Skip to main content
. 2022 Oct 17;12:17387. doi: 10.1038/s41598-022-22458-9

Table 2.

Assigned values to the control parameters of competitor algorithms.

Algorithm Parameter Value
AVOA L1, L2 0.8, 0.2
W 2.5
P1, P2, P3 0.6, 0.4, 0.6
RSA Sensitive parameter β = 0.01
Sensitive parameter α = 0.1
Evolutionary Sense (ES) ES: randomly decreasing values between 2 and − 2
MPA Binary vector U = 0 or 1
Random vector R is a vector of uniform random numbers in [0, 1]
Constant number P = 0.5
Fish Aggregating Devices (FADs) FADs = 0.2
TSA c1, c2, c3 Random numbers lie in the interval [0,1]
Pmin 1
Pmax 4
WOA l is a random number in [− 1,1]
r is a random vector in [0, 1]
Convergence parameter (a) a: Linear reduction from 2 to 0
GWO Convergence parameter (a) a: Linear reduction from 2 to 0
Wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP) = 1
MVO Exploitation accuracy over the iterations (p) p = 1
TLBO random number rand is a random number from interval [0,1]
TF: teaching factor TF = round [(1 + rand)]
GSA Alpha 20
G0 100
Rnorm 2
Rnorm 1
PSO Velocity limit 10% of dimension range
Topology Fully connected
Inertia weight Linear reduction from 0.9 to 0.1
Cognitive and social constant (C1, C2) = (2, 2)
GA Type Real coded
Mutation Gaussian (Probability = 0.05)
Crossover Whole arithmetic (Probability = 0.8)
Selection Roulette wheel (Proportionate)