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dynamics of circulating lipids and glucose are frequently 
linked to the seasonal dynamics of thyroid-stimulating hor-
mone and hematocrit. Dependence of the seasonal changes 
in the biochemical parameters on annual fluctuations in air 
temperature, atmospheric pressure and relative humidity is 
more obvious than on photoperiod changes.
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Abbreviations
TC  Total cholesterol
LDL  Low-density lipoprotein
HDL  High-density lipoprotein
FBG  Fasting blood glucose
TG  Triglycerides
TSH  Thyroid-stimulating hormone of pituitary
ρO2  Partial density of oxygen in the air

Introduction

Cardiovascular diseases are known to flare up more often 
in winter rather than in summer. Winters are also associ-
ated with higher occurrence of the metabolic syndrome [1, 
2] and manifestations of type 1 diabetes [3]. These regu-
lar patterns are usually linked to winter increase in blood 
pressure, as well as an increase in the level of circulating 
lipids during the coldest season [1]. It is still not completely 
clear whether seasonal functional and biochemical changes 
in modern humans are based on changes in their general 
metabolism or are merely a reaction to the sedentary lifestyle 
and seasonal dietary habits.

Metabolism of lipids and carbohydrates is regulated 
by many hormones, including thyroid hormones, cortisol, 

Abstract We analyzed the seasonal dynamics of lipid 
profile, glucose, and insulin in healthy subjects from 29 
studies conducted in 23 regions, located in different climate 
zones ranging from subarctic to tropical. Our meta-analysis 
showed that people have higher the level of TC (total cho-
lesterol), LDL (low-density lipoprotein), HDL (high-density 
lipoprotein), FBG (fasting blood glucose) in winter than in 
summer regardless of gender. Regional climate had a sig-
nificant impact on the seasonal dynamics of lipid profile and 
glucose. TC, HDL, FBG seasonal fluctuations were more 
prominent in a climate that had a marked increase in aver-
age monthly atmospheric pressure in winter compared with 
summer as opposed to a climate where atmospheric pressure 
did not vary significantly in winter and summer. In a cli-
mate with humid winters, TC seasonal changes were signifi-
cantly greater than in the regions with humid summers, most 
likely due to LDL seasonal changes, since HDL seasonal 
dynamics with peaks in winter were more prominent in the 
regions with humid summers. The level of triglycerides had 
prominent seasonal dynamics with peak values in winter 
only in the regions with a large difference in winter and sum-
mer air temperatures. The results of our current and prior 
meta-analysis allow for the conclusion that the seasonal 
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catecholamines, and insulin. Thyroid hormones stimulate 
metabolism and food intake, lipolysis and lipogenesis, 
both absorption of cholesterol and its synthesis, and also 
increase gluconeogenesis, among other things, by regulat-
ing the release of insulin and sensitivity to it [4]. In verte-
brates, the level of thyroid hormones is regulated by TSH 
(thyroid-stimulating hormone of the pituitary). Several 
studies show that higher TSH values correspond to higher 
total cholesterol (TC), lipoprotein and glucose values in 
humans [5–8]. Activity of thyroid hormones is influenced 
by environmental factors (daytime length, air temperature, 
atmospheric pressure, partial density of oxygen in the air), 
as well as one’s diet content and energy value [4, 9, 10]. 
Activity thyroid hormones increases under the effect of 
a decrease in melatonin levels and air temperature. An 
increase in melatonin levels and air temperature, as well as 
a decrease in calorie intake, reduce the activity of thyroid 
hormones.

Insulin is the main hormone of carbohydrate metabolism; 
it enhances cell uptake of glucose, stimulates glycogen syn-
thesis, and also promotes the conversion of glucose to tri-
glycerides (TG) [11, 12]. Sympathetic nervous system activ-
ity suppresses insulin secretion and stimulates the release of 
cortisol, which can stimulate lipolysis at low insulin levels 
and lipogenesis at elevated insulin levels [13, 14]. Higher 
cortisol levels are associated with higher TC and lipopro-
tein values [15, 16]. Moreover, cortisol stimulates gluconeo-
genesis and plays an important role in glycogenolysis [17, 
18]. Adverse conditions (heat, cold, dietary deficiency, etc.) 
cause an increase in the level of circulating catecholamines 
and cortisol [19–21].

In addition to hormones, the concentration of circulating 
lipids and glucose can be influenced by hematocrit level. 
There are observations of a direct relationship between cir-
culating lipids, glucose and hematocrit [22–24]. It is known 
that an increase in hematocrit contributes to an increase in 
flow-related insulin resistance, diffusional transport of cho-
lesterol between erythrocytes and plasma lipoproteins, and 
concentration of substances in a smaller plasma volume [23, 
24]. Hyperthermia and hypothermia cause an increase in 
hematocrit, but this can be compensated by sufficient water 
intake [25].

Several studies have shown that the relationship between 
air temperature and lipid profile indicators is not linear. 
Both higher and lower air temperature compared against the 
threshold level cause an increase in TG, low-density lipopro-
teins (LDL) and high-density lipoproteins (HDL) [26, 27]. 
The lowest glucose levels were observed in a thermoneutral 
environment (22 ºC), and the highest were recorded under 
hyperthermia (43 ºC). Insulin was at its maximum value 
under hyperthermia and minimum under hypothermia (7 
ºC). Still, adaptation to temperature conditions was accom-
panied by normalization of glucose and insulin levels [28].

There have been reports that melatonin treatment or 
exposure to short photoperiod resulted in lower TG, TC, 
and glucose levels [29–33]. On the other hand, in the lack 
of sunlight may increase TC levels in blood and allow the 
metabolism of 7-dehydrocholesterol to shift to cholesterol 
synthesis rather than vitamin D synthesis, which would 
have occurred in case of greater exposure to sunlight [34]. 
Vitamin D deficiency is associated with decreased insulin 
synthesis and increased insulin resistance [35].

Besides daytime length and meteorological factors which 
determine hormone activity and general metabolism, physi-
cal activity and diet can affect the level of lipids and carbo-
hydrates. Many researchers point out that an average person 
usually makes more steps in summer than in winter [36]. 
Regular walking has been found to lower TC and glucose 
[37, 38]. There are reports of seasonal variations in the con-
sumption of saturated/unsaturated fats, carbohydrates, and 
vitamins [39, 40]. In the coldest season, consumption of 
saturated fats is recorded at peak levels, while consumption 
of unsaturated fats peaks in the warm season, and consump-
tion of carbohydrates is at its highest in spring. The intake 
of vitamins C and E increases in summer, and the intake of 
vitamin A is at its highest in spring. While consumption of 
unsaturated fats is associated with higher HDL and lower 
TC and insulin resistance, consumption of saturated fats is 
linked to an increase in the concentration of TC and LDL 
and higher insulin resistance. An increase in carbohydrate 
intake (especially processed carbohydrates) affects not only 
glucose levels, but also causes an increase in the concen-
tration of circulating TG and TC [11, 41–43]. By contrast, 
daily intake of vitamins C and E promotes lower TG, TC, 
and LDL [44, 45].

The seasonal dynamics of lipids and carbohydrates are 
ultimately determined by various influences that sometimes 
have the opposite effect. In the prior meta-analyses, we 
showed that modern healthy people have higher body mass 
index, hematocrit, circulating T3 (total triiodothyronine) and 
norepinephrine levels in winter than in summer, and TSH 
is higher in winter than in other seasons [9, 25, 46, 47]. 
However, the level of cortisol in winter and summer did not 
differ significantly [46]. The purpose of this meta-analysis 
was to study the seasonal dynamics of circulating lipids and 
carbohydrates in healthy adults, as well as the dynamics’ 
dependence on gender and special characteristics of the 
regional climate.

Methods

Meta-analysis complied with PRISMA guidelines (http:// 
www. prisma- state ment. org). Search for publications was 
performed independently by two researchers using PubMed, 
Scopus, and Google Scholar databases. The search was done 
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in September 2021 in English and in Russian without limita-
tions on the publication period. The search strategies were 
based on combinations of keywords related to biochemical 
parameters (lipids, carbohydrates, cholesterol, triglycerides, 
lipoproteins, glucose, insulin) and to climate (season, cli-
mate, weather, winter, summer, spring, autumn, fall, tem-
perature, heat, hot, warm, cold, atmospheric pressure, baro-
metric pressure, air humidity, relative humidity). We used 
the “human subject” filter. As a part of our secondary search, 
we explored references cited in included studies.

We selected panel and cross-sectional studies for our 
meta-analysis. We relied on methodology description 
to determine the design of each study. Publications were 
selected based on ethical and methodological standards for 
conducting research on biological rhythms [48].

We selected publications which studied the seasonal 
dynamics of TG, TC, LDL, HDL, FBG (fasting blood glu-
cose), and insulin levels in blood. Testing of circulating 
lipids and carbohydrates was supposed to be performed in 
morning under fasting conditions. Studies were excluded 
from the meta-analysis if the time of blood sampling was 
not specified or was incorrect or was not on an empty stom-
ach. Our selection included only those studies that evalu-
ated healthy adults who were not receiving any treatment. 
We did not account for gender and age of participating sub-
jects, but excluded studies involving: pregnant women and 
children; seasonal workers, members of polar expeditions, 
as well as other cases of people’s temporary exposure to 
climatic conditions different from the region of their perma-
nent residency; professional athletes because their training 
and competition schedule could have a major effect on their 
hormone levels; people working night shifts. The study loca-
tion was also taken into account with studies conducted in a 
mountainous regions or for which the precise geographical 
location was not identified being excluded from the meta-
analysis (Fig. 1).

Upon extracting data on biochemical indicators consid-
ered herein from publications, we used online calculators 
(http:// units lab. com/ en) to convert all results into the same 
units of measure. We used the following units: mg/dl for 
TG, TC, LDL, HDL, FBG, and mIU/l for insulin. Data were 
extracted independently by two researchers and were used 
for the meta-analysis following their comparison and verifi-
cation, including compliance checks for the norm. In addi-
tion to absolute values of parameters provided in the text 
or tables, we used data presented as graphs if they clearly 
displayed mean values and standard deviations/standard 
errors of mean. If data on gender/age groups were provided 
separately, we calculated arithmetic mean values. In some 
cases (when a publication listed lipid profile parameters, 
but missed some of them), we used the Friedewald equa-
tion [49] to calculate the missing data in mg/dl: LDL = TC 
–  (TG/5)–HDL.

When there were a sufficient number of studies, we per-
formed a meta-analysis of dependence of circulating lipids’ 
and carbohydrates’ seasonal dynamics on gender and age. 
This analysis relied only on research that simultaneously 
studied different age/gender groups and provided data sepa-
rately for each group.

Moreover, when there were a sufficient number of publi-
cations, we analyzed dependence of circulating lipids’ and 
carbohydrates’ seasonal dynamics (winter vs. summer) on 
regional climate’s special characteristics (geographical lati-
tude and amplitude of seasonal fluctuations of such mete-
orological parameters as temperature, atmospheric pressure, 
relative humidity, and partial density of oxygen in the air 
(ρO2)). If a study contained meteorological data, we used 
them. In the absence of such data, we used archival data to 
calculate meteorological parameters, as we described in our 
earlier published work [9]. Depending on annual fluctuations 
in a meteorological factor in a region of a study, publications 
were divided into two subgroups: one with the maximum 
amplitude of change and another with the minimum ampli-
tude of change of a meteorological factor.

Statistics

The meta-analysis of published results was performed using 
Review Manager 5.3 (Cochrane Library) statistical program. 
We used an inverse variance test (mean difference) in our 
analysis. Criterion  I2 was used to establish heterogeneity of 
studies included in the meta-analysis. The choice of fixed- 
or randomized-effects model was made in accordance with 
recommendations of Borenstein et al. (2009) [50]. We used 
Z-test to assess the statistical significance of overall results. 
The confidence interval was 95%. Differences were consid-
ered statistically significant at p < 0.05. The funnel plot was 
used to detect publication bias.

Results

Database search yielded 5699 publications on the subject of 
our meta-analysis, 483 of them overviews. We selected 29 
publications for the meta-analysis [51–78]: 16 panel studies 
and 13 cross-sectional studies (Fig. 1). Koono’s publication 
(1980) reported the results of a panel and cross-functional 
study [62]. Tables  1 presents characteristics of studies 
included in the meta-analysis. Only average and high qual-
ity studies were selected for our meta-analysis (Table S1). 
39 publications were excluded for various reasons (Fig. 1, 
Table S2). Evaluation of funnel plots demonstrated the 
absence of significant bias in the selected publications (Fig. 
S1).

We used only TC data from study [57] because the it 
provided only mean values for TG without SD or SEM. We 
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used FBG data for men and women who were not on hor-
mone therapy from Suarez and Barrett-Connor study [75].

According to the results of our meta-analysis, the level of 
circulating TG did not exhibit prominent seasonal dynamics. 
TC, LDL levels were higher in the colder season compared 
to the warmer one. The differences were statistically signifi-
cant when comparing winter against summer levels; TC lev-
els were statistically significant when comparing winter and 
autumn as well (Table 2). HDL levels were higher in winter 
compared to summer (Table 2). FBG levels were higher in 
winter compared against summer and autumn, while insulin 
levels were not significantly different in winter and summer 
(Table 2). A study by Sung (2006) [76] was excluded from 
the following comparisons due to excessive weight: for TG 

(spring vs. summer), for TC (autumn vs. summer, spring 
vs. summer, spring vs. autumn), and for LDL (autumn vs. 
summer, spring vs. autumn).

According to studies which simultaneously considered 
male and female subjects, gender did not affect the seasonal 
dynamics of TG, TC, LDL, HDL, and FBG (Table 3). It 
should be noted that, according to the results of studies 
included herein, men and women did not exhibit significant 
differences in the studied parameters, with the exception of 
a slight increase in the TG levels for men (136 ± 48 mg/dl 
vs. 109 ± 22 mg/dl, p = 0.25).

The seasonal dynamics of lipids and carbohydrates were 
studied in 23 regions of the world (20 regions in the North-
ern Hemisphere and 3 regions of the Southern Hemisphere) 
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with different types of climate ranging from subarctic to 
tropical. Main climate characteristics of the studied regions 
are presented in Table 4.

The trend in the seasonal dynamics of glucose and lipid 
profile did not vary significantly for the Northern and South-
ern Hemispheres. In the Southern Hemisphere, according to 
the results of three studies [53, 63, 67], the level of TG, TC, 
LDL, HDL, and FBG was higher in winter than in summer.

Based on the results of our meta-analysis, seasonal TG 
dynamics (winter vs. summer) did not significantly depend 
on geographical latitude, amplitude of circannual changes in 

atmospheric pressure, relative humidity, and ρO2 in the air 
(Table 5). But annual fluctuations in air temperature affected 
seasonal TG dynamics. In a climate with significant annual 
changes in air temperature, TG exhibited prominent seasonal 
dynamics with maximum values in winter and minimum val-
ues in summer; in the regions where the difference between 
winter and summer temperatures was small, seasonal TG 
dynamics were not prominent (Fig. 2, Table 5).

We did not establish the existence of a dependence 
of seasonal TC and FBG dynamics (winter vs. summer) 
on geographic latitude, as well as on the amplitude of 

Table 2  The seasonal 
dynamics of circulating lipids 
and carbohydrates

Compared seasons Number 
of studies

Mean difference I2% Test for overall effect

Season 1/total Season 2/total Rand. or Fix Z P

Triglycerides, mg/dl
Winter/5283 Summer/6109 16 − 1.41 [− 9.61, 6.79] 80 R 0.34 0.74
Winter/3455 Spring/3025 9 − 0.43 [− 14.91, 14.05] 81 R 0.06 0.95
Winter/3455 Autumn/4452 9 − 6.35 [− 19.38, 6.68] 76 R 0.96 0.34
Autumn/4452 Summer/4262 9 0.59 [− 11.84, 13.03] 72 R 0.09 0.93
Spring/848 Summer/817 8 − 4.90 [− 12.10, 2.29] 0 F 1.34 0.18
Spring/3025 Autumn/4452 9 − 6.95 [− 18.60, 4.71] 71 R 1.17 0.24
Total cholesterol, mg/dl
Winter/7107 Summer/7550 21 6.10 [3.10, 9.11] 50 R 3.98 0.0001
Winter/5114 Spring/4552 11 4.12 [− 1.31, 9.56] 59 R 1.49 0.14
Winter/5114 Autumn/5448 11 4.97 [0.21, 9.74] 49 R 2.05 0.04
Autumn/1816 Summer/2060 10 2.17 [− 1.97, 6.30] 0 F 1.03 0.30
Spring/2375 Summer/2060 10 3.08 [− 1.10, 7.27] 0 F 1.44 0.15
Spring/2375 Autumn/1816 10 0.96 [− 3.22, 5.13] 0 F 0.45 0.65
Low-density lipoproteins, mg/dl
Winter/5183 Summer/6011 14 8.76 [3.98, 13.55] 87 R 3.59 0.0003
Winter/3279 Spring/2825 6 6.23 [− 2.07, 14.54] 84 R 1.47 0.14
Winter/3279 Autumn/4280 6 7.11 [− 2.51, 16.73] 88 R 1.45 0.15
Autumn/648 Summer/648 5 3.27 [− 1.22, 7.76] 0 R 1.43 0.15
Spring/2825 Summer/4093 6 5.00 [− 0.78, 10.78] 66 R 1.69 0.09
Spring/648 Autumn/648 5 0.42 [− 4.17, 5.01] 0 R 0.18 0.86
High-density lipoproteins, mg/dl
Winter/5188 Summer/6023 14 1.73 [0.42, 3.04] 58 R 2.58 0.01
Winter/3282 Spring/2828 6 0.27 [− 1.68, 2.21] 51 R 0.27 0.79
Winter/3282 Autumn/4283 6 − 0.19 [− 2.84, 2.46] 73 R 0.14 0.89
Autumn/4283 Summer/4096 6 0.50 [− 0.69, 1.69] 20 R 0.82 0.41
Spring/2828 Summer/4096 6 0.03 [− 1.63, 1.69] 41 R 0.03 0.97
Spring/2828 Autumn/4283 6 − 0.17 [− 2.68, 2.35] 70 R 0.13 0.90
Fasting blood glucose, mg/dl
Winter/6488 Summer/6730 17 2.46 [0.76, 4.16] 80 R 2.84 0.005
Winter/4814 Spring/4553 11 1.24 [− 0.75, 3.23] 73 R 1.22 0.22
Winter/4814 Autumn/6193 11 2.42 [0.50, 4.35] 72 R 2.46 0.01
Autumn/6193 Summer/5050 11 − 0.03 [− 1.43, 1.37] 48 R 0.04 0.97
Spring/4553 Summer/5050 11 1.19 [− 1.57, 3.95] 87 R 0.85 0.40
Spring/4553 Autumn/6193 11 1.19 [− 1.15, 3.52] 83 R 1.00 0.32
Insulin, mU/l
Winter/344 Summer/326 4 − 0.04 [− 0.51, 0.44] 0 F 0.16 0.88
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circannual fluctuations in air temperature and ρO2 in the 
air (Table 5). As for seasonal LDL and HDL dynamics, 
they were more prominent in the regions located below 
36 latitude, but the compared subgroup (above 50 lati-
tude) comprised only 3 studies with high data heterogene-
ity (Table 5). Elimination of the study with great weight 
[59] canceled this pattern for HDL.

Seasonal TC, HDL, and FBG fluctuations were more 
prominent in a climate that had a pronounced increase in 
average monthly atmospheric pressure in winter compared 
to summer as compared against a climate where atmos-
pheric pressure in winter and in summer did not vary sig-
nificantly (Table 5, Figs. 3 and 4). The first type of climate 
is typical for the regions of East Asia, the Middle East, 
South Australia, the second type of climate is typical for 
the temperate zones of Europe and America, New Zealand 
(Table 4). Elimination of great weight studies [59, 76] 
from our meta-analysis did not change these patterns.

In the regions with wet winters, seasonal TC changes 
were significantly higher than in the regions with wet sum-
mers, most likely due to seasonal changes in LDL, because 
seasonal HDL dynamics with a winter maximum were 
more prominent in the regions with wet summers (Fig. 5, 
Table 5). Extractions from great weight studies (Kamezaki 
et al. 2010 (a); Sung et al. 2006 [59, 76]) did not change 
these patterns. Relative air humidity did not affect seasonal 
FBG dynamics (Table 5).

A complete statistical analysis is presented in the Sup-
plementary Materials (Fig. S1-S7).

Discussion

Our meta-analysis showed that healthy individuals in both 
the Northern and Southern hemispheres have higher TC, 
LDL, HDL, and FBG levels in winter than in summer. Insu-
lin had no prominent seasonal dynamics. According to the 
results of our meta-analysis, the level of circulating TG had 
prominent seasonal dynamics with maximum values during 
winter only in the regions with a large difference in winter 
and summer air temperatures. Such seasonal fluctuations 
in air temperature are typical of a continental climate. It is 
possible that people living in such conditions experience 
maximum seasonal lifestyle changes. Moreover, seasonal TG 
dynamics are likely to be affected by an increase in sebum 
secretion in warm weather and a decrease in cold weather. 
Sebum is known to consist of 34% TG and only 3% choles-
terol [79, 80].

According to our earlier meta-analysis, levels of circulat-
ing T3, TSH and noradrenaline, as well as hematocrit [9, 
25, 46], increase in winter compared to summer. It can also 
contribute to seasonal changes in lipid profile and glucose. 
Seasonal TSH, cortisol and hematocrit dynamics were not 
associated with geographical latitude and the amplitude of 
circannual fluctuations in air temperature [9, 25, 46]. Simi-
larly, according to the results of this meta-analysis, seasonal 
TC, LDL, HDL, and FBG dynamics did not depend on lati-
tude and the amplitude of circannual fluctuations in air tem-
perature. Latitude also did not affect seasonal TG dynamics. 
On the other hand, circannual fluctuations of TC, HDL, and 

Table 3  Associations of circulating lipids and glucose seasonal dynamics (winter versus summer) with gender

Subgroup N study Total Mean difference 
(winter vs summer)

I2% Z P Test for sub-
group differ-
ences, P

The presence 
of an effect

Diversity in the repre-
sentation of climatic 
zoneswinter summer

Triglycerides, mg/dl
Men 3 308 308 8.93 [− 3.49, 21.36] 0 1.41 0.16 0.88 No Yes
Women 3 326 326 7.82 [0.09, 15.56] 0 1.98 0.05 Yes
Total cholesterol, mg/dl
Men 4 1338 1031 10.21 [1.60, 18.81] 49 2.32 0.02 0.62 No Yes
Women 4 903 794 7.64 [2.41, 12.86] 0 2.86 0.004 Yes
Low-density lipoproteins, mg/dl
Men 3 308 308 10.66 [− 5.10, 26.43] 78 1.33 0.19 0.75 No Yes
Women 3 326 326 7.50 [− 4.35, 19.35] 66 1.24 0.21 Yes
High-density lipoproteins, mg/dl
Men 3 308 308 2.33 [− 2.70, 7.37] 62 0.91 0.36 0.93 No Yes
Women 3 326 326 1.99 [− 3.39, 7.36] 77 0.72 0.47 Yes
Fasting blood glucose, mg/dl
Men 6 1093 686 2.88 [− 1.06, 6.82] 78 1.43 0.15 0.92 No Yes
Women 6 639 512 3.20 [− 1.65, 8.05] 79 1.29 0.20 Yes
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FBG were more prominent in a climate where atmospheric 
pressure in winter is significantly higher than in summer. 
Earlier, we established that seasonal TSH and hematocrit 
dynamics were also more pronounced in regions with this 
type of climate [9, 25]. It is known that the values of TSH 
and hematocrit are associated with the level of circulating 
lipids and glucose [5–8, 22–24].

We have previously shown that high air humidity in sum-
mer is associated with prominent seasonal TSH dynamics 
with a nadir in summer [9]. As a result of this meta-analysis, 
it was found that in the regions with a similar type of climate 
there are pronounced seasonal HDL dynamics with a nadir 
in summer. On the other hand, in the regions where sum-
mers are drier than winters, there is a prominent drop in TC 
over summer as compared with winter, most likely due to a 
decrease in LDL. In the regions where air humidity is higher 
in summer than in winter, the amplitude of seasonal TC fluc-
tuations was significantly lower. This may be due to the fact 
that an increase in air humidity during heat is associated 
with a decrease in sweat evaporation and compromises body 
cooling, which can cause heat stress symptoms [81, 82]. It 
was shown that an increase in circulating TC is observed 
under heat stress mainly due to an increase in LDL [26, 27, 
83]. Moreover, high humidity in winter, especially in the 
absence of central heating, can exacerbate the discomfort 
from cold weather.

The results of our prior meta-analysis [9], as well as stud-
ies carried out in a mountainous climates and experimental 
work on the effects of hypoxia [10, 84, 85], show that TSH 
depends on air ρO2. There were observations of a decrease 
in the corpuscular volume of erythrocytes and hematocrit 
during mild hypoxia [86]. A number of studies have shown 
that moderate hypoxia led to a decrease in the level of TC, 
lipoproteins and FBG [87, 88]. According to the results of 
this meta-analysis, the seasonal dynamics of lipid profile 
and glucose were not associated with ρO2 in the air cal-
culated according to the Mendeleev-Clapeyron equation 
[89]. This may be due to the fact that ρO2 does not affect 
these parameters directly, but through modulation of TSH 
levels. In addition, Mendeleev-Clapeyron equation takes into 
account atmospheric pressure, temperature, and air humidity 
[89], but the partial pressure of alveolar gas mainly depends 
on atmospheric pressure [90]. Moreover, the influence of 
air temperature can be minimized by heating and air con-
ditioning, but the influence of atmospheric pressure cannot 
be changed. As we discussed above, in the regions where 
atmospheric pressure is significantly lower in summer than 
in winter, summer decrease in the level of TSH, TC, HDL, 
FBG and hematocrit is more pronounced than in a climate 
with the same atmospheric pressure in winter and summer. 
Interesting to note, that low atmospheric pressure contrib-
utes to an increase in the risk of ischemic strokes in the hot 

Fig. 2  Dependence of triglycerides seasonal dynamics (winter versus summer) on the amplitude of annual fluctuations in air temperature
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Fig. 3  Dependence of total cholesterol and high density lipoproteins (HDL) seasonal dynamics (winter versus summer) on the amplitude of 
annual fluctuations in atmospheric pressure
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season [91], despite a decrease in TC, FBG, hematocrit and 
blood pressure in summer [25, 92].

We have previously found that seasonal TSH dynam-
ics (with a maximum in winter and a nadir in summer) are 
prominent in women, but not in men [9]. On the other hand, 
we did not find dependence of cortisol’s and hematocrit’s 
seasonal dynamics on gender [25, 46]. Many authors report 
metabolism differences between men and women [93]. Some 
studies show differences in levels of circulating lipids and 
glucose in men and women [94–97]. This meta-analysis 
found no differences in the seasonal dynamics of lipid pro-
file and glucose of healthy men and women.

Aging is known to be associated with major changes in 
metabolism. A number of publications report significant 
increases in lipid profile and glucose indicators in older 
subjects [61, 64, 75, 98]. Still, there are very few studies 
that explore the seasonal dynamics of these parameters 
simultaneously on different age groups for us to perform 
comprehensive statistical analysis. Therefore, this issue 
was not considered in this meta-analysis. In the study [75], 
seasonal FBG dynamics did not depend on age. The study 
[61] showed that in a group aged 18–20 years FBG levels 
were higher in summer than in winter, while in subjects aged 
30–59 years the seasonal dynamics of FBG were inversed. 

In this study [61], age did not affect the seasonal dynamics 
of TG and TC. We have previously shown that TSH seasonal 
dynamics did not depend on age [9].

Based on the results hereof and our earlier meta-analyses 
[9, 25], we can conclude that the seasonal dynamics of cir-
culating lipids and glucose depend on special characteristics 
of regional climates and are also frequently associated with 
the seasonal dynamics of TSH and hematocrit. The results of 
our meta-analyses did not show an association of geographic 
latitude with the severity of the seasonal fluctuations in the 
parameters, which calls into question the influence of pho-
toperiod on the functioning of the body of a modern person. 
This is probably due to the use of artificial lighting through-
out the year. Despite the fact that the amplitude of annual 
fluctuations in air temperature was associated only with the 
seasonal dynamics of TG, the level of TSH, TC, LDL was 
higher in the colder season compared to the warmer one. 
This indicates that air temperature has an impact on the bio-
chemical parameters of a modern person, but its effect can 
be offset by the use of heating and air conditioning. For 
example, in Syktyvkar, in winter, outdoor air temperature 
dropped to -25 ºC, but at the same time, inside air tempera-
ture was 21–22 ºC throughout the year [74]. In the work 
[99], an inverse relationship between indoor temperature and 

Fig. 4  Dependence of glucose (FBG) seasonal dynamics (winter versus summer) on the amplitude of annual fluctuations in atmospheric pres-
sure
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Fig. 5  Dependence of total 
cholesterol, low and high 
density lipoproteins seasonal 
dynamics (winter versus sum-
mer) on annual fluctuations in 
relative humidity (ϕ)
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lipid profile indicators was observed in winter. In contrast, 
the effect of relative humidity is more difficult to decrease 
(especially, to reduce high humidity in hot weather), the 
effect of atmospheric pressure cannot be reduced. Accord-
ing to the results of our meta-analyses, annual fluctuations 
of these meteorological factors have a great influence on the 
seasonal dynamics of the studied biochemical parameters. 
The results of our work indicate that the annual dynamics 
of atmospheric pressure and relative humidity must be taken 
into account when studying seasonal rhythms. The most 
likely mechanism of action of atmospheric pressure on the 
body is its effect on blood oxygenation. High relative humid-
ity and heat increase the hypoxic effect of low atmospheric 
pressure. In addition, high humidity increases the feeling of 
cold in winter and contributes to heat stress in hot weather.

Limitations

Meta-analysis has some constraints. Compared subgroups 
sometimes varied significantly by the number of included 
studies and sampling size; studies selected for meta-analysis 
had different observation periods, which may have influ-
enced their results. We would also like to point out the lack 
of accuracy in the processing of meteorological data when 
archives do not have data for the period under consideration 
and missing data are replaced with 10-year statistics, but 
circannual trends are rather stable, and we focused on maxi-
mum climatic differences when comparing subgroups. When 
studying dependence of seasonal parameter fluctuations on 
geographic latitude and circannual changes in meteorologi-
cal factors, we compared winter and summer as seasons with 
the most contrasting and stable weather conditions. We did 
not take into account the month of registration of the param-
eters, although it is known that the weather can be different 
even during one season.

The selected publications did not take into account the 
laboratory method for determining the studied indicators.

It should be noted that studies of seasonal insulin dynam-
ics comprised only four works, so it is not possible to draw a 
definitive conclusion about seasonal fluctuations of insulin 
based on the results of our meta-analysis.

This meta-analysis was carried out without taking into 
account ethnic characteristics and seasonal changes in 
subjects’ lifestyles (diet, holidays, fasting, prevalence of 
seasonal sports and participation in seasonal, e.g., agricul-
tural, work, etc.). However, according to the results of our 
meta-analysis results, the vector of seasonal lipid profile and 
glucose dynamics coincided in the Northern and Southern 
Hemispheres, which indicates that, for example, Christ-
mas holidays do not affect seasonal fluctuations of these 
parameters.
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