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We read Du et al. [1] with great interest, which examined the moderated mediating
effects of sleep and emotional eating in the association of perceived stress with the body
mass index (BMI). This study provides a helpful opportunity for discussion of the principles
of mediation analysis in health research.

Conventional approaches to mediation analysis have followed recommendations by
Baron and Kenny (B&K) [2], who argue that to quantify the extent to which a variable (M)
mediates the relationship between an independent variable (IV) and dependent variable
(DV), one must first demonstrate a significant total effect (IV→DV), significant paths in
IV→M and M→DV, and a significant indirect effect through M (IV→M→DV). However,
MacKinnon and others recommend estimating confidence limits by using critical values for
the asymmetric distribution of the product or resampling methods (e.g., bootstrapping),
because the indirect effect is the product of two coefficients (IV→M and M→DV) and the
product may not follow a normal distribution [3–5]. Furthermore, simulation examples
have found mediation when B&K’s criteria are not satisfied, demonstrating that it is possible
to have statistically significant indirect effects in the absence of a total effect, especially
when several mediating paths have opposite signs that cancel each other out [3,6].

In this study of 1392 students, Du et al. used bias-corrected bootstrap confidence
limits for mediation analysis. They identified a small indirect effect where emotional
eating mediated the association between perceived stress and the BMI in female students
(95% CI = 0.01, 0.04). However, had Du et al. followed B&K’s approach, it is likely that they
would not have found a significant indirect effect; simulation studies have demonstrated
a minimum sample size of 20,886 for B&K’s approach to detect small mediation effects
in a completely mediated model with a power of 0.8 [3]. Furthermore, given the weak
bivariate correlation between perceived stress and BMI (r = 0.055, p < 0.05), regressing BMI
on perceived stress with covariates might have led to a nonsignificant IV→DV, precluding
mediation findings through B&K’s approach.

As a seminal article, B&K’s approach should be introduced, balanced with its limita-
tions, to all students as they learn mediation analysis: It is theoretically easy to understand,
can be examined using regression models, and has conservative type I error rates [7].
Loeys et al. recommend careful consideration at the design stage regarding common fac-
tors that might influence mediators and outcomes and conducting sensitivity analysis
to mitigate the impact of confounding effects [7]. For example, consider whether sleep
quality/duration introduces spurious effects within the mediation model (Figure 1A) prior
to conducting moderated mediation analyses (Figure 1B). We believe that Du et al.’s study
provides an example for researchers to see how other approaches of mediation analysis
might lead to different conclusions and that sensitivity analysis might be needed when
confounding effects exist.
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Figure 1. Conceptualization of the mediation model during the design stage: (A) potential confound-
ing variables (sleep quality and sleep duration) introducing spurious effects in the mediation model;
(B) the moderated mediation model proposed in Du et al.’s study.
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