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Abstract

Epidemiologic studies often quantify exposure using biomarkers, which commonly have 

statistically skewed distributions. Although normality assumption is not required if the biomarker 

is used as an independent variable in linear regression, it has become common practice to log-

transform the biomarker concentrations. This transformation can be motivated by concerns for 

non-linear dose–response relationship or outliers, however, such transformation may not always 

reduce bias. In this study, we evaluated the validity of motivations underlying the decision to 

log-transform an independent variable using simulations, considering eight scenarios that can give 

rise to skewed X and normal Y. Our simulation study demonstrates that (1) if the skewness of 

exposure did not arise from a biasing factor (e.g., measurement error), the analytic approach with 

the best overall model fit best reflected the underlying outcome generating methods and was least 

biased, regardless of the skewness of X and (2) all estimates were biased if the skewness of 

exposure was a consequence of a biasing factor. We additionally illustrate a process to determine 

whether the transformation of an independent variable is needed using NHANES. Our study and 

suggestion to divorce the shape of the exposure distribution from the decision to log-transform 

it may aid researchers in planning for analysis using biomarkers or other skewed independent 

variables.

INTRODUCTION

Epidemiologic research often quantifies human exposures in terms of concentrations 

measured in a biospecimen such as urine, blood, or tissue (i.e., biomarkers of exposure). 

Whether they are compounds of interest or metabolic byproducts, biomarkers often have 

defining characteristics: positive values, low concentrations with few extremely high 
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observations, oftentimes resulting in non-normal, statistically “skewed” distributions. It 

is commonly observed that biomarkers of environmental exposures, such as phthalate 

metabolites and heavy metals measured in urine, are highly skewed to the right (1), as are 

biomarkers of micronutrients (e.g., vitamin D (2), triglycerides (3)) and clinical endpoints 

(e.g., c-reactive protein (4), hemoglobin A1C (5)).

When evaluating the relation between a skewed exposure and a health endpoint using 

regression, it has become common practice to use the log value of the exposure (hereafter 

“log-transform”) as the independent variable in regression models rather than the original 

measured values (6). Transformations of independent variables to improve model fit have 

a long history (7) and log-transformation has become a de facto standard. Motivations for 

log-transforming independent variables stated in the literature include addressing nonlinear 

or nonadditive dose–response relationship (8, 9), reducing outlier influence (10, 11), 

reporting study results in a format that is directly comparable with previous publications, 

or responding to the misconception that independent variables must conform to specific 

distributional assumptions (e.g., normality). Because log-transformation of independent 

variables fundamentally alters the interpretation of regression coefficients, careful selection 

of exposure transformations is warranted. One parsimonious approach to approximating 

the true, non-linear dose–response relationship in regression models is by iteratively 

power-transforming exposure, including log-transformation, and selecting the transformation 

method that best normalizes the error term, as described by Box and Tidwell (7, 12). 

However, such assessments are rarely described in the literature and motivations for log-

transformations are often left unstated, leaving open the possibility that log-transformation 

of exposure is done out of habit rather than principle.

In this paper, we review motivations underlying log-transformation of skewed independent 

variables given in the literature and use simulations to illustrate the need to divorce the shape 

of the exposure distribution from the decision to log-transform it. Finally, we demonstrate 

a process for deciding between log-transforming an independent variable or leaving it 

untransformed, using a case study of blood lead and blood pressure in National Health and 

Nutrition Examination Survey (NHANES). NHANES data were deidentified and therefore 

IRB review of this study was not required

DESCRIPTION OF THE PROBLEM

The scenario addressed in this manuscript arises when the goal is to learn about 

associations between some continuous exposure (X) and an outcome (Y) using regression 

methods. Often, such models will be in the form of a generalized linear model 

g E Y X, β = β0 + ℎ X βx, where g(⋅) is the link function and h(X) is some transformation 

of the exposure (e.g., no transformation, spline basis function, log-transformation) and βx is 

the set of parameters of interest. Such models typically include distributional assumptions, 

such as in linear regression where Y − E Y X, β  is assumed to follow a normal (Gaussian) 

distribution, such that Y is “conditionally normal.” An often informally given motivation 

for log-transforming exposure is to approximate a normal distribution for the transformed 

exposure. For an exposure that follows log–normal distribution, log-transformation results in 

a normally distributed variable; however, log-transformation can introduce more skewness or 
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spread if exposure follows other distributions (13, 14). Even when log-transformation results 

in a normal distribution, such distributional assumptions are required for the error term, 

not for independent variables (12). While log-transformation of exposure may be useful for 

exploring exposure distributions or estimating quantities such as geometric means, normality 

of exposures is not a prerequisite for estimating their relationship with on a health outcome 

in regression models. Aside from this mistaken reasoning, two other commonly cited and 

testable motivations for log-transforming independent variables are to conform to non-linear 

dose–response (8, 9) or reduce any potential impacts of outliers (10, 11).

SIMULATION EXAMPLE

We consider a study in which we are interested in assessing the relation between a skewed 

independent variable (X) and a conditionally normal dependent variable (Y) via a linear 

regression model. In this setting, we use simulated data to explore the validity of motivations 

for log-transformation of independent variables. The fact that an independent variable does 

not follow a normal distribution oftentimes motivates its log-transformation. Therefore, we 

explore several settings that can give rise to skewed exposure distribution, including 1) 

truly log–normal distribution, and distributions that appear skewed due to other factors: 2) 

truncation, 3) mixed distribution, and 4) measurement error.

Data generation methods

We consider a total of eight scenarios, with four X generation methods (XGs) motivated by 

the above scenarios and two Y generation methods (YGs) representing different exposure-

response scenarios (Table 1). Y is generated with either E Y X = 0.3*X [YGAdd] or 

E Y X = 0.3* ln X  [YGMult], which addresses the motivation to transform exposure to meet 

theoretical dose–response functions. For each YG, we consider four different XGs including 

three that may give rise to skewness and/or outliers without X following a log–normal 

distribution.

1. XGLogN: We start with a simple case where X is drawn from a log–normal 

distribution (XGLogN; ln X N μ, σ .

2. XGTrncN: We use a simple alternative to log–normal distribution by 

drawing X from a normal distribution that is truncated at 0.01 (XGTrncN; 

X TN a = 0.01, μ, 3σ .

3. XGMixed: We address the situation when a skewed distribution arises because 

a study sample consists of two or more subpopulations, in what is sometimes 

known as a “mixture” distribution (15). For example, individuals who encounter 

chemicals in workplaces or reside in contaminated areas can experience 

exposures that are substantially higher than that occurring in typical, daily 

exposures in the general population. We operationalize the mixture distribution 

(XGMixed) by drawing X from a normal distribution truncated at 0.01 

(X TN a = 0.01, μ, 3σ  with probability 0.8 and another truncated normal 

distribution (X TN a = 0.01, 1.5μ, 9σ ) with probability 0.2, implying a mixture 

of two truncated-normal distributions.
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4. XGMErr: Last, we considered an outlier generation method through measurement 

error (XGMErr). XGMErr was generated in three steps: 1) generate X from normal 

distribution truncated at 0.01 (X TN a = 0, μ, 3σ ), 2) generate Y using X, 

according to YGs, and 3) randomly select 5% of X to introduce random noise 

that is proportional to the original values of X. As a result, X in XGMErr consists 

of 95% of X with perfect measurement and 5% of X with measurement error that 

can result in outliers (i.e., data points with values of Y that do not follow the 

trend of rest of the data) and/or high leverage observations (i.e., extremely high 

or low values of X).

We note here that, for XGLogN, XGTrncN, and XGMixed, one could expect to find an 

estimator of the dose–response relationship that achieves no bias. XGMErr represents a 

more realistic case where the best that one could hope for (absent a formal correction for 

measurement error bias), is to find an estimator with the lowest bias in a given setting.

We demonstrate the impact of log-transforming an independent variable on estimation and 

model fit using simple simulations. Using the XGs and YGs described previously, we 

performed 1000 simulations for a hypothetical study assessing the impact of skewed X 
with a continuous Y that follows normal distribution, in a sample size of 500. For the 

sake of simplicity, we assume no confounding or selection bias. As sensitivity analyses, we 

considered alternative distributions of X, strengths of association, and sample size.

Data analysis methods

For each combination of XG and YG, we estimate an association between X and Y using a 

linear regression model (LM) with X or ln(X). Since concerns for outliers may motivate the 

log-transformation of X, we consider an alternative regression analysis using robust linear 

models. The robust linear model uses M-estimation, which, like least squares, minimizes 

a function of the residuals; unlike least squares, however, it penalizes large residuals less 

severely, which reduces outlier impact in expectation (16). For each regression model, 

we summarize the overall model performance across the 1,000 simulated datasets using 

average log–likelihood. We note here that bias of regression coefficients is not a meaningful 

comparison of two approaches because regression with two different transformations of 

exposure implies fundamentally distinct regression curves, except under the null. Hence, we 

focus on assessing bias via averaging predicted values of Y at specific percentiles of X, 

denoted p−(y |xq) where xq is the theoretical qth percentile of X and p− is the mean of predicted 

values. For X percentiles 25th, 50th, and 75th, we generated the following parameters: we 

generated the following parameters: mean bias (parameter estimate minus truth averaged 

across all simulations), mean percent bias (bias over truth multiplied by 100 averaged across 

all simulations), and mean 95% confidence interval coverage (proportion of 95% confidence 

interval including the truth averaged across all simulations). Asymptotically derived 95% 

confidence intervals (estimate ± 1.96*standard error derived from the model covariance 

matrix) were used in the simulation to estimate 95% confidence interval coverage, since Ys 

were not transformed and there was no covariate adjustment.

We also estimated marginal effects of changing all X from its 75th to 50th theoretical 

percentiles (and 50th to 25th theoretical percentiles). Two exposure contrasts (i.e., 75th to 
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50th and 50th to 25th theoretical percentiles) could also be conceived as two distinct, absolute 

change in exposure levels (e.g., 0.78 ug/dL and 0.47 ug/dL decrease in blood lead). In the 

current simulation section, we report the exposure contrast using percentiles because the 

units are arbitrary in our simulation; in the real-world example section using NHANES, 

we include the values equivalent to the exposure contrast values. Further, additive relations 

between Y and log(X) would imply multiplicative relations in another scale (e.g., Y and 

X) that results in an effect estimate per 1 unit increase in X that changes depending on 

the value of X, rather than being constant. The average absolute difference in predicted 

values of Y with a quartile increase in X was defined as p−(y |xq1) − p−(y |xq0) where xq1 and 

xq0 are the theoretical X percentiles. We generated mean bias, mean percent bias, mean 

root mean squared error (i.e., standard deviation of predicted value minus truth, averaged 

across all simulations), and Monte Carlo standard deviation (i.e., standard deviation of beta 

coefficients across 1,000 simulated datasets).

We conducted all analyses with R version 4.1 and robust linear regression using package 

‘MASS’ with MM estimator, which is an M-estimator with Tukey’s biweight and fixed scale 

(16).

Results

Simulation results are summarized in terms of overall model fit (Table 2), parameter 

estimates for expected values of Y at X percentiles (Table 2), and bias in expected 

differences in Y per a quartile increase in X (Figure 1). In the absence of measurement 

error (i.e., all data generation methods for X except XGMErr), the analytic approach that best 

reflected the data generation methods of Y resulted in the least biased estimates and best 

model fit across all data generation methods. For example, expected values of Y modeled 

with generalized linear models or robust linear models with untransformed X were least 

biased with coverage close to 95%, when the true dose–response relationship was linear 

(YGAdd), even in the presence of outliers (XGMixed). Using log-transformed X when the 

true dose–response is linear resulted in biased estimates, with greater average bias at lower 

X percentiles across all data generation methods except for XGLogN (Table 2). Incorrect 

model specification (e.g., log-transformed X for YGAdd) yielded biased effect estimates, 

with the extent of bias varying by the exposure contrast, for both generalized and robust 

linear models (Figure 1).

In XGMErr, whereby outliers were introduced from measurement error, all models yielded 

biased estimates. Mean bias of expected Y values were over 5% for all analytic models. 

When the true dose–response relationship was linear (YGAdd), expected Ys were more 

biased at Q1 and Q3 than at Q2; incorrect model specification resulted in the most biased 

estimates when the true dose–response was on a multiplicative scale (YGMult).

In the case of YGMult with incorrect model specification (i.e., untransformed X), robust 

linear models generally yielded less biased effect estimates than that from generalized linear 

models when true effect sizes were larger (Figure 2a). We also observed that incorrect model 

specification yielded greater bias in more skewed X distributions (Figure 2b). When we 
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repeated the simulation with smaller sample size, results were similar to those of the primary 

analyses.

APPLIED EXAMPLE: BLOOD LEAD AND BLOOD PRESSURE

To illustrate the process of dealing with skewed independent variables, we present as 

an example an investigation of a well-studied relationship between blood lead and blood 

pressure using NHANES 1999–2016. Although several studies have examined links between 

blood lead and blood pressure in NHANES (17–22), results are reported with blood lead in a 

mixed format: log-transformed, untransformed continuous, or categorical.

In this example, we evaluate exposure response functions between blood lead concentrations 

and systolic blood pressure. Similar to previous literature, we restricted NHANES 

participants to non-pregnant adults (20–79 years) who were not on anti-hypertensive 

medication and had complete data on blood lead concentrations (ug/dL), blood pressure 

(mmHg) measurements, and commonly adjusted covariates: age, education, race/ethnicity, 

household income, hypertension medication status, and waist circumference. We calculated 

systolic blood pressure (mmHg) following Centers for Disease Control and Prevention 

(CDC) recommendations, to average across blood pressure readings excluding the first 

reading unless only one is provided, in which case the one reading serves as the average 

(23). Since our outcome variable, systolic blood pressure, was right-skewed, we applied 

Box–Cox transformation. We transformed systolic blood pressure with a lambda of −1.23, 

where lambda was selected by methods described by Box and Tidwell (7).

The study sample consisted of 23,113 individuals whose median blood pressure and lead 

were 118 mmHg (IQR: 109–128 mmHg) and 1.32 ug/dL (0.83–2.10 ug/dL), respectively. 

Distributions of blood lead concentrations were lower among females (median: 1.09 ug/dL; 

IQR: 0.70–1.68 ug/dL) than males (1.61 ug/dL; 1.03–2.55 ug/dL), similar to our simulation 

data generated under mixture distribution (XGMixed). In a bivariate plot overlaying the crude 

dose–response relationship between blood lead and systolic blood pressure, expected values 

of blood pressure at 25th to 75th percentiles of blood lead were similar across all models; 

however, the expected values varied substantially at lower and higher tails of blood lead 

(Figure 3).

We estimated associations between box-cox transformed systolic blood pressure and blood 

lead using four regression models: linear regression, robust linear model, linear regression 

with quadratic term for blood lead, and linear regression with log-transformed blood 

lead. For each analytic approach, estimates were obtained with or without adjustment 

for age (quadratic), gender (male/female[ref]), race/ethnicity (Hispanic/non-Hispanic black/

non-Hispanic white[ref]/other), calendar year (linear), waist circumference (linear). We 

bootstrapped 95% confidence intervals using R package boot (5,000 iterations). When model 

fit was compared using AIC, the approach with log-transformed lead appeared to perform 

the best (Table 3). Compared to the analytic approach that best fit the data (i.e., linear 

regression with log-transformed lead), the expected difference in systolic blood pressure per 

quartile change in blood lead was lower for all other approaches, particularly at lower and 

higher tails of blood lead. For example, the fully adjusted model with ln(blood lead) best 
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fit the data (AIC: - 301648.57) as compared to that with untransformed blood lead (AIC: 

−301635.14); expected difference in systolic blood pressure was higher at lower percentiles 

of X. However, we note that model fit is a global phenomenon that depends on specification 

beyond simple transformations. When we modified our approach to allow non-additive 

effect measure modification by sex, model fit criteria in the stratum of males was best for 

linear regression using ln(blood lead) while linear regression with untransformed blood lead 

was best in the stratum of females (Table 4).

DISCUSSION

This study demonstrates that a skewed exposure distribution does not necessitate the 

decision to log-transform exposure, using simulations under eight scenarios that could give 

rise to skewed X and normal Y. Our simulation results suggest that log-transforming an 

independent variable can bias effect estimates when the underlying true dose–response 

relationship is linear (YGAdd), even in the presence of outliers (XGMixed). In the absence 

of other sources of bias (i.e., XGLogN, XG_Trunc, and XGMixed), the analytic approach 

that best reflected the underlying truth had the best model performance and least biased 

estimates, regardless of the skewness of the independent variable. In the presence of another 

bias source (e.g., measurement error in XGMErr), all approaches yielded biased estimates. 

Although the true dose–response relationship is always unknown, comparing model fit 

under different analytical approaches can provide guidance on selecting the model that 

best represents associations in the analytic dataset. Fit statistics, such as AIC used in our 

example, can be useful as RMSE and %bias cannot be derived without the truth. Our 

findings illustrate that the decision to log-transform independent variables should be based 

on whether such transformation improves model fit statistics compared to alternative model 

specifications, rather than basing the decision on the distribution of the independent variable.

Although concerns for outlier influences are often reported as motivations to log-

transform skewed independent variables, our simulation results comparing estimates by X 
transformation or robust linear model suggest that outlier influence is a lesser concern than 

incorrect model specification. Log-transforming X substantially biased expected values of 

Y and expected values of Y per X contrasts when the underlying true relations were linear, 

across all data generation methods. Our results are in line with the previously demonstrated 

finding that using a geometric mean to describe the central tendency of a log-transformed 

independent variable is not more robust to outliers or precise than the arithmetic mean (13).

We additionally demonstrated a worked example using NHANES to determine the 

optimal modeling approach for a skewed exposure variable. Rather than defaulting to log-

transformation, we compared analytic models with various forms (i.e., original, quadratic, 

log-transformed). We also assessed effect measure modification and compared alternative 

analytic approaches (i.e., robust linear model). Although a similar level of skewness was 

observed across all models, comparing AIC lent support that the model with log-transformed 

X best fit the data in our example overall and among males only, but not among females 

only. Importantly, we found that associations were weaker in models that did not fit the data 

well.
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Throughout, we focus on assessing model fit for estimating E(Y|X). A key related concern in 

linear and generalized linear models is that of the error term and the validity of conventional 

standard errors depend on accurate specification of the error term distribution. Thus, one 

might speculate that examining model residuals is also crucial to our endeavor, since it can 

help uncover phenomena like violations of homoskedasticity (does the variance change with 

values of predictors) that signal model misspecification. However, we note that in the special 

case of our g-computation-based estimator (with bootstrap standard errors in the case of 

our blood lead example), the validity of the estimates does not depend on homoskedasticity 

of the error term, and only the “mean model” for estimating E(Y|X) need be correctly 

specified. Thus, in contrast to AIC, which addresses relative goodness of fit for competing 

mean models, examination of model residuals may yield misleading information about 

whether one should transform exposures because residuals are impacted by the mean model 

as well as the error distribution. In the case where one is interested in model parameters, 

rather than g-computation, an alternative way to address non-normal residuals would be 

the use of heteroskedasticity-robust standard errors, or bootstrapping. In the case of our 

blood lead example, one can also address non-normal error term distributions through 

transformations of the outcome. G-computation gives a framework for easily contrasting 

implications of different transformations of the data.

A broader contribution of this work is that we demonstrate an approach to assessing whether 

transformations of independent variables may be needed. Following the original work of 

Box and Tidwell (7), we focus on how the transformation of independent variables affects 

overall model fit. Alternative to relying on significance testing of independent variables, 

our approach to compare the overall fit of models with different exposure transformations 

more directly addresses the central question of how exposures should be entered into the 

model. Comparing the size and precision of effect estimates from models with different 

exposure transformations is typically difficult because transformation fundamentally alters 

the interpretation of model coefficients. However, our approach of focusing on expected 

values and contrasts of expected values at specific values of exposure ameliorates this 

issue and allows direct comparison of the implied effect sizes under each transformation. 

This approach is also beneficial when different transformations may fit better in subsets 

of the data, as in our NHANES example: regression coefficients for males and females 

were not comparable due to different preferred transformations, but the expected contrasts 

were easily comparable. This approach also benefited interpretability due to our Box–Cox 

transformation of the study outcome, which would otherwise yield effect measures that do 

not map directly onto the measured outcome. We note that this approach is a simple form of 

g-computation, which has wide applicability for use in flexible models (24–26).

When presented with skewed independent variables, defaulting to log-transformation is not 

a one-size-fits-all approach to resolve potential biases. Rather, it may be more important to 

apply epidemiologic thinking to speculate on sources of bias and approaches to resolve 

specific biases identified. For example, log-transforming an independent variable may 

not fit the data well if the underlying dose–response relationship is non-linear on the 

log scale (e.g., linear or quadratic on the additive scale), irrespective of the skewness 

of exposure. Specifically for skewed exposure, a mixture distribution of two distinct 

populations (non-occupational and occupational sources) could additionally include another 
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source of bias (e.g., healthy worker bias), in which case estimation of dose–response in 

stratified populations may be more appropriate. Another example that can give rise to 

skewed exposure is outliers, potentially introduced by measurement error due to factors 

such as batch effects or urinary dilution, in which case correcting for information bias 

(27) would be preferable to log-transformation. While not demonstrated in our study, other 

potential sources of bias (i.e., confounding, selection) can be considered as to whether 

they can give rise to a skewed distribution of the independent variable and corrected for 

using appropriate methods rather than log-transforming the independent variable. Last, our 

findings on X transformation also apply to misspecification of confounders and residual 

confounding, reinforcing the importance of correct model specification since transformation 

of independent variables is one of many approaches to improve model fit (28).

CONCLUSION

Findings from our simulation suggest that in general linear models, skewness of an 

independent variable does not always warrant log-transformation, even in the presence of 

outliers, and can bias effect estimates at lower and higher tails of the distribution if it 

does not reflect the underlying true dose–response relationship. Broadly, we recommend 

that skewed distribution of independent variables should not inform the decision to log-

transform exposure, unless such skewness is thought to have arisen from a source of bias. 

Since the true dose–response relationship is unknown, investigators should consider several 

analytic models and base their final model selection on a comparison of fit statistics. In 

our simulations, model fit was correlated with bias, suggesting that the Akaike information 

criterion may be a useful tool for comparing competing models when the true bias is 

unknown. If skewed distribution of an independent variable is thought to have arisen from 

a bias source (e.g., confounder, selection, measurement error), it is important to include in 

model comparison the analytic models that directly address and ameliorate such bias rather 

than log-transforming the independent variable.
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Figure 1. 
Mean bias (a), percent bias (b), and root mean squared error (c) associated with 

p− y xq1 − p− y xq0 . Each figure contains results from 8 X generation method (XGs) and 

Y data generation methods (YGs) across 1000 simulations with a sample size of 500, with 

additive YG presented in the top row and multiplicative YG in the bottom row.
aXGLogN: ln(X) ~ N(μ=0.42, σ=0.8); bXGTruncN: X ~ TN (a=0.01, μ=0.42, σ=2.4); 
cXGMixed: 80% of X ~ TN (a=0.01, μ=0.42, σ=2.4), 20% of X ~ TN (a=0.01, μ=0.63, 

σ=7.2); dXGMErr; 95% of X ~ XTruth, 5% of X ~ XTruth*MErr, where XTruth ~TN(a=0.01, 
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μ=0.42, σ=2.4) and MErr ~ TN(a=0.01, μ=1, σ=2).; eYGAdd; Y = 0.3X + N(0,1).; fYGMult: 

Y = 0.3ln(X) + N(0,1).
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Figure 2. 
Impact of effect size and skewness on the estimation of mean percent bias associated with 

average absolute difference in predicted Y per exposure contrast (△ : p− y x50 − p− y x25 ▽: 

p− y x75 − p− y x50 ). Each figure contains results from 8 X generation method (XGs) and 

Y data generation methods (YGs) across 1000 simulations with a sample size of 500, with 

additive YG presented in the top row and multiplicative YG in the bottom row.
aXGLogN: ln(X) ~ N(μ=0.42, σ=0.8); bXGTruncN: X ~ TN (a=0.01, μ=0.42, σ=2.4); 
cXGMixed: 80% of X ~ TN (a=0.01, μ=0.42, σ=2.4), 20% of X ~ TN (a=0.01, μ=0.63, 
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σ=7.2); dXGMErr; 95% of X ~ XTruth, 5% of X ~ XTruth*MErr, where XTruth ~TN(a=0.01, 

μ=0.42, σ=2.4) and MErr ~ TN(a=0.01, μ=1, σ=2).; eYGAdd; Y = 0.3X + N(0,1).; fYGMult: 

Y = 0.3ln(X) + N(0,1).
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Figure 3. 
Scatter plot of blood lead (ug/dL) and systolic blood pressure (mmHg) along with regression 

lines from crude models and vertical lines representing 5th, 25th, 50th, 75th, and 95th 

percentiles of lead.
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Table 1

Data generation methods of X and Y used in the simulation studies.

Notation Description Parameters

X generation methods (XGs)

 XGLogN X follows log-normal distribution ln(X) ∼ N(μ = 0.42, σ = 0.8)

 XGTrncN X follows normal distribution, truncated at zero X ∼ TN (a = 0.01, μ = 0.42, σ = 2.4)

 XGMixed X follows skewed distribution due to mixed distribution (two truncated normal) 80% of X ∼ TN (a = 0.01, μ = 0.42, σ = 2.4)
20% of X ∼ TN (a = 0.01, μ = 0.63, σ = 7.2)

 XGMErr X follows skewed distribution due to measurement error
95% of X ∼ XTruth

a

5% of X ∼ XTruth
a
*MErr

b

Y generation methods (YGs)

 YGAdd Additive associations between X and Y Y = βX
c
*X + Error

d

 YGMult Multiplicative associations between X and Y Y = βX
c
*ln(X) + Error

d

Abbreviations: ln, natural log; μ, mean; σ, standard deviation; a, lower truncation point; N, normal distribution; TN, truncated normal distribution.

a
XTruth: true values of X measured without error, which follows TN(a = 0.01, μ = 0.42, σ = 2.4)

b
MErr: measurement error that is proportional to the true values of X, which follows TN(a=0.01, μ = 1, σ =2).

c
βX: linear regression coefficient of the untransformed/transformed X, which was set to 0.3.

d
Error: linear regression error term, which follows ∼ N(0,1)
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Table 3.

Average predicted values of systolic blood pressure at percentiles of blood lead p y xq , marginal 

difference in predicted systolic blood pressure equivalent to 25 percentile change in the total population 

p y ∣ xq1 − p y ∣ xq0 , where exposure contrast from 50th to 25th percentile=0.47 ug/dL and 75th to 

50thpercentile=0.78 ug/dL), and their model fit by analytic approach in NHANES 1999–2016 (n=23,113)
a

Regression models

Linear Robust Log-transformed Quadratic

Crude

AIC −296581 −296539 −297174 −296814

p y ∣ x25 115.69 (115.41, 115.96) 115.83 (115.56, 116.09) 114.8 (114.55, 115.05) 115.19 (114.86, 115.44)

p y ∣ x50 116.20 (115.98, 116.42) 116.47 (116.26, 116.69) 116.71 (116.49, 116.93) 116.09 (115.87, 116.31)

p y ∣ x75 117.01 (116.77, 117.28) 117.51 (117.27, 117.75) 118.69 (118.41, 118.97) 117.51 (117.26, 117.89)

p y ∣ x50 − p y ∣ x25 0.51 (0.41, 0.63) 0.64 (0.53, 0.76) 1.9 (1.8, 2.1) 0.90 (0.79, 1.13)

p y ∣ x75 − p y ∣ x50 0.82 (0.65, 1.0) 1.0 (0.86, 1.2) 2.0 (1.8, 2.1) 1.4 (1.3, 1.8)

Adjusted for age, gender, race/ethnicity, education, NHANES cycle, waist circumference

AIC −301635 −301614 −301648 −301635

p y ∣ x25 118.22 (117.96, 118.48) 118.48 (118.24, 118.73) 117.99 (117.69, 118.29) 118.15 (117.84, 118.43)

p y ∣ x50 118.28 (118.04, 118.51) 118.54 (118.32, 118.77) 118.29 (118.07, 118.52) 118.25 (118.01, 118.48)

p y ∣ x75 118.37 (118.14, 118.60) 118.63 (118.42, 118.86) 118.60 (118.34, 118.88) 118.41 (118.18, 118.66)

p y ∣ x50 − p y ∣ x25 0.057 (−0.0061, 0.12) 0.058 (0.0052, 0.11) 0.31 (0.13, 0.48) 0.10 (0.011, 0.22)

p y ∣ x75 − p y ∣ x50 0.092 (−0.0097, 0.20) 0.093 (0.0083, 0.18) 0.31 (0.13, 0.49) 0.16 (0.017, 0.34)

Abbreviations: linear, general linear model (GLM) with untransformed X; robust, robust linear model with untransformed X; log-transformed, 
GLM with log-transformed X; quadratic, GLM with quadratic term for X; AIC, Akaike information criterion.

a
Adjusted for age, gender, race/ethnicity, education, NHANES cycle, waist circumference and 95% confidence intervals bootstrapped.
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Table 4.

Sex-stratified average predicted values of systolic blood pressure at percentiles of blood lead p y xq , 

marginal difference in predicted systolic blood pressure per change in blood lead equivalent to 25 percentile 

change in the total population p y ∣ xq1 − p y ∣ xq0 , where exposure contrast from 50th to 25th percentile=0.47 

ug/dL and 75th to 50thpercentile=0.78 ug/dL), and their model fit by analytic approach in NHANES 1999–

2016 (n=23,113)
a

Model Parameter Females (n=11,180) Males (n=11,933)

Linear AIC −145063 −157491

p y ∣ x25 115.64 (115.26, 116.01) 120.29 (119.94, 120.62)

p y ∣ x50 115.71 (115.37, 116.05) 120.36 (120.05, 120.66)

p y ∣ x75 115.82 (115.43, 116.23) 120.48 (120.19, 120.76)

p y ∣ x50 − p y ∣ x25 0.071 (−0.070, 0.23) 0.073 (0.0049, 0.15)

p y ∣ x75 − p y ∣ x50 0.11 (−0.11, 0.36) 0.12 (0.0077, 0.23)

Robust AIC −145052 −157473

p y ∣ x25 115.93 (115.56, 116.29) 120.68 (120.35, 120.98)

p y ∣ x50 116.01 (115.67, 116.34) 120.74 (120.45, 121.02)

p y ∣ x75 116.14 (115.75, 116.52) 120.85 (120.57, 121.12)

p y ∣ x50 − p y ∣ x25 0.082 (−0.053, 0.22) 0.068 (0.068, 0.13)

p y ∣ x75 − p y ∣ x50 0.13 (−0.085, 0.35) 0.11 (0.011, 0.2)

Log-transformed AIC −145061 −157501

p y ∣ x25 115.73 (115.35, 116.10) 119.90 (119.45, 120.33)

p y ∣ x50 115.73 (115.37, 116.08) 120.29 (119.98, 120.59)

p y ∣ x75 115.72 (115.25, 116.21) 120.68 (120.37, 120.99)

p y ∣ x50 − p y ∣ x25 −0.00078 (−0.25, 0.27) 0.39 (0.16, 0.62)

p y ∣ x75 − p y ∣ x50 −0.00078 (−0.25, 0.27) 0.39 (0.16, 0.63)

Quadratic AIC −145061 −157491

p y ∣ x25 115.61 (115.21, 115.99) 120.18 (119.73, 120.55)

p y ∣ x50 115.72 (115.37, 116.06) 120.30 (119.95, 120.61)

p y ∣ x75 115.87 (115.44, 116.34) 120.50 (120.21, 120.79)

p y ∣ x50 − p y ∣ x25 0.10 (−0.08, 0.33) 0.12 (0.016, 0.27)

p y ∣ x75 − p y ∣ x50 0.15 (−0.12, 0.49) 0.19 (0.026, 0.42)

Abbreviations: linear, general linear model (GLM) with untransformed X; robust, robust linear model with untransformed X; log-transformed, 
GLM with log-transformed X; quadratic, GLM with quadratic term for X; AIC, Akaike information criterion.

a
Adjusted for age, gender, race/ethnicity, education, NHANES cycle, waist circumference and 95% confidence intervals bootstrapped.
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