical Activities in Gyms. IEEE J. Biomed. Health Inform. 2019, 23, 1086–1095. [CrossRef] [PubMed]

20. Woolson, R.F. Wilcoxon Signed-Rank Test. In Wiley Encyclopedia of Clinical Trials; D’Agostino, R.B., Sullivan, L., Massaro, J., Eds.;
John Wiley & Sons Inc.: New York, NY, USA, 2007.
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