Table 3.
Algorithm performance.
| Logistic | SVM | RF | XGBoost | |
|---|---|---|---|---|
| Panel A: suicidal ideation (N = 3292) | ||||
| Area under the curve | 0.837 | 0.844 | 0.851 | 0.861 |
| Sensitivity | 0.808 | 0.811 | 0.850 | 0.853 |
| Specificity | 0.867 | 0.877 | 0.852 | 0.869 |
| Positive predictive value | 0.808 | 0.820 | 0.799 | 0.819 |
| Negative predictive value | 0.867 | 0.870 | 0.891 | 0.895 |
| Accuracy | 0.843 | 0.850 | 0.851 | 0.863 |
| Panel B: suicide planning or attempt (N = 488) | ||||
| Area under the curve | 0.872 | 0.872 | 0.857 | 0.880 |
| Sensitivity | 0.861 | 0.861 | 0.814 | 0.861 |
| Specificity | 0.883 | 0.883 | 0.900 | 0.900 |
| Positive predictive value | 0.841 | 0.841 | 0.854 | 0.861 |
| Negative predictive value | 0.898 | 0.898 | 0.871 | 0.900 |
| Accuracy | 0.874 | 0.874 | 0.864 | 0.884 |
Notes: SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting.