
C. elegans toxicant responses vary among genetically diverse 
individuals

Samuel J. Widmayer*,

Timothy A. Crombie,

Joy N. Nyaanga,

Kathryn S. Evans,

Erik C. Andersen

Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA

Abstract

The genetic variability of toxicant responses among indisviduals in humans and mammalian 

models requires practically untenable sample sizes to create comprehensive chemical hazard 

risk evaluations. To address this need, tractable model systems enable reproducible and 

efficient experimental workflows to collect high-replication measurements of exposure cohorts. 

Caenorhabditis elegans is a premier toxicology model that has revolutionized our understanding of 

cellular responses to environmental pollutants and boasts robust genomic resources and high levels 

of genetic variation across the species. In this study, we performed dose-response analysis across 

23 environmental toxicants using eight C. elegans strains representative of species-wide genetic 

diversity. We observed substantial variation in EC10 estimates and slope parameter estimates of 

dose-response curves of different strains, demonstrating that genetic background is a significant 

driver of differential toxicant susceptibility. We also showed that, across all toxicants, at least 

one C. elegans strain exhibited a significantly different EC10 or slope estimate compared to 

the reference strain, N2 (PD1074), indicating that population-wide differences among strains 

are necessary to understand responses to toxicants. Moreover, we quantified the heritability of 

responses (phenotypic variance attributable to genetic differences between individuals) to each 

toxicant exposure and observed a correlation between the exposure closest to the species-agnostic 

EC10 estimate and the exposure that exhibited the most heritable response. At least 20% of 

the variance in susceptibility to at least one exposure level of each compound was explained 

by genetic differences among the eight C. elegans strains. Taken together, these results provide 

robust evidence that heritable genetic variation explains differential susceptibility across an array 

of environmental pollutants and that genetically diverse C. elegans strains should be deployed to 

aid high-throughput toxicological screening efforts.
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1. Introduction

Hazard risk assessment of environmental chemicals is a top priority of toxicological 

research. Over 350,000 chemicals are currently registered for use and production globally, 

of which tens of thousands are either confidential or ambiguously described (Wang et al., 

2020). This staggering rate of production, paired with traditional means of hazard safety 

testing, which typically uses mammalian or cell-based methods of response evaluation, 

means that human populations are exposed to a complex array of xenobiotic compounds 

with virtually unknown risk levels. Although approaches to hazard risk assessments using 

mammalian systems have translational appeal, they often suffer from low statistical power 

because of necessarily limited sample sizes. These approaches are also time-consuming and 

economically costly (Tralau et al., 2012), drastically reducing their potential for thorough 

risk assessment of a growing, sometimes multifactorial, collection of chemical exposures 

(Brooks et al., 2020). Most importantly, meta-analyses estimate that rodent systems predict 

human toxic effects approximately 50% of the time (Hartung, 2009; Knight et al., 2009), 

suggesting that chemical risk assessment requires a more integrative approach.

Caenorhabditis elegans is a free-living nematode that can be cheaply reared in large 

samples in a matter of days, vastly accelerating the pace and scale at which hazard risk 

evaluations can be performed compared to most vertebrate models. Furthermore, studies 

using C. elegans provide data from whole animals with intact neuromuscular, digestive, and 

sensory systems unlike popular in vitro systems. C. elegans is a powerful toxicology model 

that unites toxicologists with molecular geneticists so that expertise in routes of chemical 

exposure, internal dosage-specific effects, tissue distribution, and chemical metabolism is 

combined with expertise in DNA damage, oxidative and osmotic stress, and regulation 

of apoptosis and necrosis (Boyd et al., 2012; Hartman et al., 2021). All three phases of 

xenobiotic metabolism are present in C. elegans, though the conservation of specific gene 

families within each phase, such as the cytochromes P450, UDP-glucuronosyltransferases 

(UGTs), sulfotransferase enzymes (SULTs), and ATP-binding cassette (ABC) transporters 

(Hartman et al., 2021) have important differences. In addition to being inexpensive and 

easy to use, C. elegans responses to dozens of chemicals more accurately predict responses 

in rabbits and rats compared to zebrafish models (Boyd et al., 2016). Furthermore, meta-

analyses indicate that rank-ordered toxicant sensitivity in several rodent models correlates 

with responses in C. elegans (Hunt, 2017). Finally, high-throughput approaches that measure 

phenotypic responses in C. elegans facilitate chemical screens in large populations at high 

replication (Andersen et al., 2015), providing a more facile and efficient risk assessment 

methodology that is a viable alternative to mammalian and cell-based systems. Therefore, 

toxicity assessments in C. elegans provide an alternative to vertebrate models with 

significantly greater scalability and potential to accelerate the characterization of molecular 

targets of chemical exposures.
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One approach to account for intra- and inter-species variation in toxicant responses is to 

use uncertainty factors (UFs) to translate a hazard’s point of departure (POD) between 

species with distinct exposure routes and pharmacokinetic and pharmacodynamic capacities 

(Piersma et al., 2011). POD calculations alone fail to directly account for heritable 

genetic variation between individuals - variance in susceptibility that can be explained by 

genetic differences that segregate among individuals in a population (Zeise et al., 2013). 

Failing to account for these differences leads to UFs serving as an imprecise proxy for 

within-species variation in risk because the process is agnostic to observed ranges of 

susceptibility in genetically diverse individuals. Measuring hazard risk explicitly across 

many genetic backgrounds can provide a direct empirical assessment of the merit of 

UFs as a methodology for quantifying population-wide variability caused by genetics. 

Evaluations that can quantify the contributions of genetics to toxicant response variation lay 

the foundation for quantitative genetic dissection, with the specific goal of revealing novel 

mechanisms of toxicant susceptibility by identifying risk alleles. Wild strains of C. elegans 
harbor rich genetic variation (Andersen et al., 2012; Cook et al., 2017; Lee et al., 2021) 

and, by combining quantitative and molecular genetic approaches, offer the opportunity to 

discover genetic modifiers of toxicant susceptibility (Andersen et al., 2015; Bernstein et al., 

2019; Evans et al., 2020; Zdraljevic et al., 2019). Quantifying the effects of genetics on 

toxicant susceptibility in C. elegans is an important step towards a full characterization of 

chemical hazard risk because the additive effects of conserved genes can help us understand 

novel toxicant response biology in humans. Additionally, the effects of these specific alleles 

can be dissected in C. elegans using genetic crosses and state-of-the-art molecular methods 

much faster than in mammalian systems.

In this study, we performed dose-response analysis across 25 toxicants representing distinct 

chemical classes using eight strains of C. elegans representative of species-wide genetic 

diversity. We used a high-throughput imaging platform to assay development after exposing 

arrested first larval stage animals to each toxicant in a dose-dependent manner and used 

custom software (Di Tommaso et al., 2017; Nyaanga et al., 2021; Wählby et al., 2012) 

to measure phenotypic responses to each compound. By estimating dose-response curves 

for each toxicant and fitting strain-specific model parameters, we demonstrated that natural 

genetic variation is a key determinant of toxicant susceptibility in C. elegans. Moreover, we 

showed that the specific alleles that segregate between the eight strains in our cohort are 

responsible for heritable variation in toxicant susceptibility, which implies that quantitative 

genetic dissection of these responses has the potential to yield novel genetic loci underlying 

toxicant susceptibility. Taking these observations together, we propose that leveraging 

standing natural genetic variation in C. elegans is a powerful and complementary tool for 

high-throughput hazard risk assessments in translational toxicology.

2. Methods

2.1. Strains

The eight strains used in this study (PD1074, CB4856, MY16, RC301, ECA36, ECA248, 

ECA396, XZ1516) are available from the C. elegans Natural Diversity Resource (CeNDR) 

(Cook et al., 2017). Isolation details for the eight strains are included on CeNDR. Of the 
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eight strains used, two (PD1074 and ECA248) are referred to by their isotype names (N2 

and CB4855, respectively). Prior to measuring toxicant responses, all strains were grown 

at 20 °C on 6 cm plates made with modified nematode growth medium (NGMA) that 

contains 1% agar and 0.7% agarose to prevent animals from burrowing (Andersen et al., 

2014). The NGMA plates were spotted with OP50 Escherichia coli as a nematode food 

source. All strains were propagated for three generations without starvation on NGMA 

plates prior to toxicant exposure. The specific growth conditions for nematodes used in the 

high-throughput toxicant response assay are described below (see Methods, High-throughput 

toxicant response assay).

2.2. Nematode food preparation

We prepared a single batch of HB101 E. coli as a nematode food source for all assays in 

this study. In brief, we streaked a frozen stock of HB101 E. coli onto a 10 cm Luria-Bertani 

(LB) agar plate and incubated it overnight at 37 °C. The following morning, we transferred 

a single bacterial colony into a culture tube that contained 5 ml of 1x Horvitz Super Broth 

(HSB). We then incubated that starter culture and a negative control (1X HSB without 

bacteria) for 18 h at 37 °C with shaking at 180 rpm. We then measured the OD600 value of 

the starter culture with a spectrophotometer (BioRad, smartspec plus), calculated how much 

of the 18-h starter culture was needed to inoculate a one liter culture at an OD600 value of 

0.001, and used it to inoculate 14 4 L flasks that each contained one liter of pre-warmed 1x 

HSB. We grew those 14 cultures for 15 h at 37 °C with shaking at 180 rpm until they were 

in the early stationary growth phase (Supplemental Fig. 1A). We reasoned that food prepared 

from cultures grown to the early stationary phase (15 h) would be less variable than food 

prepared from cultures in the log growth phase. At 15 h, we removed the culture flasks from 

the incubator and transferred them to a 4 °C walk-in cold room to arrest growth. We then 

removed the 1X HSB from the cultures by three repetitions of pelleting the bacterial cells 

with centrifugation, disposing of the supernatant, and resuspending the cells in K medium. 

After the final wash, we resuspended the bacterial cells in K medium and transferred them to 

a 2 L glass beaker. We measured the OD600 value of this bacterial suspension, diluted it to a 

final concentration of OD600 100 with K medium, aliquoted it to 15 ml conicals, and froze 

the aliquots at −80 °C for use in the dose-response assays.

2.3. Toxicant stock preparation

We prepared stock solutions of the 25 toxicants using either dimethyl sulfoxide (DMSO) 

or water depending on the toxicant’s solubility. The exact sources, catalog numbers, stock 

concentrations, and preparation notes for each of the toxicants are provided (Supplemental 

Table 1). Following preparation of the toxicant stock solutions, they were aliquoted to 

microcentrifuge tubes and stored at −20 °C for use in the dose-response assays. Exposure 

ranges were chosen for each chemical based on results from preliminary dose-response trials 

using only the N2 strain and six concentrations in order to narrow the exposure range for the 

larger eight strain experiments (data not shown).

2.4. High-throughput toxicant dose-response assay

For each replicate assay, populations of each strain were passaged for three generations, 

amplified, and bleach-synchronized in triplicate (Fig. 1A). We replicated the bleach 
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synchronization to control for variation in embryo survival and subsequent effects on 

developmental rates that could be attributed to bleach effects (Porta-de-la-Riva et al., 2012) 

(Fig 2A). Following each bleach synchronization, we dispensed approximately 30 embryos 

into the wells of 96-well microplates in 50 μL of K medium (Boyd et al., 2012). We 

randomly assigned strains to rows of the 96-well microplates and varied the row assignments 

across the replicate bleaches. We prepared four replicate 96-well microplates within each 

of three bleach replicates for each toxicant and control condition tested in the assay. We 

then labeled the 96-well microplates, sealed them with gas permeable sealing film (Fisher 

Cat #14-222-043), placed them in humidity chambers, and incubated them overnight at 

20 °C with shaking at 170 rpm (INFORS HT Multitron shaker). The following morning, 

we prepared food for the developmentally arrested first larval stage animals (L1s) using 

frozen aliquots of HB101 E. coli suspended in K medium at an optical density at 600 

nm (OD600) of 100 (see Methods, Nematode food preparation). We thawed the required 

number of OD600100 HB101 aliquots at room temperature, combined them into a single 

conical tube, diluted them to OD60030 with K medium, and added kanamycin at 150 

μM to inhibit further bacterial growth and prevent contamination. Working with a single 

toxicant at a time, we then transferred a portion of the OD60030 food mix to a 12-channel 

reservoir, thawed an aliquot of toxicant stock solution at room temperature (see methods, 

Toxicant stock preparation), and diluted the toxicant stock to a working concentration. The 

toxicant working concentration was set to the concentration that would give the highest 

desired exposure when added to the 96-well microplates at 1% of the total well volume 

(the final concentration of the vehicle in all wells). We then performed a serial dilution 

of the toxicant working solution using the same diluent used to make the stock solution 

(Fig. 1C). The dilution factors ranged from 1.1 to 2 depending on the toxicant used, but 

all serial dilutions had 12 concentrations, including a 0 μM control. Concentrations were 

identified in a set of preliminary dose-response trials using just the N2 strain across a 

broader exposure range. Each control concentration was supplied at 1% of the total well 

volume in either water or DMSO. Using a 12-channel micropipette, we added the toxicant 

dilution series to the 12-channel reservoir containing the food mix at a 3% volume/volume 

ratio. Next, we transferred 25 μL of the OD60030 food and toxicant mix from the 12-channel 

reservoir into the appropriate wells of the 96-well microplates to simultaneously feed the 

arrested L1s at a final HB101 concentration of OD60010 and expose them to toxicant at 

one of 12 levels of the dilution series. We chose to feed at a final HB101 concentration of 

OD60010 because nematodes consistently developed to L4 larvae after 48 h of feeding at 20 

°C (Supplemental Fig. 1B). Immediately after feeding, we sealed the 96-well microplates 

with a gas permeable sealing film (Fisher Cat #14-222-043), returned them to the humidity 

chambers, and started a 48-h incubation at 20 °C with shaking at 170 rpm. The remainder 

of the 96-well microplates were fed and exposed to toxicants in the same manner. After 48 

h of incubation in the presence of food and toxicant, we removed the 96-well microplates 

from the incubator and treated the wells with sodium azide (325 μL of 50 mM sodium 

azide in 1X M9) for 10 min to paralyze and straighten the nematodes. We then immediately 

acquired images of nematodes in the microplates using a Molecular Devices ImageXpress 

Nano microscope (Molecular Devices, San Jose, CA) with a 2X objective (Fig. 1D). We 

used the images to quantify the development of nematodes in the presence of toxicants as 

described below (see Methods, Data collection, and Data cleaning).
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2.5. Data collection

We wrote custom software packages designed to extract animal measurements from images 

collected on the Molecular Devices ImageXpress Nano microscope (Fig. 1E). CellProfiler 

is a widely used software program for characterizing and quantifying biological data 

from image-based assays (Carpenter et al., 2006; Kamentsky et al., 2011; McQuin et al., 

2018). A collection of CellProfiler modules known as the WormToolbox were developed 

to extract morphological features of individual C. elegans animals from images from 

high-throughput C. elegans phenotyping assays like the one that we use here (Wählby et 

al., 2012). We estimated worm models and wrote custom CellProfiler pipelines using the 

WormToolbox in the GUI-based instance of CellProfiler. We then wrote a Nextflow pipeline 

(Di Tommaso et al., 2017) to run command-line instances of CellProfiler in parallel on 

the Quest High Performance Computing Cluster (Northwestern University) because each 

experimental block in this study produced many thousands of well images. This workflow 

can be found at https://github.com/AndersenLab/cellprofiler-nf. Our custom CellProfiler 

pipeline generates animal measurements by using four worm models: three worm models 

tailored to capture animals at the L4 larval stage, in the L2 and L3 larval stages, and 

the L1 larval stage, respectively, as well as a “multi-drug high dose” (MDHD) model, to 

capture animals with more abnormal body sizes caused by extreme toxicant responses. 

We used R/easyXpress (Nyaanga et al., 2021) to filter measurements from worm objects 

within individual wells that were statistical outliers using the function setFlags(), which 

identifies outlier animal measurements using Tukey’s fences (Tukey, 1977). We then parsed 

measurements from multiple worm models down to single measurements for single animals 

using the modelSelection() function. These measurements comprised our raw dataset.

2.6. Data cleaning

All data management and statistical analyses were performed using the R statistical 

environment (version 4.0.4). Our high-throughput imaging platform produced thousands 

of images across each experimental block. It is unwieldy to manually curate each individual 

well image to assess the quality of animal measurement data. Therefore, we took several 

steps to clean the raw data using heuristics indicative of high-quality animal measurements 

suitable for downstream analysis.

1. We began by censoring experimental blocks for which the coefficient of 

variation (CV) of the number of animals in control wells was greater than 0.6 

(Supplemental Fig. 2A). Experiments containing wells that meet this criterion in 

control wells are expected to produce less precise estimates of animal lengths in 

wells in which animals have been exposed to chemicals that typically increase 

the variance of the body length trait (Supplemental Fig. 2B).

2. We then reduced the data to wells containing between five and thirty animals, 

under the null hypothesis that the number of animals is an approximation of 

the expected number of embryos originally titered into wells (approximately 

30). This filtering step screened for two problematic features of well images 

in our experiment. First, given that our analysis relied on well median animal 

length measurements, we excluded wells with fewer than five animals to reduce 

sampling error. Second, insoluble compounds or bacterial clumps were often 
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identified as animals by CellProfiler (Supplemental Fig. 3) and would vastly 

inflate the well census and spuriously deflate the median animal length in wells 

containing high concentrations of certain toxicants.

3. After the previous two data processing steps, we removed statistical outlier 

measurements within each concentration for each strain for every toxicant to 

reduce the likelihood that statistical outliers influence dose-response curve fits.

4. Next, we removed measurements from all exposures of each toxicant that were 

no longer represented in at least 80% of the independent assays because of 

previous data filtering steps, or had fewer than 10 measurements per strain.

5. Finally, we normalized the data by (1) regressing variation attributable to assay 

and technical replicate effects and (2) normalizing these extracted residual values 

with respect to the average control phenotype. For each compound, we estimated 

a linear model using the raw phenotype measurement as the response variable 

and both assay and technical replicate identity as explanatory variables following 

the formula median_wormlength_um ~ Metadata_Experiment + bleach using 

the lm() function in base R. We then extracted the residuals from this linear 

model for each exposure and subtracted normalized phenotype measurements in 

each exposure from the mean normalized phenotype in control conditions. These 

normalized phenotype measurements were used in all downstream statistical 

analyses.

2.7. LOAEL inference

We determined the lowest observed adverse effect level (LOAEL) for each compound by 

performing a one-way analysis of variance using the normalized phenotype measurements 

as a response variable and toxicant dosage as an explanatory variable. We then performed a 

Tukey post hoc test, filtered to only comparisons to control exposures, and determined the 

lowest exposure that exhibited a significantly different phenotypic response as distinguished 

by an adjusted p-value less than 0.05. This analysis was performed on all phenotype 

measurements, as well as for each strain individually to determine if genetic background 

differences explain differences in LOAEL for each toxicant.

2.8. Dose-response model estimation and statistics

We estimated overall and strain-specific dose-response models for each compound by fitting 

a log-logistic regression model using R/drc (Ritz et al., 2015). The log-logistic model that 

we used specified four parameters: b, the slope of the dose-response curve; c, the upper 

asymptote of the dose-response curve; d, the lower asymptote of the dose-response curve; 

and e, the specified effective exposure. This model was fit to each compound using the 

drc::drm() function with strain specified as a covariate for parameters b and e, allowing 

us to estimate strain-specific dose-response slopes and effective exposures, as well as a 

specified lower asymptote d at −600, which is the theoretical normalized length of animals 

at the L1 larval stage. We used the drc::ED() function to extract strain-specific EC10 

values, and extracted the strain-specific slope values using base R. We quantified the relative 

resistance to each compound across all each strain pairs based on their estimated EC10 
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values using the drc::EDcomp() function, which uses an approximate F-test to determine 

whether the variances (represented by delta-specified confidence intervals) calculated for 

each strain-specific dose-response model’s e parameter estimates are significantly different. 

We quantified the relative slope steepness of dose-response models estimated for each 

strain within each compound using the drc::compParm() function, which uses a z-test to 

compare means of each b parameter estimate. Results shown are filtered to just comparisons 

against N2 dose-response parameters (Figs. 2 and 3), and significantly different estimates in 

both cases were determined by correcting to a family-wise type I error rate of 0.05 using 

Bonferroni correction. To determine whether strains were significantly more resistant or 

susceptible to more toxicants or chemical classes by chance, we conducted 1000 Fisher 

exact tests using the fisher.test() function with 2000 Monte Carlo simulations.

2.9. Broad-sense and narrow-sense heritability calculations

Phenotypic variance can be partitioned into variance caused by genetic differences or genetic 

variance (VG) and residual variance explained by other factors (VE). We extracted the 

among strain variance (VG) and the residual variance (VE) from the model and calculated 

broad-sense heritability (H2) with the equation H2 = VG / (VG+VE). We estimated the H2 

using the lme4 (v1.1.27.1) R package to fit a linear mixed-effects model to the normalized 

phenotype data with strain as a random effect. Genetic variance (VG) can be partitioned 

into additive (VA) and non-additive (VNA) variance components. Additive genetic variance 

is the amount of genetic variance that can be explained by the discrete collection of variants 

that differ in a specific population. Narrow-sense heritability (h2) is defined as the ratio 

of additive genetic variance over the total phenotypic variance (VP), i.e., h2 = VA / VP. 

We generated a genotype matrix using the genomatrix profile of NemaScan, a GWAS 

analysis pipeline (Widmayer et al., 2022), using the variant call format (VCF) file generated 

in the latest CeNDR release (https://www.elegansvariation.org/data/release/latest). We then 

calculated h2 using the sommer (v4.1.5) R package by calculating the variance-covariance 

matrix (MA) from this genotype matrix using the sommer::A.mat function. We estimated 

VA using the linear mixed-effects model function sommer::mmer with strain as a random 

effect and MA as the covariance matrix. We then estimated h2 and its standard error using 

the sommer::vpredict function.

2.10. Data availability

All code and data used to replicate the data analysis and figures presented are available for 

download at https://github.com/AndersenLab/toxin_dose_responses.

3. Results

We performed dose-response assessments using a microscopy-based high-throughput 

phenotyping assay (Fig. 1) for developmental delay in response to 25 toxicants belonging 

to five major chemical classes: metals (9), insecticides (8), herbicides (3), fungicides (4), 

flame retardants (1). Dose-response assessments for each compound were conducted using 

eight C. elegans strains representative of the genetic variation present across the species. 

We first quantified the population-wide lowest observed adverse effect level (LOAEL) for 

each compound (Supplemental Table 2). We then cleaned and normalized phenotype data in 

Widmayer et al. Page 8

Toxicology. Author manuscript; available in PMC 2022 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.elegansvariation.org/data/release/latest
https://github.com/AndersenLab/toxin_dose_responses


order to censor measurements obtained at problematic concentrations of various compounds 

and harmonized phenotypic responses across technical replicates (see Methods). Out of the 

25 toxicants, twelve toxicants elicited variable LOAELs among the panel of strains: the 

insecticides aldicarb, chlorfenapyr, carbaryl, chlorpyrifos, and malathion; the fungicides 

pyraclostrobin and chlorothalonil; the metals manganese (II) chloride, methylmercury 

chloride, nickel chloride, and silver nitrate; and the flame retardant triphenyl phosphate 

(one-way ANOVA, Tukey HSD; padj < 0.05).

We next estimated dose-response curves for each compound to more precisely describe the 

contributions of genetic variation to different dynamics of susceptibility among strains (Fig. 

1). To accomplish this step, we modeled four-parameter log-logistic dose-response curves 

for each compound using normalized median animal length as the phenotypic response. 

The slope (b) and effective concentration (e) parameters of each dose-response model were 

estimated using strain as a covariate, allowing us to extract strain-specific dose-response 

parameters. Undefined EC10 estimates (estimates greater than the maximum exposure) were 

observed for at least one strain from two compounds (chlorfenapyr and manganese(II) 

chloride). Additionally, we observed virtually uniform responses and high within-strain 

phenotypic variance across the dose-response curves of deltamethrin and malathion across 

all strains. We speculate that this high variance is in part driven by insoluble particles in 

culture wells that interfered with reliable inference of animal lengths and have consequently 

excluded these four compounds from further dose-response analyses (Supplemental Fig. 4).

Dose-response models using strain as a covariate explained significantly more variation than 

those models without the strain covariate for the other 21 compounds (F-test; p < 0.001). 

We observed substantial variation in effective concentration between toxicants within classes 

of chemicals (Two-way ANOVA; p < 0.001) but not across strains (Two-way ANOVA; p ≥ 

0.163) (Fig. 3A, Supplemental Table 3). All fungicides and herbicides exhibited significantly 

different EC10 estimates (two-way ANOVA, Tukey HSD; padj ≤ 0.003). EC10 estimates for 

propoxur were not significantly different from aldicarb, nor were the estimates for methomyl 

compared to chlorpyrifos (two-way ANOVA, Tukey HSD; padj ≥ 0.934) but EC10 estimates 

for all other compounds within the insecticide class were significantly different (two-way 

ANOVA, Tukey HSD; padj ≤ 0.001). EC10 estimates for lead(II) nitrate were significantly 

different from all other tested metals (two-way ANOVA, Tukey HSD; padj < 0.001). EC10 

estimates for arsenic trioxide were significantly different from all tested metals (two-way 

ANOVA, Tukey HSD; padj ≤ 0.050), except nickel chloride (two-way ANOVA, Tukey HSD; 

padj = 0.068). EC10 estimates for all other metals were not significantly different from each 

other (two-way ANOVA, Tukey HSD; padj ≥ 0.392). These results suggest that susceptibility 

to different toxicants in C. elegans is quite variable both between and within chemical 

classes.

Most differences in EC10 were explained by differences among compounds of different 

classes. However, variation in EC10 estimates caused by genetic differences among strains 

were pervasive (Fig. 3B). In order to quantify these differences, we calculated the relative 

resistance to all compounds exhibited by each strain in pairwise comparisons of EC10 

estimates among all strains (Supplemental Table 4). For example, comparing two strains 

with EC10 estimates of 5 μM and 10 μM in response to a chemical, the relative resistance 
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of the second strain would equal 1. To contextualize these differences, we filtered down to 

comparisons between the reference strain N2 and all others and subsequently calculated 

the difference in potency with respect to the laboratory reference strain. In total, we 

observed 66 instances across 18 compounds where at least one strain was significantly 

more resistant or sensitive than the reference strain N2 using EC10 as a proxy (Student’s 

t-test, Bonferroni correction; padj < 0.05) with paraquat and propoxur being the exceptions 

(Fig. 3B). Twenty-two strain comparisons showed greater resistance than responses in the 

N2 strain, and 44 strain comparisons showed greater susceptibility across all compounds. 

Relative resistance was more generalized across strains, with four different strains exhibiting 

significant sensitivity to at least three toxicants with respect to the N2 strain. Of the 

instances in which a strain was significantly more sensitive than the N2 strain, 47.8% of 

the cases were either the ECA396 or MY16 strains, which were the two strains with the 

greatest number of compounds that elicited sensitivity. Furthermore, the observed frequency 

of strains with significantly greater toxicant sensitivity with respect to the N2 strain was 

significantly different than expected under the null (see Methods; Fisher’s exact test; p < 

0.05), suggesting that diverse C. elegans strains are not equally likely to be susceptible or 

resistant with respect to the commonly used reference strain N2.

Strain-specific slope (b) estimates for each dose-response model varied substantially as 

well but followed different patterns than those estimates observed for EC10 (Fig. 4A, 

Supplemental Table 5). We again observed substantial variation in slope estimates between 

toxicants within chemical classes (two-way ANOVA; p < 0.001) but not across strains 

(two-way ANOVA; p ≥ 0.074). Slope estimates for pyraclostrobin were significantly lower 

than all other fungicides (two-way ANOVA, Tukey HSD; padj ≤ 0.0002). Slope estimates for 

2,4-D were significantly lower than those estimates for the other two herbicides (two-way 

ANOVA, Tukey HSD; padj < 0.0001). Among insecticides, the only slope estimates that 

were not significantly different from each other were methomyl and aldicarb (two-way 

ANOVA, Tukey HSD; padj = 0.999). Slope estimates for nickel chloride were significantly 

different from all other metals (two-way ANOVA, Tukey HSD; padj; ≤ 0.031).

We next compared the relative steepness of dose-response slope estimates compared to the 

N2 reference strain, analogously to our EC10 relative potency analysis (all strain-by-strain 

comparisons can be found in Supplemental Table 6) and observed 76 significantly different 

slope steepness comparisons with the reference strain (Fig. 4B). The greatest number of 

significantly different slope estimates among strains were observed in insecticides, which 

comprised 24 (31%) of the comparisons. Four strains exhibited at least ten significantly 

different slope estimates (CB4855, CB4856, MY16, XZ1516), and five strains (CB4855, 

CB4856, ECA396, MY16, RC301) exhibited more instances of significantly shallower dose-

response slopes than N2. Furthermore, the number of significantly shallower dose-response 

slopes for each strain compared to the N2 strain was significantly different from that 

expected under the null (see Methods; Fisher’s exact test; p = 0.041).

Taken together, these results suggest that genetic differences between C. elegans strains 

mediate differential susceptibility and toxicodynamics across a diverse range of toxicants. 

In order to quantify the degree of phenotypic variation attributable to segregating genetic 

differences among strains, we first estimated the broad-sense heritability of the phenotypic 
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response for each exposure of every compound. We observed a wide spectrum of broad-

sense and narrow-sense heritability estimates across compounds and exposure ranges (Fig. 

5). Excluding control exposures, the average broad-sense heritability across all exposures 

of each compound ranged from 0.05 (atrazine) to 0.36 (chlorpyrifos), and narrow-sense 

heritability ranged from 0.05 (copper(II) chloride) to 0.37 (chlorpyrifos). Motivated by the 

wide range of additive genetic variance estimates that we observed across exposures of each 

compound, we asked how closely the exposures that exhibited the greatest narrow-sense 

heritability aligned with EC10s estimated for each compound. We compared the narrow-

sense heritabilities between the exposure closest to the estimated EC10 and the exposures 

that exhibited the maximum narrow-sense heritability for each of the 21 compounds with 

definitive EC10 estimates. We observed a strong relationship between the exposures that 

approximate the EC10 for each compound and the exposures that yielded the greatest 

narrow-sense heritability (Fig. 6). Interestingly, although the correlation between these two 

endpoints was strong, the dosage of each compound that exhibited the greatest additive 

genetic variance was always greater than the exposure that approximated the EC10 for that 

compound, demonstrating that the additive genetic variation responsible for the greatest 

differences in toxicant responses among C. elegans strains is typically revealed at greater 

exposure levels than the average estimated EC10.

4. Discussion

One of the central goals of toxicology is to achieve precise chemical risk assessments 

in populations characterized by diversity over broad socioeconomic, environmental, and 

genetic scales. At the level of initial screening in model organisms, these assessments have 

typically been limited to a single strain or cell line’s genetic background. However, given 

the sheer number of uncharacterized toxicants being produced, it is economically infeasible 

to rely entirely on mammalian systems to rigorously evaluate these hazards on a reasonable 

time scale. Research using C. elegans as a model is a staple of toxicology, particularly when 

it comes to identifying key regulators of cellular responses to metal and pesticide exposures 

(Hartman et al., 2021; Hunt, 2017). However, these discoveries have typically relied on 

perturbing a single genome (and therefore a singular collection of “wild-type” alleles) using 

RNA interference or knockout alleles for individual genes. In this study, we expanded the 

scope of C. elegans-based chemical hazard evaluations to consider the effects of naturally 

occurring genetic variants in the C. elegans species by performing dose-response analysis 

using the N2 laboratory-adapted reference strain as well as seven wild strains representing 

the major axes of species-wide genetic variation. We conducted these analyses using a 

high-throughput microscopy assay that facilitates rigorous control over experimental noise, 

genetic effects, and toxic exposure across millions of C. elegans individuals from each of 

our eight genetic backgrounds. This paradigm allowed us to precisely estimate the effects of 

genetics on impaired development in the presence of a toxicant and tease them apart from 

experimental noise. Estimating toxic endpoints of chemical hazards has been previously 

executed using high-throughput screening of C. elegans responses (Boyd et al., 2012; Evans 

et al., 2018). In our study, we have leveraged and expanded on these types of platforms by 

explicitly estimating genetic effects on dose-response parameters.
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One goal of dose-response analysis is to identify a point of departure (POD) for exposure 

to a certain compound (e.g., a dosage at which a population begins to respond adversely 

to a hazard) based on empirical data. We demonstrated that EC10 estimates and slope 

parameters vary significantly between genetically distinct C. elegans strains and that, in fact, 

the N2 reference strain exhibits a significantly different dose-response profile than at least 

one other strain with respect to every toxicant we assessed. Additionally, strain-agnostic 

EC10 estimates are correlated with, but generally lower than, the exposure at which we 

observed the largest additive genetic variance. These observations suggest that previous 

analyses of toxicity in C. elegans might suffer from “genetic blindspots” in that significant 

intrinsic drivers of population-level toxicity are being systematically ignored, which then 

masks a source of complexity in toxicant susceptibility. For example, we observed that the 

strains ECA396 and MY16 are significantly more sensitive than other strains across more 

toxicants than expected by chance. The susceptibility profiles of these strains underscore 

the need to assess hazard risk across individuals that are intrinsically susceptible or resistant 

to understand the implications of dose-response endpoints. Because our high-throughput 

assay only reports the magnitude of developmental delay over one generation as a trait, 

it remains unknown whether the resistance that we observed in these strains, or for a 

given toxicant more broadly, extend to other toxicity endpoints (e.g., germline mutagenesis, 

effects on reproduction, metabolic signatures, or neurotoxicity). The toxicants in our study 

belong to classes of chemicals with documented effects on all these organ systems, so the 

identification of putatively resistant genetic backgrounds could represent fertile ground for 

the discovery of novel pathways that potentiate well characterized stress responses.

An open question in toxicogenomics is the degree to which variation in human disease 

and development can be explained by our chemical environment, and whether these 

contributions exceed those from genetic differences among individuals. Our study suggests 

that for any given compound, we can find a dosage for which at least 20% of the 

variation in developmental delay can be explained by genetic differences between C. elegans 
strains. Furthermore, we show empirical support for the notion that toxic endpoints derived 

in experimental studies from one genetic background cannot be neatly translated across 

genetically diverse individuals. These findings build upon similar analyses conducted using 

human cell lines derived from the 1000 Genomes Project (Abdo et al., 2015), which revealed 

substantial heritability of dose-response endpoints. Given that high-throughput platforms 

exist that facilitate these analyses, stakeholders in toxicology (1) should prioritize the 

derivation of PODs derived in genetically diverse model organism populations and (2) 

should, to all extents possible, report heritability estimates of toxicant responses when 

multiple genetic backgrounds are used. These steps would ensure that they can precisely 

quantify this source of uncertainty in hazardous chemical evaluations. Given that the ranked 

susceptibility to toxicants is correlated between C. elegans and other mammalian systems 

(Hunt, 2017), high-throughput phenotyping systems provide a complementary platform for 

chemical hazard assessment that also accounts for genetic variability. Also, given the high 

heritability estimates of the compounds that we tested, quantitative genetic analyses such 

as genome-wide association studies in genetically diverse model organisms provide an 

opportunity to identify conserved genes that mediate population-level differences in toxicant 

susceptibility.
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Fig. 1. High-throughput microscopy assay enables rapid analysis of C. elegans toxicant 
responses.
Detailed descriptions of A) through D) can be found in Methods; High-throughput 

toxicant dose-response assay. Detailed descriptions of E) can be found in Methods; Data 

collection, Data cleaning, LOAEL inference, Dose-response model estimation. Created with 

BioRender.com.
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Fig. 2. Toxicant responses vary among genetically diverse C. elegans strains.
Normalized length measurements for each strain at each toxicant exposure are shown on the 

y-axis, and the concentration of each toxicant is shown on the x-axis. Each dose-response 

curve is colored according to the strain. Does-response curves for each toxicant can be found 

in Supplemental Fig. 5.We observed a wide range of responses that can be combined into 

four general groups: A) subtle responses with little variation among strains, e.g., 2,4-D; B) 

subtle responses with moderate variation among strains, e.g., carbaryl; C) strong responses 

with little variation among strains, e.g., nickel chloride (though for nickel chloride, strain 

variation is high at high exposure levels, see Fig. 5); and D) strong responses with moderate 

variation among strains, e.g., pyraclostrobin.

Widmayer et al. Page 16

Toxicology. Author manuscript; available in PMC 2022 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Variation in EC10 estimates can be explained by genetic differences among strains.
A) Strain-specific EC10 estimates for each toxicant are displayed for each strain. Standard 

errors for each strain- and toxicant-specific EC10 estimate are indicated by the line 

extending from each point. B) For each toxicant, each strain’s relative resistance to that 

toxicant compared to the N2 strain is shown. Relative resistance above 1, for example, 

denotes an EC10 value 100% higher than the N2 strain. Solid points denote strains with 

significantly different relative resistance to that toxicant (F-test and subsequent Bonferroni 

correction with a padj < 0.05, see Methods; Dose-response model estimation), and faded 

points denote strains not significantly different than the N2 strain. The broad category to 

which each toxicant belongs is denoted by the strip label for each facet.
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Fig. 4. Variation in dose-response slope estimates can be explained by genetic differences among 
strains.
A) Strain-specific slope estimates for each toxicant are displayed for each strain. Standard 

errors for each strain- and toxicant-specific slope estimate are indicated by the line 

extending from each point. B) For each toxicant, the relative steepness of the dose-response 

slope inferred for that strain compared to the N2 strain is shown. Solid points denote strains 

with significantly different dose-response slopes (Student’s t-test and subsequent Bonferroni 

correction with a padj < 0.05, see Methods; Dose-response model estimation), and faded 

points denote strains without significantly different slopes than the N2 strain. The broad 

category to which each toxicant belongs is denoted by the strip label for each facet.
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Fig. 5. Variation in toxicant responses is heritable among genetically diverse C. elegans strains.
The broad-sense (x-axis) and narrow-sense heritability (y-axis) of normalized animal length 

measurements was calculated for each concentration of each toxicant (Methods; Broad-sense 

and narrow-sense hentability calculations). The color of each cross corresponds to the 

log-transformed exposure for which those calculations were performed. The horizontal line 

of the cross corresponds to the confidence interval of the broad-sense heritability estimate 

obtained by bootstrapping, and the vertical line of the cross corresponds to the standard error 

of the narrow-sense heritability estimate.
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Fig. 6. EC10 estimates from genetically diverse individuals predict exposures eliciting heritable 
responses.
The log-transformed exposure that elicited the most heritable response to each toxicant 

(y-axis) is plotted against the log-transformed exposure of that same toxicant nearest to the 

inferred EC10 from the dose-response assessment. The exposure closest to the EC10 across 

all toxicants exhibited significant explanatory power to determine the exposure that elicited 

heritable phenotypic variation.

Widmayer et al. Page 20

Toxicology. Author manuscript; available in PMC 2022 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Strains
	Nematode food preparation
	Toxicant stock preparation
	High-throughput toxicant dose-response assay
	Data collection
	Data cleaning
	LOAEL inference
	Dose-response model estimation and statistics
	Broad-sense and narrow-sense heritability calculations
	Data availability

	Results
	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.

