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Abstract

In this article, we develop methods for sample size and power calculations in four-level 

intervention studies when intervention assignment is carried out at any level, with a particular 

focus on cluster randomized trials (CRTs). CRTs involving four levels are becoming popular in 

health care research, where the effects are measured, for example, from evaluations (level 1) 

within participants (level 2) in divisions (level 3) that are nested in clusters (level 4). In such 

multi-level CRTs, we consider three types of intraclass correlations between different evaluations 

to account for such clustering: that of the same participant, that of different participants from 

the same division, and that of different participants from different divisions in the same cluster. 

Assuming arbitrary link and variance functions, with the proposed correlation structure as the 

true correlation structure, closed-form sample size formulas for randomization carried out at any 

level (including individually randomized trials within a four-level clustered structure) are derived 

based on the generalized estimating equations approach using the model-based variance and 

using the sandwich variance with an independence working correlation matrix. We demonstrate 

that empirical power corresponds well with that predicted by the proposed method for as few 

as 8 clusters, when data are analyzed using the matrix-adjusted estimating equations for the 

correlation parameters with a bias-corrected sandwich variance estimator, under both balanced and 

unbalanced designs.
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1 Introduction

Cluster randomized trials (CRTs) are commonly used to study the effectiveness of health 

care interventions within a pragmatic trials framework (Weinfurt et al., 2017). In CRTs, 

the unit of randomization is typically a group (or cluster) of individuals with outcome 

measurements taken on individuals themselves. Reasons to randomize clusters rather than 

individuals include administrative convenience and prevention of intervention contamination 

(Murray, 1998; Turner et al., 2017). CRTs typically include two levels, for example, where 

patients are nested within clinics that are randomized to intervention conditions. With an 

increase in the number of pragmatic trials embedded within health care systems, recent 

CRTs have been designed with multiple hierarchical levels involving, for example, patients, 

providers, and health care systems (Heo and Leon, 2008; Teerenstra et al., 2010; Liu and 

Colditz, 2020). Moreover, depending on the nature of the intervention and of the context, 

the unit of randomization may be at the highest level or one of the lower levels in the 

hierarchy. The inherent hierarchical structure of the health care delivery system demands 

rigorous multi-level methods that enable a precise evaluation of health care interventions.

While methods for designing three-level CRTs have been previously developed in Heo and 

Leon (2008), Teerenstra et al. (2010) and Cunningham and Johnson (2016), there has been 

little development on methods for designing CRTs with more than three levels and limited 

work on categorical outcomes for CRTs with more than two levels. In particular, we know 

of only one approach for four-level stepped wedge CRTs with methodology based on a 

linear mixed model (Teerenstra et al., 2019). Existing methods and their scope for designing 

trials with more than two levels are presented in Table 1. In particular, our two motivating 

examples pertain to CRTs with four levels, which necessitates new considerations on the 

within-cluster correlation structure and sample size determination. The first example is the 

Reducing Stigma among Healthcare Providers (RESHAPE) CRT conducted in Nepal, which 

evaluates a new intervention to improve accuracy of mental illness diagnosis in comparison 

to implementation as usual (IAU). In the RESHAPE CRT, binary diagnosis outcomes are 

observed for patients (level 1) nested in providers (level 2), who are nested in health 

facilities (level 3) within municipality (level 4), which is the unit of randomization. Figure 1 

provides a hierarchical illustration of the RESHAPE trial. Our second example is the Health 

and Literacy Intervention (HALI) trial conducted in Kenya, which compared a literacy 

intervention to improve early literacy outcomes to usual practice (Jukes et al., 2017). In the 

HALI trial, repeated literacy continuous outcomes (level 1) are measured for children (level 

2), who are nested within schools (level 3) of each Teacher Advisory Center (TAC) tutor 

zone (level 4). The TAC tutor zone is the unit of randomization which, like the RESHAPE 

trial, is at the highest level and which we refer to as the cluster.
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To account for multiple levels of clustering, both marginal (population-averaged) and 

conditional (cluster-specific) models can be used to analyze the outcome data. In this 

article, we focus on developing new sample size procedures for four-level CRTs based 

on the marginal model due to its population-averaged interpretation which is of direct 

relevance to health-systems level research questions (Preisser et al., 2003). In particular, 

the intervention effect parameter in the marginal model describes the difference of average 

outcome between the source population included in the intervention and control clusters, 

and its interpretation is unaffected by the specification of the within-cluster correlation 

structure (Zeger et al., 1988). We characterize an extended nested exchangeable correlation 

structure appropriate for the four-level CRT, and develop general sample size equations 

assuming arbitrary link and variance functions. Special cases of continuous, binary and 

count outcomes with commonly-used link functions are presented, which generalize existing 

sample size formulas for two-level and three-level CRTs (Shih, 1997; Heo and Leon, 2008; 

Teerenstra et al., 2010). When the randomization is carried out at the highest level, we show 

that the variance inflation factor (VIF) due to the four-level clustered structure is equal to the 

largest eigenvalue of the extended nested exchangeable correlation structure, which depends 

on the number of units at each level and on three intraclass correlation coefficients (ICCs). 

We carried out an extensive simulation study to demonstrate the accuracy and robustness 

of the proposed sample size formula with a binary outcome, and applied our method to 

design the RESHAPE and HALI trials. Finally, although we focus on randomization at the 

highest level as in our motivating CRTs, we also develop more general results for sample 

size calculation to allow randomization at lower levels.

2 Generalized estimating equations and finite-sample adjustments

We first consider a four-level CRT, and use the RESHAPE trial (Figure 1) as a running 

example for illustration. Let Yijkl denote the outcome for patient l = 1, … , Lijk from 

provider k = 1, … , Kij nested in health facility j = 1, … , Mi of municipality i = 1, … , N, 

and Xijkl = (Xijkl1, … , Xijklp)′ denote a list of p covariates. Frequently in designing CRTs, 

Xijkl only includes an intercept and a cluster-level intervention indicator, which equals one 

if the cluster is assigned to intervention and zero if the cluster is assigned to control. Let 

μijkl = E Y ijkl Xijkl  be the marginal mean outcome given Xijkl, which is specified via a 

generalized linear model

g μijkl = Xijkl′ β, (1)

where g is a link function and β is a p × 1 vector of regression parameters. The marginal 

variance function is specified as var Y ijkl Xijkl = ϕνijkl, where ϕ is the common dispersion 

parameter and νijkl is an arbitrary variance function that depends on the marginal mean 

and possibly additional dispersion parameters. Denote κijkl = ϕνijkl/μijkl as the coefficient 

of variation (CV) of the outcome. In addition to the marginal mean model, we propose to 

characterize the degree of similarity among the within-cluster outcomes through an extended 

nested exchangeable correlation structure with the following assumptions:

i. the correlation between different patients from the same provider is
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corr Y ijkl, Y ijkl′|Xijkl, Xijkl′ = α0, for l ≠ l′;

ii. the correlation between patients from different providers but within the same 

health facility is

corr Y ijkl, Y ijk′l′|Xijkl, Xijk′l′ = α1, for k ≠ k′;

iii. the correlation between patients from different health facilities but within the 

same municipality is

corr Y ijkl, Y ij′k′l′|Xijkl, Xij′k′l′ = α2, for j ≠ j′ .

We term this correlation structure as the extended nested exchangeable structure because 

it accounts for an additional hierarchical nesting compared to the nested exchangeable 

structure developed for three-level CRTs in Teerenstra et al. (2010). Our three-correlation 

structure also differs from an existing three-parameter block exchangeable structure 

proposed for cohort stepped wedge designs (Li et al., 2018). To illustrate these differences in 

correlation structures, we provide specific matrix examples in Web Appendix A.

For simplicity, we assume a balanced design so that there is an equal number of units 

at each level across all clusters, i.e., Mi = M ≥ 2 (i = 1, … , N), Kij = K ≥ 2 (i = 1, 

… , N; j = 1, … , Mi), and Lijk = L ≥ 2 (i = 1 , … , N; j = 1, … , Mi; k = 1,…,Kij). 

For each provider, let Yijk = Y ijk1, …, Y ijkL ′ and μijk = μijk1, …, μijkL ′ be the L × 1 

vector of outcomes and L × 1 marginal mean vector, respectively. Furthermore, in each 

municipality, denote Yi = Yi11′ , Yi12′ , …YiMK′ ′, μi = μi11′ , μi12′ , …, μiMK′ ′, where Yi and 

μi are of dimension MKL and include MK blocks of provider-specific outcome vectors 

(classified by combinations of different health facilities and providers); denote Xi as the 

MKL × p covariate matrix. We use the generalized estimating equations (GEE) approach 

(Liang and Zeger, 1986) to estimate the intervention effect in mean model (1). Define 

Di = ∂μi/ ∂β′, and let Vi = Ai
1/2RiAi

1/2 be a working covariance matrix for Yi, where Ai 

is a MKL-dimensional diagonal matrix with elements of ϕνijkl, and Ri = Ri (α) is a 

working correlation matrix specified by the ICC vector α = α0, α1, α2 ′. The extended nested 

exchangeable correlation structure can be concisely represented as

Ri = 1 − α0 IMKL + α0 − α1 IMK ⊗ JL + α1 − α2 IM ⊗ JKL + α2JMKL, (2)

where ⊗ is the Kronecker product, Ju = 1u1u′  is a u × u matrix of ones, and Iu is a u 

× u identity matrix. Of note, when we equate α0 = α1 or α1 = α2, Ri reduces to the two-

parameter nested exchangeable correlation structure developed in Teerenstra et al. (2010). 

The following Theorem provides a closed-form characterization of the eigenvalues of Ri. 

The proof of Theorem 2.1 can be found in Web Appendix B.

Wang et al. Page 4

Biom J. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 2.1 The extended nested exchangeable correlation structure has the following 
eigenvalues:

λ1 = 1 − α0,

λ2 = 1 + L − 1 α0 − Lα1,

λ3 = 1 + L − 1 α0 + L K − 1 α1 − LKα2,

λ4 = 1 + L − 1 α0 + L K − 1 α1 + LK M − 1 α2,

with multiplicity MK(L − 1), M(K − 1), M − 1 and 1, respectively.

Remark 2.2 When (a) α0 ≠ α1, α1 ≠ α2, and α2 ≠ 0, and (b) α0 ≠ −(K−1)α1 +Kα2, 

α0 ≠ −(K−1)α1 − K(M − 1)α2, and α1 ≠ − (M − 1)α2, Theorem 2.1 implies that the 

extended nested exchangeable correlation structure has four distinct eigenvalues. Otherwise, 

at least two elements of {λ1, λ2, λ3, λ4} are identical and the multiplicity of each distinct 

eigenvalue can be inferred from Theorem 2.1 by simple addition. For example, if α0 = α1(= 

0 or not), but the rest of the conditions in (a) and (b) hold, the extended nested exchangeable 

correlation structure has three distinct eigenvalues, with λ1 = λ2 whose multiplicity is MK(L 
− 1) + M(K − 1) = M(KL − 1).

These explicit forms of the eigenvalues developed in Theorem 2.1 facilitate an efficient 

determination of the joint validity of the correlation parameters. Specifically, valid values 

for (α0, α1, α2) should ensure a positive definite Ri and are contained in the convex open 

set defined by min{λ1, λ2, λ3, λ4} > 0. When the marginal mean model includes only an 

intercept and cluster-level intervention status, there is often an additional natural restriction 

on the range of α for binary outcomes given in Equation (8) of Qaqish (2003). When Xijkl 

only includes an intercept and a cluster-level intervention indicator, it is straightforward to 

show that the upper bound of α is one, and the lower bound is negative (this lower bound 

depends on P0 and P1, which are the marginal prevalences of the outcome in the control and 

intervention arms, respectively). In practice, the ICC values are assumed to be positive and 

the natural constraints are satisfied. We will maintain the positive ICC assumption for the 

rest of the article.

In general, the GEE estimator β solves the β-estimating equations ∑i = 1
N Di′Vi

−1 Yi − μi = 0. 

Because the ICC parameters are of interest when analyzing CRTs, we specify a second set 

of α-estimating equations to iteratively update the correlations that parameterize Vi. In the 

presence of an unknown dispersion parameter, an additional estimating equation for ϕ needs 

to be specified beyond the β-estimating equations and α-estimating equations. To provide a 

correction to the small-sample bias in estimating α due to a limited number of clusters, we 
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adopt the matrix-adjusted estimating equations (MAEE) of Preisser et al. (2008); also see 

Appendix B of Li et al. (2018) for details of MAEE. As the number of clusters increases, 

N1/2 β − β  converges to a multivariate normal random vector with mean 0 and covariance 

estimated by the model-based variance VR
model = Σ1

−1 = N−1∑i = 1
N Di′ β Vi

−1 α Di β −1
, 

or by the sandwich variance VR
sandwich = Σ1

−1 Σ0 Σ1
−1 where

Σ0 = N−1 ∑
i = 1

N
CiDi′ β Vi

−1 α Yi − μi Yi − μi ′Vi
−1 α Di β Ci′, (3)

and Ci represents a multiplicative factor for small-sample bias correction in variance 

estimation. While both VR
model and VR

sandwich provide adequate quantification of the 

uncertainty in estimating β when the extended nested exchangeable correlation structure 

is correctly specified, only the sandwich variance VR
sandwich is asymptotically valid when 

the working correlation matrix is misspecified. For example, the independence working 

correlation matrix is misspecified when the true correlation structure follows the extended 

nested exchangeable structure. Furthermore, the extended nested exchangeable structure 

can also be misspecified if the true correlation structure is more complex with more than 

three ICC parameters, for instance, when the ICC parameters depend on covariates such 

as intervention arm or other cluster characteristics. In this article, we consider only a 

single example of misspecification, namely the first case with the independence working 

correlation matrix, with details discussed in Section 3.3.

In pragmatic CRTs, there is usually a limited number of units at the highest level. In the 

RESHAPE trial, it is only possible to randomize a total of 24 municipalities. Therefore, 

adjustments to the sandwich variance VR
sandwich are required to reduce its potentially negative 

bias (Li and Redden, 2015). Setting Ci = Ip in (3) provides the uncorrected sandwich 

estimator of Liang and Zeger (1986), denoted as BC0. Because BC0 tends to underestimate 

the variance when the number of clusters is small, we consider four types of small-sample 

adjustments. Define matrix Qi = Di′Vi
−1Di N Σ1

−1. Setting Ci = Ip − Qi
−1/2 provides the 

bias-corrected variance of Kauermann and Carroll (2001), or BC1 (here we provide an 

equivalent representation based on the Qi matrix instead of the cluster-leverage matrix; 

we provide additional details in Web Appendix C to clarify this subtle equivalence). 

Setting Ci = Ip − Qi
−1 provides the bias-corrected variance of Mancl and DeRouen (2001), 

or BC2. Setting Ci = diag 1 − min r, Qi jj
−1/2 , where r < 1 is a user-defined bound 

with a default value of 0.75, provides the bias-corrected variance of Fay and Graubard 

(2001), or BC3. Based on the degree of multiplicative adjustments, we generally have 

BC0 < BC1 ≈ BC3 < BC2 (Preisser et al., 2008; Li et al., 2018). In addition to the 

three multiplicative adjustments, we also consider an additive bias correction of Morel 

et al. (2003), defined as BC4 = cBC0 + δNϕ Σ1
−1, where c = f − 1 / f − p × N/ N − 1 , 
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f = ∑i = 1
N ∑j = 1

M ∑k = 1
K Lijk is the total number of observations, δN = min{0.5, p/(N – p)} is 

the correction factor converging to 0 as N tends to infinity, and

ϕ = max 1, trace c ∑
i = 1

N
Di′Vi−1 Yi − μi Yi − μi ′Vi−1Di NΣ1 −1 /p .

One potential advantage of the additive bias correction BC4 over the multiplicative bias 

correction is that the former guarantees the positive definiteness of the estimated covariance 

(Morel et al., 2003). The general MAEE methods are implemented in the recent R package 

geeCRT (Yu et al., 2020). Source R code to implement MAEE in four-level CRTs (including 

BC4) are also available at https://github.com/XueqiWang/Four-Level_CRT.

3 Power and sample size considerations

At the design stage of a balanced four-level clustered trial, we consider an unadjusted 

marginal model (1) with Xijkl including only an intercept and a binary cluster-level 

intervention indicator (p = 2). This simple structure is assumed for the rest of the article. 

Suppose we are interested in testing the null hypothesis of no intervention effect H0 : β2 = 

0, using a two-sided t-test. Specifically, the asymptotic distribution of N β2 − β2  is normal 

with mean 0 and variance obtained as the lower-right element of cov N β − β . The Wald 

test statistic Nβ2/σβ, where σβ
2 = var Nβ2 , will be compared to a t-distribution with N–2 

degrees of freedom; the t-test is chosen because it often improves the test size in finite 

samples compared to normal approximations (Li and Redden, 2015; Teerenstra et al., 2010). 

The predicted power to detect an effect size b on the link function scale with a nominal type 

I error rate α is then

1 − γ = Φt, N − 2 tα/2, N − 2 + |b | N
σβ

2 , (4)

where Φt,d and tα,d are the cumulative distribution function and 100α% percentile of the 

t-distribution with d degrees of freedom, respectively. Accordingly, the number of clusters or 

level-four units required to achieve 100(1 – γ)% power must satisfy

N ≥ tα/2, N − 2 + tγ, N − 2
2σβ

2

b2 . (5)

Note that the above two equations are approximations, and Equation (5) must be solved 

iteratively. Equations (4) and (5) suggest that analytical power and sample size calculations 

depend on an explicit expression for the asymptotic variance σβ
2. In what follows, we 

will assume the true correlation matrix of Yi is extended nested exchangeable defined in 

Equation (2), and determine the explicit form of σβ
2 when the working correlation is the true 

correlation structure or when the working correlation assumes independence.
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3.1 A general sample size expression with randomization at level four

Mimicking our motivating applications, we consider a total of N clusters or level-four units 

are randomized with πcN clusters assigned to the control arm and (1 − πc)N clusters 

to the intervention arm. Let Xc and Xt be the design matrix for clusters assigned to the 

control and intervention conditions, respectively, i.e., Xc = (1MKL, 0MKL) and Xt = (1MKL, 

1MKL). Below, we consider a general sample size expression for outcomes with an arbitrary 

mean-variance relationship. To do so, we further define μc and μt to be the marginal mean 

for the control and intervention arms, respectively. Because the randomization is carried 

out at level four, the marginal means of all observations in each particular cluster (μ) are 

either all μc or all μt, depending on the intervention assignment. We also define κc and κt 

as the marginal CV of outcome in the control and intervention arms, respectively. Assuming 

an arbitrary link function g, we have Di = ∂g μc / ∂μc
−1Xc and Vi = μc2κc2Ri for all i in the 

control arm, Di = ∂g μt / ∂μt
−1Xt and Vi = μt2κt2Ri for all i in the intervention arm.

In this Section, we assume that the working correlation model is the extended exchangeable 

correlation structure, with correlation parameters estimated via the MAEE approach. 

Therefore σβ
2 is the lower-right element of the model-based variance, given by the inverse of

Σ1 = N−1 ∑
i = 1

N
Di′Vi−1Di = 1′R−11

πcρc−2 + 1 − πc ρt−2 1 − πc ρt−2

1 − πc ρt−2 1 − πc ρt−2 ,

where 1′R−11 is the sum of all elements of the inverse correlation matrix R−1, 

ρc = μcκc ∂g μc / ∂μc , and ρt = μtκt ∂g μt / ∂μt . In Web Appendix D, we show that an 

explicit inverse of the extended nested exchangeable correlation matrix is

R−1 = 1
λ1

IMKL −
α0 − α1

λ1λ2
IMK ⊗ JL −

α1 − α2
λ2λ3

IM ⊗ JKL −
α2

λ3λ4
JMKL,

which gives 1′R−11 = MKL/λ4, where λ1, λ2, λ3 and λ4 are defined in Theorem 2.1. These 

intermediate results allow us to obtain the asymptotic variance expression as

σβ
2 = λ4

MKL
ρc2

πc
+ ρt2

1 − πc
. (6)

Hence the required number of clusters must satisfy

N ≥ tα/2, N − 2 + tγ, N − 2
2

b2 × λ4
MKL

ρc2

πc
+ ρt2

1 − πc
. (7)

The variance expression (6) has several important implications for study planning, which we 

discuss in a series of remarks below.
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Remark 3.1 In the absence of any clustering, one can easily derive the asymptotic variance 

of the intervention effect estimator in an individually randomized trial as

σβ
2 = 1

MKL
ρc2
πc

+
ρt2

1 − πc
,

assuming a total of N × MKL individuals are recruited. As a consequence, the eigenvalue 

λ4 = σβ
2/σβ

2 is the design effect or VIF due to the four-level clustered structure. This 

VIF generalizes the previous findings in two-level and three-level CRTs, where the 

corresponding VIFs have also been found to be the largest eigenvalues of the simple 

exchangeable and nested exchangeable correlation matrices, respectively (see Shih (1997), 

Liu et al. (2019) and discussions in Section 7 of Li et al. (2019) for VIF in two-level and 

three-level CRTs).

Remark 3.2 Because λ4 = 1 + (L − 1)α0 + L(K − 1)α1 + LK(M − 1)α2 is monotonically 

increasing in all three ICC parameters, α0, α1 and α2, larger values of any of these three 

ICC values would inflate the variance and decrease the design efficiency. Interestingly, the 

coefficient of each ICC parameter in the equation for λ4 determines the relative importance 

of that ICC for variance inflation, and the sample size or variance inflation is most sensitive 

to changes in the correlation between patients from different health facilities within the same 

municipality (or the ICC at the highest hierarchy), α2, which has the largest coefficient 

LK(M − 1). On the other hand, ignoring the fourth level of clustering by assuming α1 = 

α2 (as in a three-level CRT) could lead to a highly inaccurate power calculation if these 

two correlations are, in fact, different. That is, assuming the value of α1 is fixed and 

known, when the true value of α2 is larger than α1, the required sample size would be 

underestimated; when the true value of α2 is smaller than α1, the required sample size 

would be overestimated. Ignoring the ICC at the lowest hierarchy, α0, however, may have a 

relatively smaller impact on the power calculation, especially when the patient panel size L 
is not too large.

Remark 3.3 Expression (6) also suggests the optimal allocation of clusters does not depend 

on the ICC parameters. Specifically, the optimal randomization proportion that leads to the 

smallest σβ
2 is obtained as πc

opt = 1/2 if ρc = ρt, and πc
opt = ρc2 ± ρcρt / ρc2 − ρt2  (depending on 

which value is contained within the unit interval) otherwise. Details of the derivation for πc
opt

are provided in Web Appendix E.

Finally, for commonly-used link functions and different types of outcomes, we can elegantly 

specify the marginal variance ν as a function of the marginal mean μ. In those cases, sample 

size Equation (7) can be recognized as more familiar expressions, examples of which are 

provided below.

Example 3.4 (Sample size formula with a continuous outcome) When Yijkl is continuous, 

and a Gaussian variance function is assumed, we have ν = 1 for both trial arms, and the 
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marginal CV of the outcome κc = ϕ/μc and κt = ϕ/μt. Under the identity link function, 

∂g μt / ∂μt = ∂g μc / ∂μc = 1, and Equation (7) reduces to

N ≥ tα/2, N − 2 + tγ, N − 2
2

b2 × ϕλ4
πc 1 − πc MKL . (8)

In this case, ϕ is assumed as the homoscedastic marginal total variance of Yijkl, and the 

sample size expression (8) extends the results of Heo and Leon (2008) and Teerenstra 

et al. (2010) to account for an additional level of clustering. Additionally, the optimal 

randomization proportion πc
opt is clearly 1/2 given ρc = ρt.

Example 3.5 (Sample size formulas with a binary outcome) When Yijkl is binary, the 

dispersion ϕ = 1, and the variance function ν = μ(1 – μ). This leads to the CV of the 

outcome in the control and intervention arms as κc = 1 − μc /μc and κt = 1 − μt /μt. 

We consider the sample size formulas for three commonly-used link functions. Under 

the canonical logit link function, g μ = log μ/ 1 − μ , with ∂g μ / ∂μ = μ−1 1 − μ −1. Define 

P0 = 1 + exp −β1
−1, P1 = 1 + exp −β1 − β2

−1 as the prevalence in the two arms, the 

required number of clusters to detect an effect size on the log odds ratio scale 

b = log P1/ 1 − P1 − log P0/ 1 − P0  must satisfy

N ≥ tα/2, N − 2 + tγ, N − 2
2

b2 × λ4
MKL

1
πcP0 1 − P0

+ 1
1 − πc P1 1 − P1

. (9)

Similarly, with an identity link function, we define the prevalence of outcome in the control 

and intervention clusters by P0 = β1, P1 = β1 + β2, which should satisfy the boundary 

constraints P0, P1 ∈ (0, 1). The general Equation (7) suggests that the required number of 

clusters to detect an effect size on the risk difference scale b = P1 − P0 satisfies

N ≥ tα/2, N − 2 + tγ, N − 2
2

b2 × λ4
MKL

P0 1 − P0
πc

+ P1 1 − P1
1 − πc

. (10)

Finally, under the log link function, we write P0 = exp(β1) and P1 = exp(β1 + β2), and define 

the effect size on the log relative risk scale to be b = log(P1) – log(P0). The required sample 

size is provided by

N ≥ tα/2, N − 2 + tγ, N − 2
2

b2 × λ4
MKL

1 − P0
πcP0

+ 1 − P1
1 − πc P1

. (11)

Equations (9), (10) and (11) generalize the sample size requirements provided in Teerenstra 

et al. (2010) and Liu et al. (2019) from three-level CRTs to four-level CRTs.
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Example 3.6 (Sample size formula with a count outcome) When Yijkl is a count outcome, 

a typical approach is to assume Yijkl follows the Poisson distribution. This assumption leads 

to φ = 1, ν = μ, and the CV of the Poisson outcome in each arm is κc = 1/μc, κt = 1/μt. 

Under the canonical log link function,∂g μ / ∂μ = 1/μ. Therefore, we define μc = exp(β1) and 

μt = exp(β1 + β2) as the expected event rate in the two arms, and the required number of 

clusters to detect an effect size on the log rate ratio scale b = log μt/μc  is given by

N ≥ tα/2, N − 2 + tγ, N − 2
2

b2 × λ4
MKL

1
πcexp β1

+ 1
1 − πc exp β1 + β2

. (12)

The sample size equation (12) generalizes the result in Amatya et al. (2013) from two-level 

CRTs to four-level CRTs.

3.2 Randomization at lower levels

Although our two motivating examples represent CRTs that randomize at the fourth level, 

there may sometimes be administrative or practical considerations for randomizing units 

at a lower level. For example, when such lower-level randomization would not lead 

to intervention contamination, there would be an increase in the number of units of 

randomization and hence in the statistical power. Another intuition for improved power 

is that the inclusion of within-cluster contrasts in the intervention effect contributes to the 

increase in effective sample size. For completeness, we provide some general results for 

randomizing at lower levels. In our running example, the RESHAPE trial, randomizing 

at level three refers to, within each of the N municipalities, randomizing πcM health 

facilities to the control arm and (1 – πc)M health facilities to the intervention arm. Likewise, 

randomizing at level two refers to, within each of NM health facilities, randomizing πcK 
providers in the control arm and (1 – πc)K providers in the intervention arm. Because 

patients are nested within each provider, a design that randomizes at level three or level 

two within the four-level clustered structure would still be classified as a CRT. In contrast, 

randomizing at level one would be an individually randomized trial for which πcL patients 

and (1 − πc)L patients are randomized to the control and intervention arms, respectively, 

within each of the NMK providers. Notice that the design vector Xijkl can depend on 

the level of randomization, and we provide full details in Web Appendix F. To link these 

different contexts, we establish the following Theorem that applies to randomization at any 

level. The proof is in Web Appendix F.

Theorem 3.7Consider a four-level clustered trial, suppose the randomization is carried out at 
the rth level (r = 1, 2, 3, 4), and assume arbitrary link and variance functions. The asymptotic 
model-based variance for the GEE estimator β2 that uses the extended nested exchangeable 

working correlation is

σβ
2 = λr

MKL
ρc2

πc
+ ρt2

1 − πc
+ λ4 − λr ρc − ρt

2

MKL , (13)
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where ρc = μcκc ∂g μc / ∂μc  and ρt = μtκt ∂g μt / ∂μt , μc and μt are the marginal means for 

the control and intervention population, respectively, κc and κt are the marginal coefficients 
of variation of the outcome for the control and intervention population, respectively.

Clearly, Equation (13) includes Equation (6) as a special case, where the second term of (13) 

vanishes. Furthermore, Theorem 3.7 has several interesting implications, which we elaborate 

below in several remarks.

Remark 3.8 When randomizing at a lower level r ≤ 3, the design effect relative to an 

individually randomized trial without any clustering is given by

design effect = λr + λ4 − λr ρc − ρt
2 ρc2

πc
+ ρt2

1 − πc

−1
, (14)

which generally depends on the distribution of the outcome only through the first two 

moments via ρc and ρt. With a continuous outcome, identity link function and a Gaussian 

variance function, we have ρc = ρt, and the design effect (14) when randomizing at level 

r simply reduces to the corresponding eigenvalue λr. This result indicates that as we 

randomize at a lower level, the design efficiency depends on the relative magnitude of the 

ICC parameters, because λ2 = λ1 + L α0 − α1 , λ3 = λ2 + LK α1 − α2 , and λ4 = λ3 + LKMα2. 

In our HALI trial context where we expect α0 ≥ α1 ≥ α2, randomization at a lower level leads 

to higher efficiency with a continuous outcome. These insights with a continuous outcome 

are in parallel to the design effect expressions provided in Cunningham and Johnson (2016) 

in a three-level design with a linear mixed model.

Remark 3.9 Expression (13) suggests that the optimal allocation proportion does not change 

according to the level of randomization. It is straightforward to see from Equation (13) that 

the optimal randomization probability πc
opt minimizes ρc2/πc + ρt2/ 1 − πc  and equals to the 

result derived in Remark 3.3.

Finally, specific sample size formulas for randomization at lower levels can be derived based 

on Equation (5) and (13), under commonly-used link functions and variance functions as in 

Section 3.1. Details of these specific cases are provided in Web Appendix G.

3.3 Considerations on using an independence working correlation

In our derivations of the variance expression σβ2, we have assumed that the working 

correlation structure is correctly specified as the extended nested exchangeable structure, 

and the ICCs are estimated through MAEE. In the context of clustered trials, using MAEE 

has been recommended because reporting accurate ICC estimates can inform the design 

of future trials (Preisser et al., 2008; Teerenstra et al., 2010), and it is considered good 

practice per the CONSORT extension to CRTs (Campbell et al., 2012). Alternatively, 

one may pre-specify the primary analysis to be the GEE analysis with an independence 

working correlation and account for clustering simply via the sandwich variance. In a 

two-level design with equal cluster sizes, previous studies (Pan, 2001; Yu et al., 2020; Li 

and Tong, 2021) have found that GEE estimators with working exchangeable and working 
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independence have the same asymptotic efficiency when the randomization is carried out at 

the cluster level (i.e. the highest level in a two-level design). In Web Appendix H, we prove 

the following Theorem, which is a more general result that the same asymptotic equivalence 

holds in a four-level clustered design with equal “cluster” sizes at each level, regardless of 

the level of randomization.

Theorem 3.10 Under balanced designs, suppose the randomization is carried out at the 
rth level (r = 1, 2, 3, 4), and assume arbitrary link and variance functions, with the 
extended nested exchangeable correlation structure as the true correlation structure. Using 
the sandwich variance with an independence working correlation matrix results in the same 

σβ
2 as we obtain using the extended nested exchangeable working correlation in Theorem 3.7.

Therefore, Theorem 3.7 still holds for GEE analysis assuming working independence and 

there is no difference in the derived sample size equations assuming equal “cluster” sizes at 

each level, when randomization is carried out at any one of the four levels.

4 Simulation study

Since we expect that the closed-form sample size formula for binary outcomes would be less 

accurate compared to those for continuous and count outcomes, we conducted a simulation 

study to evaluate the validity of our sample size formula for binary outcomes under the 

canonical logit link function for both balanced and unbalanced designs, where the latter 

has variable numbers of level-one units per level-two unit. Because we derived our sample 

size formulas assuming an equal number of patients within each provider, we consider 

the unbalanced design to assess the robustness of our formulas when the balance design 

assumption fails to hold in a specific and meaningful way (i.e., variable numbers of patients 

per provider in the RESHAPE trial). We focus on randomization at the fourth level with 

equal allocation to the two trial arms (πc = 1/2), which mimics the motivating studies. 

Correlated binary data in each cluster were generated from a binomial model with marginal 

mean in (1) and extended nested exchangeable correlation structure using the methods of 

Qaqish (2003).

4.1 Balanced designs

We varied correlation values by choosing α = (α0, α1, α2) = {(0.4, 0.1, 0.03), (0.15, 0.08, 

0.02), (0.1, 0.02, 0.01), (0.05, 0.05, 0.02)}; these values resemble estimates from the HALI 

trial (Jukes et al., 2017) or assumptions for the RESHAPE trial. Marginal mean parameters 

β1 and β2 were induced from the marginal means P0 in the control arm and P1 in the 

intervention arm for assessing the empirical power; β2 was fixed at 0 for assessing the 

empirical type I error rate. The nominal type I error rate was fixed at 5%. For illustration, 

we fixed M ∈ {2, 3}, K ∈ {3, 4} and L ∈ {5, 10}. The total number of clusters N was 

determined as the smallest number ensuring that the predicted power was 80%, and ranged 

from 8 to 30 across 30 simulation scenarios. For each scenario, 1000 data replications 

were generated and analyzed using GEE for the mean model and MAEE for the extended 

nested exchangeable working correlation structure. We consider 7 variance estimators for the 

intervention effect: the model-based variance (MB), BC0, BC1, BC2, the variance estimator 
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of Ford and Westgate (2017) with standard error obtained as the average of those from BC1 

and BC2 (denoted as AVG), BC3, and BC4. The convergence rate exceeded 99% for most 

scenarios except for a few cases (a summary of convergence rates for all scenarios under 

balanced designs is presented in Web Table 1). Since the nominal type I error rate was 

5%, according to the margin of error from a binomial model with 1000 replications, we 

considered an empirical type I error rate from 3.6% to 6.4% as acceptable. Similarly, since 

the predicted power was at least 80% for each scenario, we considered an empirical power 

differing at most 2.6% from the predicted power as acceptable. These acceptable bounds will 

be labeled with gray dashed lines in all related Figures summarizing the simulation results.

Table 2 summarizes the results for empirical type I error rates for t-tests using different 

variance estimators. The type I error rates with BC1 were valid across almost all scenarios, 

except for only one scenario where the test became slightly liberal (0.068). BC0 often 

gave inflated type I error rates, while MB, BC2, AVG, BC3, and BC4 sometimes led to 

overly conservative type I error rates. Table 3 summarizes the results for predicted power 

and empirical power using different variance estimators. The empirical power with BC1 

corresponded well with the predicted power throughout. BC0 provided higher empirical 

power than predicted in most scenarios, and MB sometimes led to higher empirical power 

than prediction; AVG, BC3, and BC4 sometimes gave lower empirical power than predicted, 

while BC2 almost always led to lower empirical power than predicted. Overall, the t-test 

with BC1 performed best; the performance among AVG, BC3, and BC4 were very similar.

The above simulations were repeated with data fit using GEE under working independence. 

The results for empirical type I error rates are summarized in Web Table 2, analogous to 

Table 2; the results for power are summarized in Web Table 3, analogous to Table 3. With 

working independence, MB is invalid and gave inflated type I error rates. All other variance 

estimators yielded very similar results to those estimating the extended nested exchangeable 

working correlation structure with MAEE (Table 2 and Table 3). In fact, we found out 

that under balanced designs, the variance estimators BC0, BC1, BC2, AVG, and BC3 are 

numerically equivalent under either working independence or working extended nested 

exchangeable correlation matrix (minor differences in empirical type I error and power due 

to non-convergence of MAEE in a few iterations), when the true correlation structure is 

extended nested exchangeable. We formally state this result in the following Remark, with 

the proof presented in Web Appendix I.

Remark 4.1 Under balanced designs, suppose the randomization is carried out at 

the 4th level, and assume arbitrary link and variance functions, with the extended 

nested exchangeable correlation structure as the true correlation structure. Then, GEE 

analysis using the extended nested exchangeable working correlation matrix or using an 

independence working correlation matrix result in the same estimators β , BC0, BC1, BC2, 

AVG, and BC3.

4.2 Unbalanced designs

Although we derive our sample size formula assuming an equal number of patients within 

each provider, in practice, providers may have variable numbers of patients. We assessed 

the robustness of the proposed sample size formula under this specific type of variable 
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panel size, and further illustrate the comparisons between using the true working correlation 

model versus the independence working correlation model. For each scenario in Section 4.1, 

keeping other parameters unchanged, we generated numbers of patients per provider Lijk 

from a gamma distribution with mean equal to L ∈ 5, 10  and CV ranging from {0.25, 0.50, 

0.75, 1}. We computed the required sample size ignoring the cluster size variability, but 

estimate the empirical power under variable cluster sizes for GEE estimators using MAEE 

with the extended nested exchangeable working correlation structure versus using working 

independence. The full results for empirical type I error rates and empirical power using 

different variance estimators are presented in Web Tables 4–11 for GEE analyses using the 

extended nested exchangeable working correlation structure with MAEE, in Web Tables 12–

19 for GEE analyses using working independence, and in Web Figures 1–8 for comparisons 

of GEE analyses between using the extended nested exchangeable working correlation 

structure with MAEE and using working independence. As BC1 performed best under 

balanced designs, here we focus discussion of the results on BC1. Figure 2 summarizes 

the empirical type I error rates for t-tests with BC1 across the range of estimated sample 

sizes, with gray dashed lines indicating the acceptable bounds calculated from a binomial 

sampling model (detailed calculation of the acceptable bounds is provided in Section 4.1). 

Using the extended nested exchangeable working correlation structure with MAEE, most 

scenarios had valid type I error rates, with liberal results in only five cases across all CV 

values of cluster sizes (Scenario 13 for CV = 0; Scenarios 17 and 30 for CV = 0.25; 

Scenario 26 for CV = 0.75; Scenario 25 for CV = 1.00). On the other hand, as the CV 

of cluster sizes increases, the GEE estimator with working independence started to exhibit 

inflated type I error rates. Figure 3 summarizes the power results for t-tests with BC1, 

where gray dashed lines indicate the acceptable bounds for difference in empirical versus 

predicted power (detailed calculation of the acceptable bounds is provided in Section 4.1). 

Surprisingly, the empirical power corresponded well with that predicted for most scenarios 

when the data are analyzed by GEE and MAEE with the extended nested exchangeable 

working correlation structure, regardless of the cluster size variability; across all CV values 

of cluster sizes, there were only five cases where the empirical power appeared slightly 

lower than the predicted (Scenarios 9, 24, and 25 for CV = 0.75; Scenarios 9 and 23 for 

CV = 1.00). In sharp contrast, the empirical power for independence GEE had unacceptable 

lower empirical power than that predicted when the CV of cluster sizes increased from 0.25 

to 1.

5 Applications

5.1 The RESHAPE trial

We apply our sample size formula to determine the required sample size in the RESHAPE 

trial, which is briefly described in Section 1. The RESHAPE trial compares two strategies – 

RESHAPE and IAU – for the primary outcome of accuracy of diagnosis of mental illness, 

defined as the proportion of all patients seen by providers who are accurately diagnosed 

as determined by psychiatrists. The unit of randomization is the municipality with equal 

allocation to the two trial arms (πc = 1/2), and patient-level binary outcomes are collected 

to measure diagnostic accuracy. The design question focuses on calculating the required 

number of municipalities to achieve at least 80% power at the 5% nominal test size. 
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According to the local conditions in Nepal, we anticipate 3 health facilities per municipality, 

3 providers per health facility, and roughly 36 patients per provider. The researchers expect 

IAU and RESHAPE will result in an accurate diagnosis of P0 = 78.5% and P1 = 88%, 

respectively. From extensive discussions with the study team and preliminary simulations for 

the study protocol, the anticipated ICC between different patients of the same provider is 

α0 = 0.05, the ICC between different patients of different providers from the same health 

facility is α1 = 0.04, and the ICC between different patients of different providers from 

different health facilities in the same municipality is α2 = 0.03. Given M = 3, K = 3, L 
= 36, and α = (0.05, 0.04, 0.03), under the canonical logit link function, Equation (9) and 

(4) suggested that the required number of municipalities is N = 22 with power of 82.65%. 

The same result can also be obtained by using the design effect formula (14). Specifically, 

suppose this is an individually randomized trial without any clustering, then the required 

number of patients is 562 (with the working degrees of freedom of a t-test adjusted to 

match the four-level CRT design). By multiplying the design effect λ4 = 12.11, the required 

number of patients is 6806 and the required number of municipalities is 6806/(3×3×36) ≈ 
22. Although the research team has good faith in α0, there may be uncertainty in α1 and 

α2. We conducted a sensitivity analysis by varying the values of these two correlations. 

Figure 4 shows the sensitivity of power as a function of α1 and α2 at α0 = {0.025, 0.05, 

0.1}, assuming N = 22 under the logit link function. As expected, the predicted power 

decreases as α0, α1, or α2 increases. Specifically for α0 = 0.05, power remains above 

70% for α1 ≤ 0.07 and α2 ≤ 0.04. In Web Appendix L, we provide additional illustrative 

calculations of the required sample size under the identity and log link functions, as well as 

when randomization is hypothetically carried out in lower levels under the RESHAPE trial 

context. Noticeably, if randomization is carried out at the patient level (level 1), the required 

number of municipalities can dramatically reduce to as few as 6.

5.2 The HALI trial

We also apply our method to design the HALI trial introduced in Section 1. The HALI 

trial compared two strategies – the HALI literacy intervention and the usual instruction – in 

terms of children’s literacy, assessed by various tests such as for spelling and English letter 

knowledge (Jukes et al., 2017). The randomization and implementation were conducted at 

the TAC tutor zone level with equal randomization (πc = 1/2), and the first primary outcome 

of spelling score (ranging from 0 to 20) was measured at the student level. The design 

focused on calculating the required number of TAC tutor zones to achieve at least 80% 

power at the 5% nominal test size. In the trial sample, there were between 3 and 6 schools 

in each tutor zone, with 25 children per school, and 2 follow-up visits for literacy tests. For 

simplicity, we assumed there were 4 schools per TAC tutor zone. According to the results 

reported in Table 5 of Juke’s paper (Jukes et al., 2017), the correlation between two spelling 

scores of each child was α0 = 0.445, the correlation between two spelling scores of different 

children from the same school was α1 = 0.104, and the correlation between two spelling 

scores of different children from different schools in the same TAC tutor zone was α2 = 

0.008. The researchers initially expected an effect size of 0.19 standard deviation (SD) for 

spelling scores. Given M = 4, K = 25, L = 2, b = 0.19 φ, and α = (0.445, 0.104, 0.008), 

Equation (8) and (4) suggested that the required number of TAC tutor zones was N = 36 with 

power of 80.87%. Figure 5 shows the sensitivity of power as a function of α1 and α2 at α0 = 
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{0.4, 0.445, 0.5}, assuming N = 36. Predicted power decreases as α0, α1, or α2 increases. In 

Web Appendix L, we also provide illustrative calculations of the required sample size under 

a different effect size, and when randomization is hypothetically carried out in lower levels 

under the HALI trial context. As expected, the required number of TAC tutor zones reduces 

to as few as 8 if randomization is conducted at the children level (level 2).

6 Discussion

In this article, we provide a comprehensive investigation on the sample size and power 

considerations for four-level intervention studies assuming arbitrary link and variance 

functions, when intervention assignment is carried out at any level, with a particular 

focus on CRTs. We develop the extended nested exchangeable correlation structure, which 

is a generalization of the nested exchangeable correlation structure in three-level CRTs 

(Teerenstra et al., 2010) and the simple exchangeable correlation structure commonly used 

in two-level CRTs. That is, the proposed method provides a very general sample size 

formula that could be applied to continuous, binary and count outcomes in designs with 

up to four levels. The results suggest that sample size and power calculations using the 

proposed method are valid under plausible values of the three correlations (α0, α1, α2) for 

studies with 8 or more clusters. In practice, sensitivity analyses of sample size and power 

should be performed by varying correlation values within possible ranges, as demonstrated 

in Section 5. It is worth noting that the combination of the correlation parameters is valid 

only if the resulting correlation matrix is positive definite, which can be checked analytically 

by linear constraints presented in Section 2. Finally, although we have primarily focused 

on four level clustered designs, it is possible to extend our approach to accommodate more 

than four levels. However, this extension depends on a successful generalization of (2) to a 

more complex correlation matrix and the derivation of its analytical inverse. This interesting 

extension, however, is beyond the scope of this article and will be pursued in future work.

In the proposed sample size formula, we assume a balanced design with equal “cluster” 

sizes at each level and assume that the analytic model included only an intercept and a 

binary cluster-level intervention indicator. At the design stage, assuming the true correlation 

is extended nested exchangeable, using the model-based variance and using the sandwich 

variance with an independence working correlation matrix result in the same required 

sample size for the balanced case. At the analysis stage, using the extended nested 

exchangeable working correlation structure and using an independence working correlation 

matrix for GEE analyses result in the same estimators β , BC0, BC1, BC2, AVG, and BC3 

for the balanced case (Theorem 3.10 and Remark 4.1). However, using the extended nested 

exchangeable working correlation structure for GEE analyses can protect the study from 

losing power under unbalanced designs in real-world studies, and allows us to report values 

of correlations to adhere to the CONSORT Statement (Schulz et al., 2010; Campbell et 

al., 2012). For such reasons, we recommend modeling the underlying correlation structures 

and caution the use of independence working correlation matrix for GEE-based design and 

analysis of multi-level CRTs.

We compared using the extended nested exchangeable working correlation structure with 

MAEE and using an independence working correlation matrix for GEE analyses, in our 
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simulation study with t-tests. Under balanced designs, BC1 among 7 variance estimators 

performed best with a near nominal type I error rate and adequate power relative to the 

proposed sample size formula for as few as 8 clusters using either of these two analysis 

methods. Similarly, the use of BC1 with a t-test was recommended for three-level CRTs 

with as few as 10 clusters by Teerenstra et al. (2010) and for stepped wedge CRTs with as 

few as 8 clusters by Li et al. (2018). We showed that based on BC1, using the extended 

nested exchangeable working correlation structure with MAEE, the type I error rate and 

power maintained acceptable levels when there were variable numbers of level-one units per 

level-two unit, while using an independence working correlation matrix could not ensure an 

acceptable type I error rate or power as the CV of numbers of level-one units increased. 

Therefore, under unbalanced designs, the proposed method of sample size calculations can 

also be used with the mean number of level-one units provided, and the GEE t-test with the 

use of BC1 can protect the type I error rate and maintain adequate power for four-level CRTs 

with as few as 8 clusters.

When designing four-level clustered trials in practice, one potential challenge is to identify 

accurate ICC values for the extended nested exchangeable correlation structure. This 

challenge, in fact, is not unique to parallel-arm four-level designs, but also equally applies 

to other CRTs with complex correlation structures (e.g., cluster randomized crossover design 

and stepped wedge design). Ideally, one could conduct a four-level pilot CRT (e.g., Kim 

et al. (2006)) to generate ICC estimates. In general, the study planners should search the 

literature for published ICCs for their outcomes of interest. Depending on the level of 

clustering in the published trials, only certain components of α may be available. In other 

cases, study planners may also consider using historical or routinely collected data from 

clusters to estimate α0, α1, α2 and guide the planning of study. When there is a large 

uncertainty for components of α, we strongly recommend conducting a sensitivity analysis 

by considering a range of values for ICCs in power analysis, as we already demonstrated 

in Section 5. Finally, we wish to note that publishing ICCs has long been advocated; for 

example, see Murray et al. (2004) for a table listing 14 research articles presenting ICCs for 

a variety of endpoints, groups and populations; Preisser et al. (2007) for published ICCs for 

nine binary youth alcohol use measures from the Youth Survey of the Enforcing Underage 

Drinking Laws Program; and Korevaar et al. (2021) for published ICC estimates from the 

CLustered OUtcome Dataset bank to inform the design of longitudinal CRTs for a wide 

range of outcomes. We encourage more such efforts to assist the planning for complex 

multi-level CRTs and to strengthen the connection between the methodological development 

on study design and statistical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An illustration of the RESHAPE trial with 12 municipalities per arm; the outcome of interest 

is whether patients are accurately diagnosed by provider (as determined by psychiatrist 

diagnosis). A motivating design question is: Given 3 health facilities per municipality, 3 

providers per health facilities, and 3 patients per provider, how many municipalities are 

needed for a two-sided test to identify a difference in diagnostic accuracy of 88% vs. 78% at 

90% power given the 5% significance level?
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Figure 2. 
Empirical type I error rates of GEE analyses using (a) the extended nested exchangeable 

working correlation structure with MAEE and (b) an independence working correlation 

matrix, based on BC1: bias-corrected sandwich estimator of Kauermann and Carroll (2001), 

under four-level CRTs.
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Figure 3. 
Difference between the empirical power and the predicted power of GEE analyses using 

(a) the extended nested exchangeable working correlation structure with MAEE and (b) an 

independence working correlation matrix, based on BC1: bias-corrected sandwich estimator 

of Kauermann and Carroll (2001), under four-level CRTs.
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Figure 4. 
Predicted power contours as a function of α1 and α2 at α0 = {0.025, 0.05, 0.1}, with N = 22, 

M = 3, K = 3, L = 36, P0 = 78.5%, P1 = 88% for the RESHAPE trial, under the logit link 

function.
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Figure 5. 
Predicted power contours as a function of α1 and α2 at α0 = {0.4, 0.445, 0.5}, with N = 36, 

M = 4, K = 25, L = 2, b = 0.19 φ for the HALI trial.
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Table 1

Brief summary of existing methods for designing trials with more than two levels.

Reference Design Model
a Outcome Link

Heo and Leon (2008) Three-level CRT GLMM Continuous Identity

Teerenstra et al. (2010) Three-level CRT GEE
Continuous Identity

Binary Logit

Cunningham and Johnson (2016) Three-level Clustered Trial GLMM Continuous Identity

Teerenstra et al. (2019) Four-level stepped-wedge CRT GLMM

Continuous Identity

Binary Identity

Count Identity

Liu and Colditz (2020) Three-level CRT GEE

Continuous Identity

Binary Logit

Count Log

a
GLMM: generalized linear mixed model. GEE: generalized estimating equations.
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Table 2

Simulation scenarios and empirical type I error rates
a
 of GEE/MAEE analyses based on different variance 

estimators, using the extended nested exchangeable working correlation structure under balanced four-level 

CRTs. MB: Model-based variance estimator; BC0: Uncorrected sandwich estimator of Liang and Zeger 

(1986); BC1: Bias-corrected sandwich estimator of Kauermann and Carroll (2001); BC2: Bias-corrected 

sandwich estimator of Mancl and DeRouen (2001); AVG: Bias-corrected sandwich estimator with standard 

error as the average of those from BC1 and BC2; BC3: Bias-corrected sandwich estimator of Fay and 

Graubard (2001); BC4: Bias-corrected sandwich estimator of Morel et al. (2003).

P0 P1 α 
b n m k l MB BC0 BC1 BC2 AVG BC3 BC4

0.2 0.5 A1 14 2 3   5 0.045 0.068 0.047 0.042 0.045 0.045 0.043

0.2 0.5 A1 14 2 3 10 0.046 0.078 0.056 0.041 0.047 0.049 0.046

0.2 0.5 A1 14 2 4   5 0.044 0.069 0.050 0.036 0.044 0.047 0.044

0.2 0.5 A1 12 3 3   5 0.046 0.070 0.049 0.033 0.042 0.038 0.039

0.2 0.5 A2 10 2 3   5 0.033 0.060 0.044 0.024 0.032 0.033 0.029

0.2 0.5 A2 10 2 3 10 0.045 0.077 0.054 0.032 0.041 0.040 0.037

0.2 0.5 A2 10 2 4   5 0.045 0.067 0.048 0.032 0.039 0.043 0.037

0.2 0.5 A2   8 3 3   5 0.036 0.071 0.038 0.021 0.029 0.030 0.028

0.2 0.5 A3   8 2 3   5 0.033 0.051 0.034 0.014 0.021 0.027 0.021

0.2 0.5 A3   8 3 3   5 0.031 0.060 0.030 0.016 0.021 0.023 0.020

0.2 0.5 A4   8 3 3   5 0.032 0.052 0.033 0.014 0.025 0.024 0.024

0.1 0.3 A1 22 2 3   5 0.037 0.070 0.055 0.047 0.048 0.050 0.047

0.1 0.3 A1 20 2 3 10 0.037 0.079 0.068 0.046 0.057 0.059 0.051

0.1 0.3 A1 20 2 4   5 0.039 0.073 0.055 0.045 0.049 0.050 0.046

0.1 0.3 A1 16 3 3   5 0.033 0.073 0.050 0.036 0.043 0.040 0.041

0.1 0.3 A2 16 2 3   5 0.038 0.074 0.055 0.040 0.046 0.047 0.044

0.1 0.3 A2 14 2 3 10 0.041 0.072 0.058 0.040 0.049 0.044 0.042

0.1 0.3 A2 14 2 4   5 0.042 0.076 0.051 0.037 0.047 0.044 0.040

0.1 0.3 A2 12 3 3   5 0.040 0.083 0.056 0.040 0.049 0.048 0.044

0.1 0.3 A3 12 2 3   5 0.042 0.070 0.057 0.041 0.048 0.046 0.045

0.1 0.3 A3 10 3 3   5 0.037 0.059 0.038 0.028 0.029 0.029 0.028

0.1 0.3 A4 10 3 3   5 0.033 0.066 0.042 0.025 0.034 0.032 0.029

0.5 0.7 A1 26 2 4   5 0.063 0.066 0.063 0.049 0.055 0.057 0.054

0.5 0.7 A2 16 3 3   5 0.059 0.065 0.057 0.041 0.049 0.049 0.049

0.5 0.7 A3 12 2 4   5 0.054 0.069 0.054 0.037 0.041 0.040 0.040

0.5 0.7 A4 14 3 3   5 0.048 0.061 0.039 0.033 0.035 0.035 0.034

0.8 0.9 A2 30 3 3   5 0.047 0.053 0.047 0.041 0.044 0.046 0.044

0.8 0.9 A3 22 2 4   5 0.046 0.056 0.047 0.037 0.039 0.039 0.040

0.8 0.9 A4 28 2 4   5 0.051 0.057 0.051 0.037 0.042 0.043 0.041

0.8 0.9 A4 24 3 3   5 0.050 0.056 0.049 0.041 0.046 0.046 0.046

a
Bold text indicates acceptable empirical type I error rate (from 3.6% to 6.4%).

b
A1: α = (0.4, 0.1, 0.03); A2: α = (0.15, 0.08, 0.02); A3: α = (0.1, 0.02, 0.01); A4: α = (0.05, 0.05, 0.02).
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Table 3

Simulation scenarios, predicted power, and empirical power
a
 of GEE/MAEE analyses based on different 

variance estimators, using the extended nested exchangeable working correlation structure under balanced 

four-level CRTs. MB: Model-based variance estimator; BC0: Uncorrected sandwich estimator of Liang and 

Zeger (1986); BC1: Bias-corrected sandwich estimator of Kauermann and Carroll (2001); BC2: Bias-corrected 

sandwich estimator of Mancl and DeRouen (2001); AVG: Bias-corrected sandwich estimator with standard 

error as the average of those from BC1 and BC2; BC3: Bias-corrected sandwich estimator of Fay and 

Graubard (2001); BC4: Bias-corrected sandwich estimator of Morel et al. (2003).

P0 P1 α 
b n m k l Pred

c MB BC0 BC1 BC2 AVG BC3 BC4

0.2 0.5 A1 14 2 3   5 0.817 0.821 0.857 0.822 0.767 0.798 0.795 0.797

0.2 0.5 A1 14 2 3 10 0.845 0.829 0.876 0.833 0.790 0.811 0.806 0.808

0.2 0.5 A1 14 2 4   5 0.866 0.891 0.909 0.884 0.854 0.871 0.869 0.870

0.2 0.5 A1 12 3 3   5 0.857 0.856 0.891 0.851 0.793 0.824 0.821 0.822

0.2 0.5 A2 10 2 3   5 0.808 0.814 0.881 0.811 0.743 0.782 0.776 0.776

0.2 0.5 A2 10 2 3 10 0.870 0.868 0.907 0.863 0.792 0.829 0.827 0.829

0.2 0.5 A2 10 2 4   5 0.852 0.860 0.897 0.853 0.784 0.823 0.820 0.820

0.2 0.5 A2   8 3 3   5 0.800 0.822 0.895 0.823 0.712 0.776 0.772 0.768

0.2 0.5 A3   8 2 3   5 0.851 0.859 0.916 0.848 0.752 0.793 0.794 0.785

0.2 0.5 A3   8 3 3   5 0.936 0.955 0.981 0.950 0.904 0.927 0.930 0.926

0.2 0.5 A4   8 3 3   5 0.892 0.914 0.957 0.907 0.830 0.869 0.865 0.860

0.1 0.3 A1 22 2 3   5 0.829 0.860 0.877 0.854 0.828 0.843 0.838 0.840

0.1 0.3 A1 20 2 3 10 0.818 0.849 0.865 0.841 0.813 0.830 0.827 0.829

0.1 0.3 A1 20 2 4   5 0.841 0.875 0.885 0.857 0.829 0.843 0.839 0.841

0.1 0.3 A1 16 3 3   5 0.805 0.831 0.851 0.817 0.783 0.804 0.803 0.805

0.1 0.3 A2 16 2 3   5 0.844 0.885 0.907 0.875 0.833 0.857 0.852 0.856

0.1 0.3 A2 14 2 3 10 0.849 0.862 0.894 0.854 0.807 0.827 0.826 0.829

0.1 0.3 A2 14 2 4   5 0.829 0.880 0.897 0.869 0.822 0.849 0.841 0.846

0.1 0.3 A2 12 3 3   5 0.826 0.858 0.892 0.844 0.798 0.828 0.825 0.825

0.1 0.3 A3 12 2 3   5 0.873 0.903 0.930 0.892 0.854 0.877 0.874 0.876

0.1 0.3 A3 10 3 3   5 0.898 0.928 0.959 0.916 0.871 0.892 0.890 0.891

0.1 0.3 A4 10 3 3   5 0.837 0.887 0.919 0.878 0.799 0.840 0.829 0.832

0.5 0.7 A1 26 2 4   5 0.823 0.841 0.854 0.838 0.814 0.825 0.825 0.824

0.5 0.7 A2 16 3 3   5 0.831 0.838 0.864 0.831 0.789 0.810 0.813 0.811

0.5 0.7 A3 12 2 4   5 0.827 0.829 0.860 0.825 0.778 0.800 0.806 0.797

0.5 0.7 A4 14 3 3   5 0.868 0.857 0.894 0.861 0.814 0.835 0.835 0.832

0.8 0.9 A2 30 3 3   5 0.804 0.825 0.838 0.818 0.800 0.810 0.810 0.811

0.8 0.9 A3 22 2 4   5 0.804 0.815 0.829 0.810 0.788 0.801 0.805 0.801

0.8 0.9 A4 28 2 4   5 0.824 0.844 0.850 0.839 0.826 0.836 0.837 0.836

0.8 0.9 A4 24 3 3   5 0.813 0.830 0.847 0.823 0.799 0.810 0.811 0.811

a
Bold text indicates acceptable empirical power (differing at most 2.6% from the predicted power).

b
A1: α = (0.4, 0.1, 0.03); A2: α = (0.15, 0.08, 0.02); A3: α = (0.1, 0.02, 0.01); A4: α = (0.05, 0.05, 0.02).
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c
Pred: Predicted power based on t-test.

Biom J. Author manuscript; available in PMC 2023 April 01.


	Abstract
	Introduction
	Generalized estimating equations and finite-sample adjustments
	Power and sample size considerations
	A general sample size expression with randomization at level four
	Randomization at lower levels
	Considerations on using an independence working correlation

	Simulation study
	Balanced designs
	Unbalanced designs

	Applications
	The RESHAPE trial
	The HALI trial

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3

