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The phagosomal solute transporter SLC15A4
promotes inflammasome activity via mTORC1
signaling and autophagy restraint in dendritic cells
Cynthia L�opez-Haber1,2,† , Daniel J Netting3 , Zachary Hutchins3 , Xianghui Ma4 ,

Kathryn E Hamilton4 & Adriana R Mantegazza1,2,*,†

Abstract

Phagocytosis is the necessary first step to sense foreign microbes
or particles and enables activation of innate immune pathways
such as inflammasomes. However, the molecular mechanisms
underlying how phagosomes modulate inflammasome activity are
not fully understood. We show that in murine dendritic cells (DCs),
the lysosomal histidine/peptide solute carrier transporter SLC15A4,
associated with human inflammatory disorders, is recruited to
phagosomes and is required for optimal inflammasome activity
after infectious or sterile stimuli. Dextran sodium sulfate-treated
SLC15A4-deficient mice exhibit decreased colon inflammation,
reduced IL-1b production by intestinal DCs, and increased autop-
hagy. Similarly, SLC15A4-deficient DCs infected with Salmonella
typhimurium show reduced caspase-1 cleavage and IL-1b produc-
tion. This correlates with peripheral NLRC4 inflammasome assem-
bly and increased autophagy. Overexpression of constitutively
active mTORC1 rescues decreased IL-1b levels and caspase1 cleav-
age, and restores perinuclear inflammasome positioning. Our find-
ings support that SLC15A4 couples phagocytosis with
inflammasome perinuclear assembly and inhibition of autophagy
through phagosomal content sensing. Our data also reveal the pre-
viously unappreciated importance of mTORC1 signaling pathways
to promote and sustain inflammasome activity.
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Introduction

Microorganisms or sterile particles captured by phagocytosis are

first sensed by pattern-recognition receptors (PRRs) such as Toll-like

receptors (TLRs), which recognize pathogen- or danger-associated

molecular patterns (PAMPs or DAMPs) and are located at the cell

surface and on phagosomes. Other PRRs localize to the cytosol and

sense pathogen or phagocytosed cargo-derived products that escape

phagosomes. In turn, activation of cytosolic PRRs—such as the

nucleotide-binding domain leucine-rich repeat-containing proteins

(NLRs) —may lead to assembly of a multi-subunit complex known

as the inflammasome, and production of the highly inflammatory

cytokine IL-1b, resulting in escalation of the immune response (Latz

et al, 2013; Christgen & Kanneganti, 2020). Therefore, inflamma-

some activity must be tightly regulated to prevent chronic inflamma-

tion, which may cause excessive tissue damage and lead to disease.

One negative regulator of inflammasomes is autophagy (Shi et al,

2012; Zhong et al, 2016; Brady et al, 2018; Takahama et al, 2018).

We and others have shown that inflammasome components such as

the adaptor apoptosis-associated speck-like protein containing a cas-

pase-recruitment domain (ASC) are targeted for autophagic seques-

tration (Shi et al, 2012; Mantegazza et al, 2017), leading to

inflammasome silencing. However, the molecular mechanisms

underlying the link between phagocytosis, inflammasome activity,

and autophagy are not completely understood (Moretti & Blander,

2014).

Phagosomes in dendritic cells (DCs) mature through a series of

interactions with the endolysosomal system, acquiring increasing

degradative capacity further promoted by phagosomal autonomous

TLR signaling (Blander & Medzhitov, 2006; Hoffmann et al, 2012;

Lopez-Haber et al, 2020). In addition to TLR recognition, phagolyso-

somal nutrient transporters may sense phagosomal degradation

products and link nutrient sensing to the modulation of autophagy

via the activation of mechanistic target of rapamycin complex 1

(mTORC1) kinase signaling on phagolysosomes. mTORC1 senses
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lysosomal homeostasis and links cellular nutrient status to cell

growth through its interactions with the Rag A-D GTPases and their

regulators (Chantranupong et al, 2015; Perera & Zoncu, 2016). In

nutrient-sufficient conditions, Rag complexes recruit mTORC1 to the

lysosomal membrane for activation (Bar-Peled et al, 2012). Con-

versely, nutrient limitation inactivates Rag GTPases and conse-

quently mTORC1. In turn, mTORC1 inactivation stimulates

autophagy by relieving inhibition of autophagy initiation proteins

such as unc-51 like autophagy activating kinase 1 (ULK1) (Hoso-

kawa et al, 2009; Kim et al, 2011) and/or of the master lysosomal/

autophagy gene transcriptional activators (Sardiello et al, 2009;

Martina et al, 2012; Settembre et al, 2012; Raben & Puertollano,

2016). Importantly, dysregulation of nutrient sensing may lead to

disease, as shown by the association of many solute transporters

with human metabolic and inflammatory disorders such as gout,

systemic lupus erythematosus (SLE) and inflammatory bowel

disease (IBD) (Lin et al, 2015; Zhang et al, 2019).

Among phagolysosomal solute carrier (SLC) transporters is the

histidine/peptide transporter SLC15A4. In plasmacytoid DCs (pDCs)

and B cells—in which this transporter has been extensively studied

—SLC15A4 is required for optimal endosomal TLR7/9 signaling and

subsequent type I interferon and antibody production (Blasius et al,

2010; Sasai et al, 2010; Kobayashi et al, 2021a). In line with this,

SLC15A4 is associated with SLE and IBD in genome-wide associa-

tion studies (Sasawatari et al, 2011; Baccala et al, 2013; Kobayashi

et al, 2014, 2021a; Heinz et al, 2020). Moreover, increased SLC15A4

mRNA levels were detected in colon samples from a cohort of IBD

patients (Lee et al, 2009). Interestingly, in conventional DCs—in

which SLC15A4 has been much less studied—it allows bacterially

derived peptidoglycan egress from endosomes to promote pro-

inflammatory signaling through the cytosolic sensors nucleotide-

binding oligomerization domain 1/2 (NOD1/2) (Nakamura et al,

2014), also associated with IBD (Hugot et al, 2001; Sasawatari et al,

2011). However, the potential role of SLC15A4 in inflammasome

activity has not been explored. Of note, SLC15A4 bears a di-leucine

motif recognized by the endolysosomal adaptor protein-3 (AP-3),

which promotes cargo sorting to lysosomes and lysosome-related

organelles (Blasius et al, 2010; Rimann et al, 2022). Our previous

studies demonstrated that AP-3 is required for optimal phagosomal

TLR signaling in DCs and promotes inflammasome priming (Man-

tegazza et al, 2012, 2014, 2017; Lopez-Haber et al, 2020). In addi-

tion, AP-3 indirectly regulates NLRC4 inflammasome positioning to

the perinuclear region to prevent autophagic sequestration and lim-

its autophagy to sustain inflammation and control bacterial infection

(Mantegazza et al, 2017). We hypothesized that the phenotype

associated with AP-3 deficiency might be partly attributed to its

putative cargo SLC15A4. We now show that SLC15A4 is a novel link

between phagocytosis and inflammasome activation by coupling

phagosomal content sensing to mTORC1 signaling. We demonstrate

that SLC15A4 promotes inflammasome activity after Salmonella

enterica serovar Typhimurium (STm) infection or sterile particle

stimulation by restraining autophagy both in vitro and in an in vivo

model of dextran sodium sulfate (DSS)-induced colitis. Additionally,

our data unravel a heretofore unappreciated role for SLC15A4 and

mTORC1 in sustaining NLRC4 inflammasome activity by ensuring

proper complex assembly at the perinuclear region and limiting

autophagy.

Results

SLC15A4 promotes inflammasome activity by inhibiting
autophagy after phagocytosis in DCs, but not macrophages

We previously showed that AP-3 is required for optimal phagosomal

maturation and formation of phagosomal tubules upon phagocytosis

in DCs, which is dependent on the recruitment of lipid kinase

phosphatidylinositol-4-kinase-2alpha to phagosomes (Mantegazza

et al, 2014; Lopez-Haber et al, 2020). We also showed that AP-3

indirectly sustains NLRP3 and NLRC4 inflammasome activity

induced by phagosomal stimuli (Mantegazza et al, 2017). We pro-

pose that this function is likely due to AP-3-dependent recruitment

of other unknown cargo to phagosomes. Given that SLC15A4 may

bind AP-3 (Blasius et al, 2010; Rimann et al, 2022), we first investi-

gated the recruitment of SLC15A4 to DC phagosomes after phagocy-

tosis of polystyrene beads coated with bacterial lipopolysaccharide

(LPS) and Texas red (TxR)-conjugated ovalbumin (OVA), as well as

STm. We observed that SLC15A4-GFP is indeed recruited to phago-

somes and phagosomal tubules after LPS/OVA bead phagocytosis in

wild-type (WT) bone marrow-derived DCs (BMDCs) and in the DC

line DC2.4 (Figs 1A and EV1A and B; Movies EV1 and EV2), as well

as to STm-containing phagosomes (Fig 1B).

We then investigated whether SLC15A4 could regulate inflamma-

some activity after phagocytosis. To test this, we knocked down

SLC15A4 in BMDCs using three different shRNA sequences. Knock-

down efficiency was between 50 and 80%, as assessed by quantita-

tive real-time PCR (Fig EV2A). SLC15A4 knockdown (KD) did not

affect DC differentiation compared to shRNA non-target control-

▸Figure 1. SLC15A4 promotes inflammasome activity by inhibiting autophagy.

A–J WT BMDCs transduced with retrovirus encoding SLC15A4-GFP (A, B), or lentiviruses encoding non-target (ctrl) or any of three SLC15A4-specific shRNAs (C, D) or WT
or SLC15A4feeble BMDCs (E–J) were treated with LPS/OVA-TxR polystyrene beads (A) or STm-mcherry (B), unstimulated or infected with flagellin-expressing STm (C, E-
J) or primed for 3 h with LPS and stimulated with alum or MSU (D). (A, B). Cells were analyzed by live-cell imaging 2 h after the pulse (A) or 1 h after infection (B).
Representative images. Differential interference contrast (DIC) image shows cell shape and outline. Arrowheads, phagosomes; arrows, phagosomal tubules. Scale
bars, 6 lm. (C–J). Cell supernatants collected 2 h (C, J) or 4 h (D) after treatment were assayed for IL-1b by ELISA. (C, D, J). Representative plots of three independent
experiments. (E–I). Cell pellets collected at the indicated time points after STm infection were lysed, fractionated by SDS–PAGE and immunoblotted for caspase-1 (E,
F), GSDMD or LC-3 (G–I). (E, G). Representative immunoblots showing pro-caspase-1 (pro-casp.-1) and cleaved p20 (casp.-1 p20) bands (E) or GSDMD full length
(GSDMD FL), cleaved GSDMD N-terminal fragment (GSDMD N-ter), LC3-II and LC3-I bands in cell lysates (G). (F, H, I) Quantification of band intensities for caspase-1
p20 normalized to pro-caspase-1 and actin (E), GSDMD N-ter normalized to actin (G) and LC3-II normalized to LC3-I and actin (H) from three independent experi-
ments are shown as fold change (F, H) or fold induction (I) relative to time 0.

Data information: Data represent mean � SD. *P < 0.05; **P < 0.01; ***P < 0.001. Two-tailed Student’s t-test. See also Figs EV1–EV3.
Source data are available online for this figure.
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treated DCs (Fig EV2D). We then treated BMDCs with flagellin-

expressing STm—to induce NLRC4 activation (Wynosky-Dolfi et al,

2014; Mantegazza et al, 2017)—and measured IL-1b secretion as a

read-out for inflammasome activity by ELISA. IL-1b secretion was

reduced by 50% in SLC15A4 KD DCs relative to shRNA control-

treated DCs (Fig 1C). Similar results were observed when DCs were

primed with LPS and subsequently stimulated with alum or mono-

sodium urate crystals (MSU) to activate the NLRP3 inflammasome

A

C

E F

G H

I J

D

B

Figure 1.
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(Fig 1D). Conversely, secretion of IL-6 after LPS treatment was not

affected by SLC15A4 KD, suggesting that SLC15A4 does not play a

role in the priming step of the inflammasome pathway (Fig EV2B).

This agrees with previous observations indicating that SLC15A4

does not affect TLR signaling in conventional DCs (Blasius et al,

2010). To confirm our observations on SLC15A4 KD DCs, we differ-

entiated DCs from WT and SLC15A4feeble mice. The feeble mutation

results in abnormal splicing of the Slc15a4 gene resulting in the tran-

scription of two aberrant products and the absence of functional

protein expression (Blasius et al, 2010). SLC15A4feeble BMDCs differ-

entiated and matured similarly in response to LPS compared to

BMDCs (Fig EV2E and F). In agreement with our observations in

SLC15A4 KD DCs, after STm stimulation, IL-1b secretion was

reduced by more than 50% in SLC15A4feeble DCs compared to WT

DCs (Fig 1J). Consistent with the decreased IL-1b secretion, caspase

1 and its substrate gasdermin-D (GSDMD) cleavage were also

reduced in SLC15A4feeble DCs between 60 and 120 min after STm

stimulation (Fig 1E–H). In contrast, stimulation of NLRC4 or NLRP3

inflammasomes with soluble stimuli—STm type III secretion system

inner rod protein fused to the N-terminal domain of anthrax lethal

factor and co-administered with the protective antigen channel pro-

tein for cytosol delivery (Rod-Tox) (Rauch et al, 2016; Reyes Ruiz

et al, 2017), or Listeria monocytogenes pore-forming listeriolysin O

toxin (LLO)(Franchi et al, 2012), respectively—led to comparable

levels of IL-1b production between WT and SLC15A4feeble DCs

(Fig EV2C). Similarly, stimulation of absent in melanoma 2 (AIM2)

inflammasome with double-stranded DNA [poly(dA:dT)] (Rathinam

et al, 2010) delivered to the cytosol by lipid complexes was indepen-

dent of SLC15A4 (Fig EV2C). These observations indicate that

SLC15A4 does not play a role in inflammasome activation upon

plasma membrane damage or breaching, in agreement with its local-

ization to lysosomes and phagosomes. Overall, our observations

suggest that SLC15A4 is required for optimal inflammasome activity

triggered by particulate stimuli.

We previously showed that STm infection induces autophagy in

BMDCs and that the absence of AP-3 increases autophagy induc-

tion (Mantegazza et al, 2017). However, the mechanism by which

AP-3 modulates autophagy remains unknown. Considering the link

between SLC15A4 and mTORC1—a known autophagy regulator

(Martina et al, 2012; Settembre et al, 2012) —observed in other

cell types (Kobayashi et al, 2014), we hypothesized that SLC15A4

might be required for optimal inflammasome activity in DCs by

limiting autophagy. We detected induction of the lipidated form of

the microtubule-associated protein 1 light chain 3 a (LC3-II) rela-

tive to the unlipidated LC3-I (indicative of autophagy induction

(Klionsky et al, 2021)), in cell lysates over time after STm stimula-

tion in WT DCs (Fig 1G and I). Importantly, LC3-II was signifi-

cantly increased in SLC15A4feeble DCs between 15 and 120 min

after STm stimulation compared to WT DCs (Fig 1G and I).

Notably, increased LC3-II/LC3-I ratio in SLC15A4feeble DCs per-

sisted after treatment with chloroquine, an alkalinizing agent that

blocks autophagic flux by preventing autophagosome content

degradation (Klionsky et al, 2021) (Fig EV1C and D), suggesting

that the increase in LC3-II/LC3-I ratio reflected increased autop-

hagy induction rather than decreased autophagosome clearance.

These observations suggest that SLC15A4 promotes NLRC4 inflam-

masome activity by inhibiting autophagy induction after STm stim-

ulation.

Furthermore, DC stimulation with mutant STm lacking flagellin

(DfliCDfljB) or STm grown to stationary phase to downregulate flag-

ellin expression [STm (�fla)] —conditions that prevent NLRC4 acti-

vation (Wynosky-Dolfi et al, 2014) —leads to similar induction of

cell death [measured by lactate dehydrogenase (LDH) release;

Fig EV3A]. Given that contrary to flagellin-expressing STm, STm

DfliCDfljB or STm (�fla) induce an NLRC4-independent, caspase-

11-dependent delayed type of cell death (Kayagaki et al, 2011; Broz

et al, 2012; Ross et al, 2018), our results suggest that SLC15A4 is

not required for caspase-11-dependent non-canonical inflammasome

activity. Concordantly, caspase-11 and its substrate GSDMD cleav-

age were not impaired in SLC15A4feeble DCs (Fig EV3B and C). Inter-

estingly, neither STm DfliCDfljB nor STm (�fla) induced autophagy

significantly, measured by LC3-II induction (Fig EV3B and D), in

contrast to flagellin-expressing STm (Fig 1G and I). These observa-

tions may explain at least partly the lack of a SLC15A4 requirement

in non-canonical inflammasome function.

SLC15A4 is also expressed in macrophages (MΦs), where it pro-

motes metabolic reprogramming upon stress (Kobayashi et al,

2021b). Given the differential phagolysosomal properties in terms of

acidification, PRR signaling and inflammasome regulation between

DCs and MΦs (Lukacs et al, 1991; Savina et al, 2006; Mantegazza

et al, 2008, 2017; Yates & Russell, 2008; Zanoni et al, 2017), we

investigated whether SLC15A4 could also play a role in inflamma-

some modulation in bone marrow-derived MΦs (BMMΦs) upon

stimulation with flagellin-expressing STm. In contrast to our obser-

vations in BMDCs, neither IL-1b production nor caspase-1 or

GSDMD cleavage was impaired by the absence of SLC15A4

(Fig EV3E and F). This is in agreement with our previous finding

that the regulation of inflammasome activity upon particulate stim-

uli in BMMΦs is not dependent on AP-3 (Mantegazza et al, 2017).

Remarkably, LC3-II/LC3-I ratio is higher in WT BMMΦs compared

to WT BMDCs 15 m after STm stimulation (Figs 1I and EV3G), simi-

larly to what we previously showed upon alum stimulation (Man-

tegazza et al, 2017). These observations suggest that the role of

SLC15A4 in the modulation of autophagy and inflammasome activ-

ity is cell-type specific and may also be ligand-dependent.

SLC15A4feeble mice show faster recovery from acute dextran
sodium sulfate-induced colitis in mice

SLC15A4 expression was shown to be pro-colitogenic in a mouse

model of mild chronic DSS-induced colitis due to its role in promot-

ing TLR9 and NOD signaling (Sasawatari et al, 2011). However, the

role played by SLC15A4 in inflammasome activity and the produc-

tion of IL-1b in DCs have not been investigated. To test whether

SLC15A4 regulates inflammasome activity in vivo, we employed a

model of acute DSS-induced colitis. This model is proposed to cause

intestinal injury associated with NLRP3 inflammasome activation

and IL-1b production (Bauer et al, 2010). WT and SLC15A4feeble

mice received either water (na€ıve mice) or 2.5% DSS in drinking

water for 5 days, followed by water for 10 more days to allow

recovery. Weight loss and stool appearance, consistency, and pres-

ence of blood were monitored daily after DSS administration. WT

and SLC15A4feeble mice showed a similar trend of body weight loss

during the first 8 days after DSS administration—with an average of

15% and 13% body weight loss on day 7, respectively. However,

after this time, SLC15A4feeble mice recovered body weight
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significantly more efficiently than WT mice. Remarkably, on day

16 (endpoint), SLC15A4feeble mice completely recovered their ini-

tial body weight, while WT mice’s body weight remained signifi-

cantly lower—0% and 10% of body weight loss, respectively

(Fig 2A). Even though the percent of body weight loss was simi-

lar on day 8, the blood stool index was significantly different

between WT and SLC15A4feeble mice. Whereas most WT mice

exhibited very soft stool consistency and visible traces of stool

blood (score 2), most SLC15A4feeble mice showed soft but formed

stool consistency and positive hemoccult tests without visible

traces of blood (score 1) (Fig 2B, left). On day 16, consistent with

the faster recovery observed in body weight in SLC15A4feeble

mice, most of these mice exhibited normal stool appearance and

negative hemoccult tests (score 0), whereas most WT mice

remained showing higher blood stool index scores at the same

time point (Fig 2B, right).

Decreased colon length has been associated with increased

inflammation (Chassaing et al, 2014). In agreement with this obser-

vation and with our previous results on day 16, while most DSS-

treated SLC15A4feeble mice showed similar colon length compared to

water-treated mice (mean = 7.8 cm), all WT mice showed signifi-

cantly reduced colon length compared to water-treated mice and

DSS-treated SLC15A4feeble mice (mean = 6.2 cm) (Fig 2C), suggest-

ing that colon inflammation is reduced in the absence of SLC15A4.

Consistent with these observations, histopathological evaluation of

swiss roll samples prepared from mouse colon on day 16, revealed

significant differences between WT and SLC15A4feeble mice (Fig 2D).

WT mouse samples displayed in most cases moderate to severe

inflammation characterized by focally extensive ulceration of the

mucosa with segmental involvement of the deep lamina propria and

multifocal extension into the submucosa, while SLC15A4feeble mouse

samples showed mostly mild to moderate inflammation with mod-

est infiltrate of mononuclear cells (Fig 2D, right). Accordingly, the

inflammation score index—comprising mucosal/crypt loss, crypt

inflammation, and inflammatory infiltrate—was remarkably

higher in WT samples (mean = 11) compared to SLC15A4feeble

samples (mean = 6) (Fig 2D, left). These results show that the

absence of SLC15A4 promotes faster recovery from acute DSS-

induced colitis.

Given our observations that SLC15A4 favors IL-1b production in

BMDCs by restraining autophagy, we assessed the contribution of

intestinal DCs to the DSS-induced process. On day 16, DCs from WT

and SLC15A4feeble mice were isolated from colon. The percent of

CD103+/CD11c+ DCs was similar between WT and SLC15A4feeble

mice (Fig EV2G). Isolated DCs were then cultured overnight without

further stimulation. Remarkably, IL-1b secretion was significantly

higher in the cell culture supernatants from WT DCs relative to

SLC15A4feeble DCs as measured by ELISA (Fig 3A). In agreement

with our in vitro results, cell lysates from isolated intestinal DCs

showed increased LC3-II induction in SLC15A4feeble DCs compared

to WT DCs (Fig 3B), suggesting that increased autophagy is limiting

IL-1b production in colonic DCs in vivo.

SLC15A4 promotes inflammasome perinuclear positioning away
from autophagic membranes

We and others showed that autophagy negatively regulates inflam-

masome activity and that the adaptor ASC aggregates or “specks”

formed after inflammasome assembly appear to be at least partly

sequestered by autophagic membranes, as measured by fluores-

cence microscopy and flow cytometry upon differential permeabi-

lization (Shi et al, 2012; Mantegazza et al, 2017). To assess

inflammasome assembly and ASC speck positioning, we transduced

WT and SLC15A4feeble DCs with the retroviral constructs ASC-GFP

and mcherry-LC3 or probed endogenous ASC specks together with

the autophagic adaptor p62/SQTM1 (p62), which links ubiquity-

lated substrates to LC3 (Clausen et al, 2010). ASC speck formation

was monitored by fluorescence microscopy and flow cytometry.

Neither the percentage of ASC-GFP speck-positive DCs nor the

kinetics of ASC-GFP speck formation after STm infection differed

appreciably between WT and SLC15A4feeble DCs as assessed by

flow cytometry by analyzing GFP-width and GFP-height parameters

as previously described (Sester et al, 2015; Hoss et al, 2018)

(Fig EV4A–C).

On the contrary, ASC-GFP specks in SLC15A4feeble DCs were

increasingly surrounded by LC3-II puncta (within a radius of 1 lm),

compared to WT DCs as observed by fluorescence microscopy

30 min after STm stimulation (Fig 4A and B). Similarly, endogenous

ASC specks in SLC15A4feeble DCs were also significantly more

surrounded by p62 puncta at the same time point (Fig 4C). Addi-

tionally, ASC speck formation was visualized mostly in the perinu-

clear region (within a radius of 3 lm), in WT DCs (70 � 10% of

cells), while intriguingly, in most of SLC15A4feeble DCs it was

detected away from the nucleus (26 � 9% of cells in perinuclear

region; Fig 4A, C, and D). This behavior resembles our previous

observations in AP-3-deficient DCs, in which ASC specks appear

▸Figure 2. SLC15A4feeble mice show faster recovery from acute dextran sodium sulfate-induced colitis in mice.

WT and SLC15A4feeble mice were given 2.5% DSS in drinking water for 5 days followed by normal drinking water for 10 more days or water only (na€ıve).
A Mice in three independent experiments were weighed daily. Percent of body weight loss overtime is represented relative to day 1.
B Stool consistency and presence of blood were assessed. Blood stool index on days 8 (left panel) and 16 (right panel) was determined using the following score: 0,

normal feces, negative hemoccult; 1, soft but formed feces, positive hemoccult; 2, very soft feces, visible traces of stool blood; 3, diarrhea, rectal bleeding. Data from
three independent experiments are shown.

C Left panel. Colon length was measured on day 16. Data from three independent experiments are shown. Right panel. Representative image of three independent
experiments.

D Colon swiss roll samples were formalin-fixed, paraffin embedded, stained, and scored blinded by expert pathologist. Left panel. Inflammation score on day 16. Data
from three independent experiments are shown. Right panels. Representative haematoxylin and eosin stained, formalin-fixed paraffin embedded samples. Note dis-
rupted crypt architecture (arrows) and inflammatory infiltrate (arrowheads) in DSS-treated WT samples. Scale bar, 300 lm.

Data information: Data represent mean � SD in panel A. Mean is indicated in panels B, C, and D. **P < 0.01; ***P < 0.001; Mann–Whitney non-parametric statistical
test.
Source data are available online for this figure.
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away from the nucleus and surrounded by autophagic membranes

(Mantegazza et al, 2017).

ASC speck positioning in SLC15A4feeble DCs shifted from periph-

eral to perinuclear in cells transduced with human SLC15A4-GFP

(Fig 4E and F). This correlated with increased inflammasome activ-

ity as evidenced by augmented caspase-1 cleavage in SLC15A4feeble

DCs expressing human SLC15A4-GFP compared to non-transduced

counterparts (Fig 4G).

Altogether, these observations suggest that the kinetics of inflam-

masome formation is not affected by SLC15A4. However, the site of

inflammasome assembly, inflammasome activity, and its targeting

by autophagy are regulated by SLC15A4.

Constitutive mTORC1 signaling restores inflammasome activity
and positioning in SLC15A4feeble DCs

SLC15A4 was shown to regulate mTORC1 signaling in B cells and

mast cells (Kobayashi et al, 2014, 2017). Given that mTORC1 activa-

tion inhibits autophagy (Martina et al, 2012; Settembre et al, 2012),

we investigated whether mTORC1 signaling was dysregulated in

SLC15A4feeble DCs in our model of in vitro STm infection, in which

SLC15A4 restrains autophagy (Fig 1G and I). WT and SLC15A4feeble

DCs non-transduced or transduced with the control construct

methionine aminopeptidase 2 (metap2; Gu et al, 2017) or GTP-

bound RagBQ99L—which lacks GTPase activity and renders mTORC1

A B

Figure 3. SLC15A4feeble intestinal CD11c+ DCs show reduced IL-1b secretion and increased autophagy.

Intestinal CD11c+ DCs were isolated from colons of WT and SLC15A4feeble mice on day 16 and cultured overnight.
A IL-1b was measured from culture supernatants by ELISA in three independent experiments.
B Cell pellets from three independent experiments were immunoblotted for LC3 and actin. Upper panel. Representative immunoblot. Lower panel. Quantification of band

intensities for LC3-II normalized to LC3-I and actin are shown as fold induction relative to samples from untreated mice. Note that LC3-I signal from ex vivo samples
is almost undetectable.

Data information: Mean is indicated. **P < 0.01. Mann–Whitney non-parametric statistical test. See also Fig EV2G.
Source data are available online for this figure.

▸Figure 4. SLC15A4 promotes inflammasome perinuclear positioning away from autophagic membranes.

A–G WT or SLC15A4feeble BMDCs expressing ASC-GFP and mCherry-LC3 (A, B, D) or non-transduced (C) or SLC15A4feeble BMDCs transduced with SLC15A4-GFP (E, F, G)
were infected with flagellin-expressing STm and fixed (A–F) or lysed (G) 1 h after infection. (A) Cells were analyzed by fluorescence microscopy. Representative
images showing ASC speck (green) relative to mCherry-LC3 (red) in two infected WT and SLC15A4feeble DCs each. (B) Quantification of LC3 fluorescence per unit area
in a radius of 1 lm surrounding the ASC speck in 20 cells per cell type in each of three independent experiments. (C) Cells were stained for endogenous ASC and
p62, labeled with DAPI and analyzed by fluorescence microscopy. Representative images showing ASC speck (red) relative to p62 (green) in two infected WT and
SLC15A4feeble DCs each. Note p62 staining surrounding ASC specks in SLC15A4feeble DCs. (D) Quantification of perinuclear (within a radius of 3 lm from the nucleus)
ASC specks in at least 30 cells per cell type in each of three independent experiments. (E, F) Cells were stained for endogenous ASC, labeled with DAPI and analyzed
by fluorescence microscopy. Representative images showing ASC speck (red) and SLC15A4-GFP (green) in SLC15A4feeble DCs together with non-transduced
SLC15A4feeble DCs. Note the perinuclear positioning of ASC specks in the transduced cells (E). Quantification of perinuclear (within a radius of 3 lm from the
nucleus) and non-perinuclear ASC specks in at least 30 cells per cell type in each of three independent experiments (F). (G) Representative immunoblots showing
pro-caspase-1 (pro-casp.-1) and cleaved p20 (casp.-1 p20), LC3-II and LC3-I, and actin bands. N, nucleus. Dotted white lines, cell outlines. Corresponding DIC images
show nuclear position. Scale bar, 8 lm.

Data information: Data represent mean � SD. **P < 0.01. Two-tailed Student’s t-test. See also Fig EV4.
Source data are available online for this figure.
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constitutively active (Bar-Peled et al, 2012)—were infected with

STm for 1 h and assayed for mTORC1 activity. We observed ~50%

reduced phosphorylation of mTOR on Ser 2481—the autophospho-

rylation site associated with mTORC1 catalytic activity (Kobayashi

et al, 2014) —together with similar impaired phosphorylation of

mTORC1 downstream substrates ULK1—required for autophagy ini-

tiation (Hosokawa et al, 2009)—, p70S6 kinase, and S6 ribosomal

protein, in infected SLC15A4feeble DCs compared to their WT coun-

terparts (Fig 5A and B; non-transduced and control lanes, and

Fig EV5A). Reduced phosphorylation in SLC15A4feeble DCs was res-

cued when DCs were transduced with GTP-bound RagBQ99L (Fig 5A

and B). Similar results were obtained after cell starvation in Earle’s

balanced salt solution (EBSS), which lacks essential amino acids

(Sharifi et al, 2015) (Fig EV5B). Notably, reduced IL-1b production

together with decreased caspase-1 and GSDMD cleavage in STm

infected SLC15A4feeble DCs were also rescued by overexpression of

RagBQ99L (Fig 5C–E). Conversely, inhibition of mTOR signaling in

WT BMDCs using torin, reduced IL-1b production to the levels

detected in SLC15A4feeble DCs (Fig EV5C). These observations sug-

gest that SLC15A4 positively regulates mTORC1 signaling in DCs,

keeping autophagy at bay to promote inflammasome activity after

STm infection. In agreement with this, knockdown of autophagy

proteins ATG5 or ATG7 in WT and SLC15A4feeble DCs increased

inflammasome activity measured by IL-1b production and caspase-1

and GSDMD cleavage, and rescued defective inflammasome activity

in SLC15A4feeble DCs (Fig 5F and G).

Remarkably, overexpression of RagBQ99L, but not metap2 (con-

trol), in SLC15A4feeble DCs induced ASC speck formation in the per-

inuclear region after NLRC4 stimulation (Fig 5H and I), a location

that appears to be protected from autophagic membranes (Fig 4A–

D), and our previous reports (Mantegazza et al, 2017). In line with

this observation, WT BMDCs treated with torin showed ASC speck

formation away from the nucleus, similar to SLC15A4feeble DCs

(Fig EV5D). Altogether, our data indicate that mTORC1 signaling

ensures optimal IL-1b secretion by limiting autophagy and promot-

ing the assembly of the NLRC4 inflammasome at the perinuclear

region where it appears excluded from autophagic membranes.

Discussion

The molecular mechanisms underlying the regulation of inflamma-

some activity by phagosomal signaling are not completely

elucidated (Moretti & Blander, 2014), nor are the pathways that

bring together the processes of phagocytosis, autophagy, and down-

modulation of inflammasomes. Autophagy has been increasingly

recognized as an anti-inflammatory process (Shi et al, 2012; Zhong

et al, 2016; Deretic & Levine, 2018). However, the molecular players

that prompt autophagy after phagocytosis are only beginning to be

unraveled. PRR stimulation by PAMPs/DAMPs on phagosomes is

one mechanism proposed to trigger lysosomal and autophagy path-

ways by promoting expression of the coordinated lysosomal expres-

sion and regulation gene network (Gray et al, 2016; Pastore et al,

2016). However, PRR stimulation also promotes inflammasome

priming (Latz et al, 2013), leading to a pro-inflammatory response.

Therefore, pro- and anti-inflammatory forces triggered after phago-

cytosis must be finely tuned according to the nature of the phago-

cytic cargo.

Here we show that the lysosomal histidine/peptide transporter

SLC15A4 is recruited to phagosomes and phagosomal tubules in DCs,

as also observed for some PRRs (Blander, 2007; Mantegazza et al,

2012), and promotes inflammasome activity. An extensive recruit-

ment surface may be required to ensure proper ligand or nutrient

sensing and consequent cytosolic signaling, as observed in lysosomes

(Nakamura et al, 2014). The role played by SLC15A4 in promoting

type I interferon production and TLR9 signaling in pDCs and B cells

has been extensively studied and supports the importance of this

transporter in the pathogenesis of inflammatory disorders, including

IBD (Blasius et al, 2010; Sasawatari et al, 2011; Baccala et al, 2013;

Kobayashi et al, 2014, 2017, 2021a,b). However, the contribution of

SLC15A4 to conventional DC function has been less studied (Naka-

mura et al, 2014). We now describe a previously unappreciated

mechanism explaining the pro-inflammatory role of SLC15A4 in vitro

and in an in vivo model of DSS-induced colitis. Even though we do

not rule out the contribution of other cell types to colon inflamma-

tion, we show that SLC15A4 promotes inflammasome activity and

supports IL-1b production in conventional intestinal DCs by restrain-

ing autophagy, a process that genome-wide association studies have

correlated with IBD (Larabi et al, 2020).

We demonstrate that SLC15A4 promotes inflammasome activity

triggered by particulate sterile and infectious stimuli—but not by

ligands directly delivered into the cytosol through the plasma

membrane—in BMDCs, but not BMMΦs. The absence of SLC15A4

in DCs led to decreased caspase-1 and GSDMD cleavage and

decreased IL-1b production, which correlated with increased autop-

hagy induction. In contrast, inflammasome activity and autophagy

◀ Figure 5. Constitutive mTORC1 signaling restores inflammasome activity and positioning in SLC15A4feeble DCs.

A–I WT or SLC15A4feeble BMDCs transduced with constitutively active RagB (RagBQ99L) or metap2 (control) (A–E, H, I) and mcherry-LC3 (H, I), or non-target control, ATG5
or ATG7 shRNAs (F, G), were unstimulated or infected with flagellin-expressing STm. (A, B). Cell pellets collected 1 h after STm infection were lysed, fractionated by
SDS–PAGE, and immunoblotted for phospho (P) and total mTOR, ULK1 kinase, p70 kinase and S6, FLAG and actin. Representative immunoblots. Non-specific band
right above FLAG-RagBQ99L is indicated with an asterisk (A). Quantification of band intensities for P-mTOR normalized to total mTOR, P-ULK1 normalized to total
ULK1, P-p70 normalized to total p70, and P-S6 normalized to S6, in transduced cells from three independent experiments are shown as fold change relative to WT
control (B). (C, D, F). Cell supernatants collected 1 h after infection were assayed for IL-1b by ELISA. (C, F). Representative plots of three independent experiments. D.
IL-1b values of transduced SLC15A4feeble BMDCs from three independent experiments are shown as percent of WT DC values to represent rescue of the defective
phenotype. (E, G). Cell pellets collected 1 h after STm infection were probed for caspase-1, GSDMD, actin (E, G), ATG5, and ATG 7 (G). Representative immunoblots
showing pro-caspase-1 (pro-casp.-1) and cleaved p20 (casp.-1 p20), GSDMD full length (GSDMD FL) and cleaved GSDMD N-terminal fragment (GSDMD N-ter) bands.
(H, I). Cells were stained for endogenous ASC, labeled with DAPI, and analyzed by fluorescence microscopy. Representative images showing ASC speck (green) and
LC3 (red) in SLC15A4feeble DCs (H). Quantification of perinuclear (within a radius of 3 lm from the nucleus) in at least 30 cells per cell type in each of three indepen-
dent experiments (I). N, nucleus. Corresponding DIC images show nuclear position. Scale bar, 8 lm.

Data information: Data represent mean � SD. **P < 0.01; ***P < 0.001. Two-tailed Student’s t-test. See also Fig EV5.
Source data are available online for this figure.
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in BMMΦs do not appear to be regulated by SLC15A4. We speculate

that intrinsic differences in phagosomal properties such as increased

vacuolar H+ ATPase activity, a known autophagy stimulator (Zoncu

et al, 2011a; Chung et al, 2019), in MΦs compared to DCs (Lukacs

et al, 1991; Mantegazza et al, 2008), may hinder the effect of

SLC15A4 in BMMΦ phagosomes. Regarding the lack of a SLC15A4

requirement for the regulation of inflammasomes triggered by sol-

uble toxins or ligands delivered to the cytosol by lipid complexes,

this resembles our previous observations on the role of the lysoso-

mal adaptor AP-3—which recognizes a dileucine motif on SLC15A4

for phagolysosomal targeting. One plausible explanation is that the

plasma membrane is not on the AP-3/ SLC15A4 trafficking route

(Peden et al, 2004; Rimann et al, 2022). Alternatively, differences in

inflammasome regulation may be ligand-dependent, and associated

with the differential triggering of regulatory responses, such as autop-

hagy. In this regard, DC stimulation with mutant STm or STm grown

in conditions that prevent NLRC4 stimulation to favor caspase-11-

dependent non-canonical inflammasome activity (Kayagaki et al,

2011; Broz et al, 2012; Wynosky-Dolfi et al, 2014; Ross et al, 2018)

did not induce autophagy appreciably. In this context, SLC15A4 was

not required for inflammasome function, suggesting that the role

played by SLC15A4 in autophagy regulation may also be dictated by

the nature of the phagocytic cargo. Similar cell-intrinsic and ligand-

dependent responses were observed upon inflammasome stimulation

for the secretion of IL-1b from hyperactive living DCs, in both mouse

and human cells (Chen et al, 2014; Zanoni et al, 2016; Hatscher et al,

2021). Whether autophagic pathways and/or SLC15A4 modulate DC

hyperactivation remains to be addressed.

How does SLC15A4 inhibit autophagy upon STm stimulation in

DCs? We hypothesized that autophagy inhibition was dependent on

mTORC1, the master regulator of cell growth, which inhibits autop-

hagy in nutrient-sufficient conditions (Zoncu et al, 2011b). We spec-

ulated that loss of histidine sensing caused by the absence of

SLC15A4 would repress mTORC1 activation and trigger autophagy,

similarly to the lysosomal arginine transporter SLC38A9 (Wang

et al, 2015; Rebsamen & Superti-Furga, 2016). In agreement with

this, phosphorylation of mTOR and downstream effectors, including

ULK1, was impaired in the absence of SLC15A4. Notably, decreased

inflammasome activity in SLC15A4feeble DCs was restored by the

expression of constitutively active Rag B, which keeps mTORC1

active and is therefore predicted to inhibit autophagy. In line with

this, knockdown of autophagy proteins ATG5 or ATG7 also restored

defective inflammasome activity in SLC15A4feeble DCs. Conversely,

inhibiting mTORC1 decreased inflammasome activity in WT cells.

Recent studies show that the Ragulator-Rag-mTORC1 axis is

required for GSDMD oligomerization—post-cleavage—via ROS pro-

duction (Evavold et al, 2021). Of note, these studies focus on late

inflammasome events. Our observations, on the other hand, unravel

a novel role for Rag B and mTORC1 in the regulation of inflamma-

some activity in the initial steps of inflammasome activation.

Inflammasome activity is also suggested to depend on the site of

inflammasome assembly (Martin et al, 2014; Magupalli et al, 2020).

We previously observed that NLRC4 inflammasome formation at the

perinuclear region appears to protect specks from sequestration by

autophagic membranes (Mantegazza et al, 2017). We now show that

the absence of SLC15A4 drives ASC speck formation away from the

perinuclear region, and that remarkably, constitutively active

mTORC1 rescues this aberrant phenotype. NLRP3 and pyrin

inflammasome assembly occur at the microtubule-organizing center

(MTOC), and perinuclear positioning is dependent on histone deacety-

lase 6, an adaptor of the motor protein dynein (Magupalli et al, 2020).

In contrast, NLRC4 inflammasome specks do not appear to localize at

the MTOC and do not require microtubule transport for their activa-

tion ((Magupalli et al, 2020) and our unpublished observations).

However, other cellular cytoskeletal filaments may be required for

NLRC4 positioning. Similar to our observations in SLC15A4feeble

BMDCs, peripheral ASC speck positioning is observed in the absence

of AP-3 (Mantegazza et al, 2017). Interestingly, AP-3 associates with

the intermediate filament protein vimentin (Styers et al, 2004, 2005),

which was shown to interact with NLRP3 (dos Santos et al, 2015).

Intermediate filaments also interact with motor proteins such as kine-

sins and dyneins (Helfand et al, 2004) and may be required to recruit

these motors to sites of inflammasome assembly. Whether any of

these associations are impaired in the absence of SLC15A4 and are rel-

evant for NLRC4 assembly remains to be addressed. Furthermore, rap-

tor, a component of mTORC1, is shown to associate with kinesins,

dyneins, and other molecules involved in cytoskeletal-filament assem-

bly or function (Rabanal-Ruiz et al, 2021). Therefore, it is conceivable

that reduced mTORC1 signaling caused by the absence of SLC15A4

impairs binding of ASC specks to cytoskeletal filaments or associated

motor proteins that remain to be characterized. Regardless, our cur-

rent observations support a novel and unexpected function for

SLC15A4 and mTORC1 in ensuring NLRC4 inflammasome positioning

at the perinuclear region, a location proposed to be required for proper

function (Martin et al, 2014) and seemingly protected from autop-

hagy, after phagocytosis (Mantegazza et al, 2017).

We propose that the balance between inflammasome activation

and deactivation by autophagy is regulated by recruitment of not only

PRRs but also certain SLCs such as SLC15A4 to DC phagosomes. In

turn, PAMPs/DAMPs and nutrient sensing performed by PRRs and

SLCs link phagocytosis to mTORC1 signaling, the regulation of autop-

hagy and the ultimate control of the immune response. In homeostatic

conditions, lysosomal mTORC1 signaling is turned on, keeping autop-

hagy at bay. In the case of pathogenic microorganisms, if the integrity

of phagosomes is compromised, inflammasomes are triggered and

autophagy is induced in response to PRR signaling, organelle damage,

or the pathogen itself (Deretic & Levine, 2018). In this scenario,

SLC15A4 restrains autophagy to promote anti-microbial responses.

Thus, SLC15A4 contributes to microbial sensing in phagosomes and

allies with conventional PRRs to optimize immune responses against

certain bacterial pathogens. In contrast, in the case of sterile inflam-

mation such as IBD, SLC15A4 would play a detrimental role by sus-

taining inflammation and subsequent tissue damage. We speculate

that strategies aimed at downmodulating SLC15A4 function in this

scenario would be beneficial to mitigate inflammation. Whether this is

a generalized mechanism and other phagosomal SLCs also contribute

to the regulation of the phagosome-inflammasome-autophagy axis,

certainly warrants further investigation.

Materials and Methods

Mice

C57BL/6 wild-type (WT) mice and SLC15A4feeble (C57BL/6J-

Slc15a4m1Btlr) mice were originally purchased from The Jackson
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Laboratories (Bar Harbor, ME). SLC15A4feeble mice were previously

described (https://mutagenetix.utsouthwestern.edu/phenotypic/

phenotypic_rec.cfm?pk=426). Sex- and age-matched mice between

6 and 12 weeks of age were used in all experiments.

Ethics statement

Mice were bred under pathogen-free conditions in the Department

of Veterinary Resources at the Children’s Hospital of Philadelphia or

at Thomas Jefferson University, and were euthanized by carbon

dioxide narcosis according to guidelines of the American Veterinary

Medical Association Guidelines on Euthanasia. All animal studies

were performed in compliance with the federal regulations set forth

in the recommendations in the Public Health Service Policy on the

Humane Care and Use of Laboratory Animals, the National Research

Council’s Guide for the Care and Use of Laboratory Animals, the

National Institutes of Health Office of Laboratory Animal Welfare,

the American Veterinary Medical Association Guidelines on Eutha-

nasia, and the guidelines of the Institutional Animal Care and Use

Committees of Children’s Hospital of Philadelphia and Thomas Jef-

ferson University. All protocols used in this study were approved by

the Institutional Animal Care and Use Committee at the Children’s

Hospital of Philadelphia (protocols #14–001064 and #16–001064)

and Thomas Jefferson University (protocol #21-04-368).

DSS-induced mouse model of colitis, colon sample preparation
and analysis

WT and SLC15A4feeble male mice were randomized into control and

experimental groups and co-housed at weaning across multiple cages.

Experiments were performed three times with a total of 15 mice per

genotype per experimental group and 12 male mice per genotype per

control group. In experimental groups, 8 weeks-old mice were given

2.5% DSS (40,000–50,000 KDa molecular weight; Alfa Aesar J14489,

Tewksbury, MA) in drinking water for 5 days, followed by normal

drinking water for 10 more days. Age-matched control mice received

water only. Body weight and stool appearance, consistency, and pres-

ence of blood were recorded daily. Fecal occult blood was detected

using Hemoccult single slides (Beckman Coulter Inc., Brea, CA).

Blood stool index was determined using the following score: 0, nor-

mal feces, negative hemoccult; 1, soft but formed feces, positive

hemoccult; 2, very soft feces, visible traces of stool blood; 3, diarrhea,

rectal bleeding (Wirtz et al, 2007; Perse & Cerar, 2012). On day 16,

mice were sacrificed, colon was dissected, length was measured, and

Swiss rolls were prepared from PBS rinsed colon, fixed in 10% neu-

tral buffered formalin (Polysciences) at room temperature for 48 h,

rinsed in PBS, and stored in 50% ethanol for histological staining and

analysis. Haematoxilin and eosin staining, paraffin-embedding, and

histopathological analysis were performed at the Comparative Pathol-

ogy Core, University of Pennsylvania, School of Veterinary Medicine.

Histopathological analysis and scoring were performed blinded by

expert veterinary pathologist Dr. Enrico Radaelli. Histopathological

analysis was focused on assessing the mucosal changes (inflamma-

tory and proliferative) of the mid and distal colorectal tract present in

each sample (Perse & Cerar, 2012; Gadaleta et al, 2017). Briefly, scor-

ing comprised the evaluation of mucosal/ crypt loss, crypt inflamma-

tion, mononuclear cells, neutrophils, epithelial hyperplasia, and

oedema/ fibrosis.

Reagents

LPS, MSU, poly (dA:dT)/Lyovec and type III secretion system inner

rod protein fused to B. anthracis lethal factor (LFn-Rod) were pur-

chased from InvivoGen (San Diego, CA) and alum was from Ther-

moFisher Scientific (Rockford, IL). TxR-conjugated OVA and EBSS

were from Invitrogen (ThermoFisher Scientific). Mouse monoclonal

anti-caspase-1 p20 (Casper-1) and rabbit polyclonal anti-ASC

(AL177) were from Adipogen (San Diego, CA); recombinant LLO

protein, rabbit polyclonal anti-LC3B (ab48394), mouse monoclonal

anti-p62 (ab56416), rabbit monoclonal anti-ATG7 (ab133528), and

rabbit monoclonal anti-ATG5 (ab108327) were from Abcam (Cam-

bridge, MA); chloroquine, anthrax protective antigen from B.

anthracis (PA), mouse monoclonal anti-b actin (clone AC-15),

mouse monoclonal anti-FLAG (clone M2), and rat monoclonal anti-

caspase 11 (clone 17D9) were from Sigma; rat monoclonal anti-

CD40 (3/23), anti I-Ab (AF-120.1), anti-CD11c (HL3), anti-CD11b

(M1/70), anti-CD86 (GL1), and anti-CD103 (M290) were from BD

Biosciences (San Jose, CA); mouse monoclonal anti-GFP was from

Roche (Indianapolis, IN); rabbit anti-mTOR (7C10), anti-phospho-

mTOR (Ser2481), anti-ULK1 (D8H5), anti-phospho-ULK1 (Ser757),

anti-p70 S6 kinase (49D7), anti-phospho-p70 S6 kinase (Thr389),

anti-phospho-S6 ribosomal protein (Ser235/236), and mouse anti-S6

ribosomal protein (54D2) were from Cell Signaling Technology

(Danvers, MA). ELISA Ready-SET-Go! kits for mouse interleukin-6,

was from eBioscience (San Diego, CA); the anti-mouse-IL-1b ELISA

set was from R&D (Minneapolis, MN). All secondary antibodies

were from Jackson Immunoresearch (West Grove, PA). All restric-

tion enzymes were from New England Biolabs (Ipswich, MA). Poly-

merase chain reaction (PCR) was performed using GoTaq kit

(Promega, Madison, WI).

Cell culture

Bone marrow cells were isolated and cultured for 7–9 days in RPMI-

1640 medium (Gibco, ThermoFisher Scientific, Waltham, MA) sup-

plemented with 10% low endotoxin-FBS (Hyclone, Logan, UT),

2 mM L-Gln, 50 lM 2-mercaptoethanol (Invitrogen), and either

30% granulocyte-macrophage colony stimulating factor (GM-CSF)-

containing conditioned medium from J558L cells (kindly provided

by R. Steinman former laboratory, Rockefeller University, NY) for

differentiation to DCs as described (Winzler et al, 1997; Mantegazza

& Marks, 2015), or 30% M-CSF-containing L929 conditioned

medium for differentiation to MΦs (Mantegazza et al, 2017). DC2.4

mouse dendritic cell line (Shen et al, 1997; Chen et al, 2020) (kindly

provided by Dr. Janis Burkhardt, Children’s Hospital of Philadel-

phia) was cultured in RPMI-1640 medium (Gibco, ThermoFisher

Scientific) supplemented with 10% low endotoxin-FBS (Hyclone),

2 mM L-Gln and 50 lM 2-mercaptoethanol (Invitrogen).

Intestinal lamina propria was isolated after dissecting colon and

dissociating the intestinal epithelium in Ca2+/Mg2+-free HBSS (Invit-

rogen) supplemented with 5% FBS and 2 mM EDTA for 20 min at

37°. Lamina propria was then digested by treatment with 1.5 mg/ml

type VII collagenase (Sigma) and 40 lg/ml DNase I (Sigma) for

15 min at 37° to obtain single-cell suspensions (as shown in http://

www.jove.com/video/4040/; Geem et al, 2012). Colonic DCs were

then purified with anti-CD11c (N418) microbeads (Miltenyi Biotec

Inc., Auburn, CA) (Geem et al, 2012).
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DNA retroviral constructs, retroviral production, and
transduction of dendritic cells

pMSCV-ASC-GFP, pLZRS-mCherry-LC3B, and MigR1 retroviral con-

structs were kindly provided by Teresa Fernandes-Alnemri (Thomas

Jefferson University, Philadelphia, PA), Erika Holzbaur (University of

Pennsylvania, Philadelphia, PA), and Warren Pear (University of

Pennsylvania), respectively. GFP was amplified using the forward

primer 50-ATCTCTCGAGATGGTGAGCAAG GGCGAG-30 (XhoI restric-
tion site in bold) and reverse primer 50- ATCTGAATTCTTACTTGTAC
AGCTCGTC (EcoRI restriction site in bold) and sucloned between

XhoI and EcoRI restriction sites of the MigR1-NotI vector (previously

described (Lopez-Haber et al, 2020)) resulting in MigR1-NotI-GFP.

hSLC15A4 was then cloned between BglII and XhoI restriction sites

of the MigR1-NotI-GFP vector by digesting pLenti-hSLC15A4

(RC215932L2, NM_145648, OriGene, Rockville, MD) with BamHI and

XhoI restriction enzymes resulting in MigR1-hSLC15A4-GFP.

Retrovirus was produced by transfection of packaging cell line

Platinum-E (Plat-E) (Morita et al, 2000) (a generous gift of Mitchell

Weiss, St. Jude Children’s Research Hospital, Memphis, TN) using

Lipofectamine 2000 (Invitrogen, ThermoFisher Scientific) and har-

vested from cell supernatants 2 days later. 3 × 106 BM cells were

seeded on 6-well non-tissue culture treated plates per well for trans-

duction 2 days after isolation, and transduced by spinoculation with

3 ml of transfected Plat-E cell supernatant in the presence of 8 lg/
ml polybrene and 20 mM HEPES for 2 h at 37°C. Retrovirus-

containing media were then replaced with DC culture media, and

cells were collected for experiments 6 days later.

shRNAs, lentiviral production, and transduction of dendritic cells

pLKO.1-puromycin derived lentiviral vectors (Stewart et al, 2003)

for small hairpin RNAs (shRNAs) against SLC15A4, ATG5, ATG7

and non-target shRNAs were obtained from the High-throughput

Screening Core of the University of Pennsylvania. SLC15A4 #1 sense

sequence: CCACCTGCATTACTACTTCTT; SLC15A4 #2 sense sequence:

CCTCATTGTGTCTGTGAAGT A; SLC15A4 #3 sense sequence:

CCAGAGTGTCTTCATCACCAA. ATG5 sense sequence: GCAGAACC

ATACTATTTGCTT; ATG7 sense sequence: GCCTGGCATTTGATA

AATGTA. Non-target sense sequence: GCGCGATAGCGCTAATA

ATTT. pLJM1-FLAG-RagBQ99L and pLVX-FLAG-metap2 (control)

were kindly provided by Dr. Roberto Zoncu (University of California,

Berkeley, CA).

Lentivirus was produced by co-transfection of 293T cells (ob-

tained from American Type Culture Collection, Mannassas, VA)

with packaging vectors pDM2.G and pSPAx2 using calcium phos-

phate precipitation (Marks et al, 1995) and harvested from cell

supernatants 2 d later. 3 × 106 BM cells were seeded on 6-well non-

tissue culture treated plates per well for transduction two d after iso-

lation and transduced by spinoculation with 3 ml of transfected

293T cell supernatant in the presence of 8 lg/ml polybrene and

20 mM HEPES for 2 h at 37°C (Savina et al, 2009). Lentivirus-

containing media were then replaced with DC culture media. Puro-

mycin (2 lg/ml) was added 3 days after infection, and cells were

collected for experiments 3 days later.

For BM cell transduction with both retroviral constructs and len-

tiviral shRNAs, cells were first transduced with the indicated retrovi-

ral constructs, washed, and subsequently transduced with the

indicated lentiviral shRNAs. Lentivirus-containing media were then

replaced with DC culture media. Puromycin (2 lg/ml) was added

3 days after transduction, and cells were collected for experiments

3 days later. Only lentiviral shRNAs are puromycin resistant.

Transfection of DC2.4 mouse dendritic cell line

DC2.4 were transfected with pEGFP-N1-hSLC15A4 (Nakamura et al,

2014) (kindly provided by Drs. Ira Mellman and Gerry Strasser,

Genentech, South San Francisco, CA, upon material transfer agree-

ment) using Neon transfection system (ThermoFisher Scientific)

according to manufacturer’s instructions. Briefly, 2 × 106 cells were

washed in Ca2+/ Mg2+ free PBS and resuspended in 100 ll resuspen-
sion buffer R. Cells were then pulsed once with 5 lg of plasmid dur-

ing 5 ms and 1,680 voltage and incubated overnight at 37°C.

Bacterial strains and infections

STm strains SL1344 and DfliCDfljB SL1344 were kindly provided by

Dr. Igor Brodsky, University of Pennsylvania, Philadelphia, PA. For

in vitro infections, STm were grown overnight in streptomycin con-

taining LB medium at 37°C with aeration, diluted into fresh LB con-

taining 300 mM NaCl, and grown standing at 37°C for 3 h to induce

flagellin expression (Wynosky-Dolfi et al, 2014) unless otherwise

indicated. Bacteria were washed with prewarmed Dulbecco’s Modi-

fied Eagle Medium (DMEM, Gibco), added to cells at an MOI of 5:1,

and spun onto cells at 200 × g for 5 min. Cells were incubated at

37°C in a tissue culture incubator with 5% CO2. Gentamycin

(100 lg/ml) was added 1 h after infection and cells were harvested

or analyzed by immunofluorescence microscopy or live-cell imaging

at the indicated time points. In some experiments, 50 lM chloro-

quine was added at the time of STm infection.

Real-time quantitative PCR (RT–qPCR)

RNA was isolated from shRNA-transduced BMDCs using RNeasy kit

(Qiagen, Germantown, MD). 1 lg RNA was reverse transcribed to

cDNA using TaqManTM Reverse Transcription Kit (Invitrogen, Thermo-

Fisher Scientific). qPCR was performed in a StepOnePlus RT–PCR Sys-

tem (Applied Biosystems, ThermoFisher Scientific) using TaqManTM

Fast Advanced master mix and TaqManTM FAM probes (Applied

Biosystems) according to manufacturer’s instructions. TaqManTM

FAM probes specific for Slc15a4 and the housekeeping genes b2-
microglobulin (b2-m) and glyceraldehyde-3-phosphate-dehydrogenase

(Gapdh) were Mm00505709_m1 (Slc15a4), Mm00437762_m1 (b2-m),

and Mm99999915_g1 (Gapdh). PCR product formation was continu-

ously monitored using the StepOnePlusTM Real-Time PCR System. Rela-

tive levels of Slc15a4 mRNA were calculated with the DDCt method

(Caino et al, 2011), normalized to the average of housekeeping genes

and represented as mRNA fold change compared to control shRNA-

treated cells. qPCR reactions were performed in triplicate. Experiments

were independently performed three times.

Inflammasome activation and measurement of cytokine
production

200,000 BMDCs or BMMΦs were seeded in triplicate in RPMI

medium on 96-well round-bottom plates, primed where indicated
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with 30 ng/ml LPS for 3 h, and then incubated with the indicated

inflammasome stimuli (200 lg/ml alum; 200 lg/ml MSU crystals;

1 lg/ml LLO; 2 lg/ml poly (dA:dT)/LyoVec; 1 lg/ml PA and

10 ng/ml LFn-Rod or infected with STm at MOI of 5:1, for 1 to 6 h;

Rathinam et al, 2010; Gross, 2012; Reyes Ruiz et al, 2017). For non-

canonical inflammasome stimulation, BMDCs were primed with

100 ng/ml LPS overnight to induce pro-caspase-11 expression

(Moretti et al, 2022) and then infected with STm DfliCDfljB or non-

flagellin expressing STm for 4–24 h. Cells were pelleted at 200 × g

at the indicated time points and supernatants were collected to mea-

sure cytokines using commercial ELISA kits (Gross, 2012), or for

caspase-11 p30 or LDH detection (see below).

For cytokine detection after in vivo DSS-treatment, isolated

colonic DCs were cultured overnight, supernatants were collected to

measure IL-1b by ELISA, and cell pellets were lysed with Laemmli

sample buffer with 2-mercapto-ethanol for immunoblotting analysis

of LC3.

Cell death assay

Cytotoxicity was detected using the LDH Cytotoxicity Detection Kit

(Clontech Laboratories, Inc., Mountain View, CA). 3 × 106 BMDCs

per well were seeded into 6-well plates in RPMI medium in tripli-

cates. Cells were infected at MOI 5:1 with STm DfliCDfljB or STm

grown to stationary phase to prevent flagellin expression (Wynosky-

Dolfi et al, 2014), or flagellin-expressing STm as control. Gen-

tamycin (100 lg/ml) was added 1 h after infection, and super-

natants were harvested 4, 8, and 24 h after infection. LDH release

was quantified according to the manufacturer’s instructions. Cyto-

toxicity was normalized to cell samples treated with 1% (v/v) Tri-

ton X-100, and LDH release from uninfected cells was used as

negative controls.

Immunoblotting

For LC3, GSDMD, caspase-1 and caspase-11 detection, BMDCs were

infected with STm, harvested by centrifugation at 200 g at the indi-

cated time points, and lysed in Laemmli sample buffer with 2-

mercaptoethanol. Samples were then fractionated by SDS–PAGE on

10% (for caspase-11), 12% (for GSDM, caspase-1 or LC3) or 15%

polyacrylamide gels (for LC3), transferred to PVDF membranes

(Immobilon-P, Millipore) and analyzed using horseradish peroxidase-

conjugated secondary antibodies (Jackson ImmunoResearch),

enhanced chemiluminescence (GE Healthcare, Pittsburgh, PA), and

iBright imaging system (ThermoFisher Scientific) or FluorChem R

imaging system (ProteinSimple, Biotechne, San Jose, CA). For the

detection of cleaved caspase-11, cell supernatants were precipitated

with 10% TCA (vol/vol) for 1 h on ice. Precipitated proteins were pel-

leted at 20,000 g for 30 min at 4°C, air-dried, resuspended in Laemmli

sample buffer 2× with 2-mercaptoethanol, and heated at 95°C for

5 min (Broz et al, 2012; Koontz, 2014). Precipitated supernatants

from 3x106 BMDCs were loaded per well on polyacrylamide gels. For

mTOR, ULK1, p70 S6 kinase, and S6 detection, samples were first

lysed in lysis buffer containing 1% Triton X-100, 10 mM sodium

pyrophosphate, 10 mM sodium b-glycerophosphate, 4 mM EDTA,

40 mM HEPES, and EDTA-free protease inhibitors (Roche) at pH 7.4

(Chung et al, 2019) and then resuspended in Laemmli sample buffer

with 2-mercaptoethanol. Samples were then fractionated on 6%

(mTOR and ULK1) or 12% (p70S6 kinase and S6) polyacrylamide

gels, transferred to PVDF membranes (Immobilon-P, Millipore) and

analyzed using horseradish peroxidase-conjugated secondary antibod-

ies (Jackson ImmunoResearch), enhanced chemiluminescence (GE

Healthcare, Pittsburgh, PA), and FluorChem R imaging system. For

actin detection, Alexa Fluor 680 secondary antibodies or horseradish

peroxidase-conjugated secondary antibodies (Jackson ImmunoRe-

search) were used and developed using FluorChem R imaging system.

Densitometric analyses of band intensity was performed using NIH

Image J software, normalizing to control protein levels (Gross, 2012).

For LC-II/ LC-I, cleaved fragment/full-length protein and phospho-

protein/total protein assessment, fold induction, or fold change values

were calculated upon treatment and/or over time, to normalize

between different cell types, culture conditions and equipment, as rec-

ommended (Klionsky et al, 2021) and indicated in the Figure legends.

Immunofluorescence microscopy and flow cytometry

Non-transduced BMDCs or BMDCs, expressing SLC15A4-GFP or

ASC-GFP and/or mcherry-LC3 and/or RagBQ99L and metap2 (con-

trol), were infected with STm for the indicated time points, fixed

with 3% formaldehyde in PBS, permeabilized with Permwash (BD

Biosciences, San Jose, CA), and labeled with primary antibodies and

Alexa Fluor-conjugated secondary antibodies (Jackson ImmunoRe-

search). Cells were analyzed by fluorescence microscopy using a

Leica DMI6000 B inverted microscope, a Hamamatsu ORCA-flash

4.0 camera, and Leica Microsystems Application Suite X software at

the Department of Pathology at Children’s Hospital of Philadelphia

or a Nikon A1R laser scanning confocal microscope with spectral

detectors and Nikon NIS-Elements acquisition software at the Sid-

ney Kimmel Cancer Center (SKCC) Bioimaging facility at Thomas

Jefferson University. Images were analyzed using ImageJ (National

Institutes of Health). LC3 fluorescence surrounding ASC specks was

measured in a radio of 1 lm and normalized per unit area using

ImageJ. ASC speck distance from nuclei was quantified using Ana-

lyze/Measure tools as detailed in ImageJ tutorial (https://imagej.

nih.gov/ij/docs/pdfs/ImageJ.pdf). Magnification: 100×.

BMDC phenotype was characterized by flow cytometry using an

LSR-II and FloJo software (BD Biosciences). To assess ASC speck

formation by flow cytometry, BMDCs were infected with STm for

the indicated time points, fixed with 2% PFA in PBS for 10 m. Cells

were finally washed in PBS with 0.5% BSA and 2 mM EDTA and

analyzed by flow cytometry using a CytoFLEX (Beckman Coulter,

Indianapolis, IN) and FlowJo software (BD Biosciences). Selection

of activated and non-activated cell gates was performed using GFP-

width and GFP-height parameters based on the differential shape of

the fluorescence pulse depending on the fluorophore distribution

within the cell, as previously described (Sester et al, 2015; Hoss

et al, 2018) and shown in Fig EV4.

Live-cell imaging

BMDCs or DC2.4 cells expressing SLC15A4-GFP were seeded on

poly-L-lysine–coated glass-bottom 35-mm culture dishes (MatTek,

Ashland, MA) on day 6 of culture. On day 7, cells were pulsed for

15 min with TxR-conjugated OVA (Invitrogen, ThermoFisher scien-

tific) and LPS (100 lg/ml) coupled to 3-lm amino polystyrene

beads (Polysciences Inc., Warrington, PA) as described previously
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(Savina et al, 2010; Mantegazza & Marks, 2015). DCs were then

washed with RPMI, chased for 0–2.5 h, and visualized using a

Nikon A1R laser scanning confocal microscope with spectral detec-

tors and equipped with a Tokai-Hit temperature and CO2-controlled

chamber at the SKCC Bioimaging facility at Thomas Jefferson

University. Images or videos were obtained with Nikon NIS-

Elements acquisition software and analyzed using ImageJ (National

Institutes of Health). Magnification: 100×.

Statistical analyses

Statistical analyses and data plots were performed using Microsoft

Excel (Redmond, WA) and GraphPad Prism software (San Diego,

CA). Statistical significance for in vitro experimental samples rela-

tive to untreated or control cells (as indicated) was determined

using the unpaired Student’s t-test and ANOVA after normality

assessment using GraphPad. Statistical significance for mouse analy-

ses and mouse samples in DSS-treated SLC15A4feeble mice relative to

WT mice was determined using the non-parametric Mann–Whitney

test (Fay & Proschan, 2010). All experiments were performed inde-

pendently at least three times.

Data availability

This study includes no data deposited in external repositories.

Source data has been provided upon manuscript submission.

Expanded View for this article is available online.
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