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Abstract

This work is based on the manifold-embedding approach to study biological molecules 

exhibiting continuous conformational changes. Previous work established a method—now termed 

ManifoldEM—capable of reconstructing 3D movies and accompanying free-energy landscapes 

from single-particle cryo-EM images of macromolecules exercising multiple conformational 

degrees of freedom. While ManifoldEM has proven its viability in several experimental studies, 

critical limitations and uncertainties have been found throughout its extended development and 

use. Guided by insights from studies with cryo-EM ground-truth data, simulated from atomic 

structures undergoing conformational changes, we have built a novel framework, ESPER, able 
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to retrieve the free-energy landscape and respective 3D Coulomb potential maps for all states 

simulated. As shown by a direct comparison of ground truth vs. recovered maps, and analysis 

of experimental data from the 80S ribosome and ryanodine receptor, ESPER offers substantial 

improvements relative to the previous work.

Graphical Abstract

Index Terms—

Biomolecules; free-energy landscape; kernel methods; manifold embedding; quantitative biology; 
single particle cryogenic microscopy (cryo-EM); spectral geometry; unsupervised machine 
learning

I. Introduction

MOLECULAR machines—consisting of assemblies of proteins or nucleoproteins—take on 

a range of unique configurations or conformational states as they go through their functional 

cycles [1]. These states are typically characterized by different spatial constellations of 

relatively rigid domains, and can be organized in a state space according to the continuous 

motions of each domain along a unique coordinate. Specific sequences of the states in 

this space form pathways along which the molecular machine may transform. When the 

number of occurrences of each state is known, the machine’s free-energy landscape can 
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be determined, and a path is singled out along which the machine performs its metabolic 

function [2].

A number of recent studies [1], [3], [4] were inspired by the realization that it is possible, 

through the analysis of experimental data, to gain insights into the rules governing 

a molecular machine’s function. In thermal equilibrium, these machines are constantly 

buffeted by the random motions of nearby solvent molecules which deform them reversibly 

as they transition via a series of thermally-driven steps. State-of-the-art single-particle 

cryo-EM [5]–[7] is now capable of providing large numbers of two-dimensional snapshots 

(i.e., projections) of a molecular machine undergoing this process. When the number of 

snapshots is sufficiently large—typically several hundred thousand—they capture virtually 

the entire range of conformations accessible in thermodynamic equilibrium. By virtue of 

the Boltzmann statistics, the relative number of sightings in each of these states can be 

translated into changes of free energy [8], [9]. Thus, under assumption of thermodynamic 

equilibrium, the machine’s free-energy landscape can be gauged from an experiment. 

Accurate estimation of this landscape for macromolecular assemblies is of unparalleled 

importance in modern structural biology.

The way to make use of the data from a single-particle cryo-EM experiment is not 

easy, however. Ideally, we would wish to compare 3D structures, but only 2D images 

are accessible experimentally. Each of these 2D images is a P pixel projection of the 

macromolecule, which is assigned an angular viewing direction on the unit sphere S2. The 

challenge then is that the relationship among the N images requires an analysis of a manifold 

Ω embedded in a high-dimensional Euclidean space ℝP , which is organized according to 

both conformational and orientational degrees of freedom. As manifolds are encountered in 

many domains of mathematics, science and engineering [10], dimensionality reduction has 

been widely pursued and given rise to a number of well-established techniques to analyze 

large and complex data sets. Representing data points on Ω in terms of leading eigenvalues 

and eigenvectors gives valuable insights into the manifold’s intrinsic structure, as these 

relationships have been well studied in the context of spectral geometry [11]. By means of 

dimensionality reduction, a suitable embedding can be chosen that maps the data points in 

Ω into a low-dimensional Euclidean space, thus creating the basis for the analysis of the 

molecule’s conformational spectrum and free-energy landscape.

In the analysis of cryo-EM data, both linear [3], [12]–[18] and nonlinear [1], [19], [20] 

dimensionality-reduction methodshave been applied, primarily principal component analysis 

(PCA) [21] and diffusion maps (DM) [22], [23]. Both approaches allow an analysis of the 

data points in Ω as embedded in ℝN, whose entries are the first N eigenvectors of the 

respective graph. Only a leading subset of these are needed for retrieving the conformational 

spectrum in good approximation. In the PCA approach, eigenvectors are obtained from the 

covariance matrix, whereas DM approximates the eigenfunctions of the Laplace-Beltrami 

operator (LBO) on Ω, sampled at the given data points. Another method, called Laplacian 

spectral volumes [4], relies on both linear and nonlinear dimensionality reduction. These 

methods can further be classified based on their type of data input: generating embeddings 

from either 2D projections straight from a cryo-EM experiment [1], [24], or from 3D density 
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maps reconstructed from those projections [4], [25]–[28]. It is expected that these competing 

manifold embedding methods should deliver equivalent information when cross-validated, 

and likewise for alternative techniques, which extend now into work using deep learning 

[29]–[32].

Here we follow the former strategy, making use of raw 2D projections from single-particle 

cryo-EM. Images are first grouped by projection direction (PD) on S2 and aligned. In the 

following we use the term PD for a group of projections with orientations centered on a 

grid point on S2 and falling within a given angular aperture width. This width is determined 

by the stipulation that changes of the image within the aperture due to orientation are 

small compared to conformational changes. Similarities between images within a PD appear 

as closeness between corresponding points in the N-dimensional space. The geometric 

structure formed by such an ensemble is a manifold with an intrinsic dimension n equal to 

the number of the system’s independent molecular degrees of freedom. In that manifold, for 

a given PD, images of molecules captured in random states are arranged—by virtue of their 

similarities—in the sequence of their continuous conformational motions.

In the following, we use the term PD-manifold approach to refer to this strategy, which 

entails an analysis of the n-manifold embedding of each PD, and the combination of 

resulting representations from all PDs across S2 to form a consolidated conformational 

spectrum. Specifically, for each PD independently, an embedding is first formed using 

nonlinear dimensionality reduction (via diffusion mapping), followed by several applications 

of nonlinear Laplacian spectral analysis (NLSA) [33] along different coordinates of the 

embedded space to reconstruct a series of images associated with each degree of freedom 

in the data set (as seen from that PD). This conformational information is then compiled 

across all PDs to form an occupancy map and corresponding free-energy landscape, in 

conjunction with 3D conformational movies. This approach was first introduced by Dashti 

et al. (2014) and is now termed ManifoldEM [24]. Results from previous ManifoldEM 

studies on biological systems—including the ribosome [1], ryanodine receptor [24], and 

SARS-CoV-2 spike protein [34]—have proven its viability and its potential to provide new 

information on the biological function of the molecules.

Since its introduction [24], ManifoldEM has been released to the public through both Matlab 

[35] and Python [36] distributions, with the latter providing a comprehensive graphics 

user interface, training manual, and enhanced automation schemes [37]. Throughout these 

developments [36], the performance of ManifoldEM software and methodology were 

analyzed extensively by both internal and external testing using several experimental data 

sets [38]. Some problems and indications of anomalies emerged during these studies [38], 

but without a comparison to ground truth, their origin could not be traced.

It was the absence of information on what outcome might be expected for a molecular 

structure undergoing conformational variations that motivated us to analyze the performance 

of ManifoldEM rigorously with synthetic data [39], [40]. In the course of this detailed 

heuristic analysis [41] we discovered distinct features of the manifold that enable us to 

improve the method of analysis and reduce the observed problems. The present account is 

a condensed version of [41] focusing on seminal results of general interest. Additionally, 
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alternative synthetic data are introduced and analyzed, pseudocode is added detailing three 

important steps for clarity, and an additional study is conducted on experimental data; 

altogether, these additions further grant an updated discussion.

We thus introduce a novel methodology (which we will term ESPER: Embedded subspace 
partitioning and eigenfunction realignment) which is able to properly navigate the n-

dimensional PD-manifold embeddings observed and accurately generate the molecular 

machine’s free-energy landscape as well as 3D movies depicting its function. Whereas 

the previous approach [1], [24] aims to reconstruct images via NLSA in an additionally 

embedded space spanned by one or more conformational motions (CMs), ESPER instead 

captures each CM directly from the initial embedding while retaining the original cryo-

EM raw images. In addition, several novel operations and refinements to the existing PD-

manifold approach are introduced, including a previously unaccounted-for high-dimensional 

eigenbasis transformation that proved essential for correctly recapitulating ground-truth 

information, as well as identification of the proper 2D subspaces required to adequately 

capture each CM. We demonstrate that this alternative methodology provides results of 

significantly improved quality.

II. Simulation of Cryo-Em Ensembles

We first introduce our framework for the creation of synthetic ground-truth single-particle 

cryo-EM data sets in the form of 2D projections of 3D density maps arising from a quasi-

continuum of atomic structures [39], [40]. In the time since its conception, this synthetic 

frameworkhas already been used as a performance benchmark by two other groups [29], 

[42]. To begin, a suitable macromolecule is chosen as a foundational model, defined by 

structural information available in the form of 3D atomic coordinates from the Protein 

Data Bank (PDB) [43]. Using this initial PDB structure as a seed, a sequence of states is 

generated by altering the positions of specific domains of the macromolecule’s structure. 

To mimic quasi-continuous CMs, we used equispaced rotations of the domains about their 

hinge-residue axes. The number of these mutually independent CMs defines the intrinsic 

dimensionality n of the system. By exercising these domain motions independently in all 

combinations, a set of atomic coordinate structures in PDB-format are generated. In sum, 

this quasi-continuum of states spans the molecular machine’s state space (SSn).

For this work, the heat shock protein Hsp90 was chosen due to its illustrative design, 

exhibiting two arm-like domains connected together in an overarching V-shape which 

naturally undergo large conformational changes [44]. We initiated our workflow with the 

fully closed state via entry PDB 2CG9, whose structure was determined at 3.1 Å by X-ray 

crystallography [45]. Instead of a single conformational motion (arms open to closed, as in 
vivo), we decided to create three easily-identifiable and fully-decoupled domain motions, 

which we refer to as CM1, CM2 and CM3. Using combinations of these CMs, three synthetic 

state spaces (SSn) were generated, with intrinsic dimensionalities of n = 1, 2, 3. In-depth 

details for these data sets, such as exact atomic descriptions of each state, are provided in 

Supplementary Material Section A.
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Image artifacts and ensemble statistics are also incorporated into these state-space models 

in four steps, termed data-type I, II, III and IV, with each step designed to move closer 

to emulating characteristics anticipated in a cryo-EM experiment. Data-type I is given no 

simulated experimental artifacts or occupancy assignments, which allows us to analytically 

quantify the trajectories of our simulated conformational changes under ideal settings 

(Movie 1). In data-type II, we vary the abundance of images (τ) per state in each data 

set and add noise to the images with varying signal-to-noise ratio (SNR), so as to quantify 

the robustness of this geometry in the presence of noise and statistical coverage. In data-type 

III, we further apply a contrast transfer function (CTF) with realistic microscopy parameters 

and random defocus variations (within the typical range expected in the experiment), and 

add noise to obtain an experimentally-relevant SNR. Finally, data-type IV incorporates a 

non-uniform occupancy map, thereby simulating an energy distribution for states in data-

type III. Detailed information pertaining to the construction of each of these three data types 

is provided in the Supplementary Material Section C.

III. Analysis of Embeddings

In the following, the most significant findings of our heuristic analysis of the embeddings 

of numerous PD manifolds [41]—performed over three state spaces (SS1, SS2 and SS3) 

and four data-types, using both linear and nonlinear dimensionality-reduction methods—are 

presented. In sum, these discoveries provide a solid rationale for the strategies devised in the 

ESPER method described below.

As a note on the choice of dimensionality-reduction method, overall, the results of our 

analysis using PCA and DM were virtually identical, unless otherwise stated. Here we 

describe the embeddings achieved via DM, as is standard in the founding ManifoldEM 

methodology. A summary of both the DM and PCA approach is provided in Supplementary 

Material Section D, where we define parameters such as the Gaussian bandwidth (ε) used 

in the Gaussian kernel (12), and introduce the previously-established double-filtering kernel 

[1].

Analysis of Data-type I.

We first generated a different embedding for each of several PD manifolds in SS1, with 

each of the resultant point clouds containing a collection of points corresponding to images 

depicting conformational states from CM1. A distinct pattern emerged (Fig. 1(b)) when 

examining the embedding in terms of its set of 2D eigenvector subspaces {Ψi × Ψj} where i 
< j, which revealed conformational signal following the Lissajous curves [46]

Lp, q = cos(pπx) × cos(qπx) ∣ x ∈ [0, 1]; p < q ∈ ℤ+ . (1)

In (1), x is the conformational coordinate represented by a number in the interval [0, 1]. The 

appearance of these Lp,q curves—which are the Cartesian products (symbolized by ×) of two 

sinusoids—aligns with the known attributes of the LBO approximated by DM. Specifically, 

the functions
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ψk = cos(kπx ∣ x ∈ [0, 1]; k ∈ ℤ+ (2)

are the canonical eigenfunctions of the LBO on the interval [0, 1] subject to Neumann 

boundary conditions [47]. We were able to directly observe these individual cosines in each 

PD embedding by ordering the indices of points in each eigenvector along the ground-truth 

CM1 sequence of states (Fig. 1(a)). When this procedure was repeated for SS2 and SS3—

independently for each CM present—we observed that for n degrees of freedom in a given 

data set, there are n independent sets of sinusoids ψk. Each of these sets ψk
γ ∣ γ ∈ ℤ+ ≤ n , 

denoted by an index γ per degree of freedom, are interspersed throughout the leading 

eigenvectors.

While we can view each ψk
γ individually, given privileged knowledge of the ground-truth 

sequence of states [41], this does not apply for experimental data, since points arrive in a 

random sequence and will also include missing or duplicate states. However, since the points 

in each ψk
γ are always scrambled in the same way in all eigenvectors, we can instead rely 

on the composite of any two eigenvectors to always manifest a readily identifiable form. 

For these composites, we found that CM information is portrayed most simply (without 

overlap) along a specific subset of the Lp,q curves, and that for each CM, only a single 

2D subspace was required to recapitulate ground truth. The eigenvectors {Ψi × Ψj} of this 

essential subspace are defined by the Cartesian product of the first two eigenfunctions {ψ1 × 

ψ2}of the respective CM, forming a parabola (Fig. 2). In this projected view, states differing 

in coordinates that are orthogonal to the projection plane—and thus describe ulterior CM 

information embedded on a higher-dimension surface—overlap. We note that this finding 

stands in contrast to the previous ManifoldEM methodology, which starts with a single 

eigenvector Ψi from the initial embedding for mapping a given CM [1]. Later in our 

analysis, we will demonstrate the difference and its consequences.

As can be seen in Fig. 2, the parabola-housing 2D subspaces corresponding to CM1 

and CM2 are {Ψ1 × Ψ3} and {Ψ2 × Ψ5}, corresponding to ψ1
1 × ψ2

1  and ψ1
2 × ψ2

2 , 

respectively. These parabolas are a minority intermixed among a majority of 2D subspaces 

displaying the image sequence in a variety of more complicated spatial patterns. For 

example, {Ψ1 × Ψ2}displays both CM1 and CM2 content on a top-down projection 

of a parabolic surface—corresponding to ψ1
1 × ψ1

2 —whereas {Ψ3 × Ψ4} charts CM1 

information along an alpha-shaped trajectory ψ2
1 × ψ3

1 . Great care must be taken to 

identify the highly-informative CM parabolas present, while avoiding subspaces where CM 

information is obfuscated.

The ability to do so is worsened by the additional presence of 2D subspaces displaying 

higher-order Lp,q parabolas (such as {Ψ3 × Ψ6} corresponding to ψ2
1 × ψ4

1 ) which 

deceptively repeat a conformational motion one or more times (i.e., multivalued) within 

one span of the parabolic trajectory. We denote these higher-order parabolas as harmonics, 

which do not preserve topological structure (i.e., non-injective surjections [48]) and must be 

avoided when mapping a CM. This is a problem that becomes more challenging for data 
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sets with multiple degrees of freedom, which was not addressed in an automated way in the 

founding ManifoldEM methodology.

We next describe the major differences observed between the distributions of point clouds 

corresponding to different PDs. Naturally, as each 2D projection of the molecular machine 

provides an incomplete representation of the underlying 3D density map, depending on the 

type of motion as viewed in the PD under investigation, ground truth is preserved to different 

degrees. The effect of this PD disparity was present in all embeddings we analyzed, and 

especially those from data sets simulated with more than one degree of freedom. The most 

dominant characteristic was an apparent rotation of the point clouds in each subspace, as 

seen subtly in the 2D subspaces shown in Fig. 2 (e.g., {Ψ2 × Ψ5}). In other PDs, the effect 

can be more drastic, with each projected CM parabola appearing more like the projection of 

a rotated parabolic surface.

Through an analysis of how the canonical eigenfunctions on a rectangular domain transform 

as the data type is translated step-wise from atomic models to 3D density maps to 2D 

projections [41], we found that the cause of these rotations was tied to the projection of 3D 

macromolecular content in a given PD. In close approximation, a given eigenvector Ψi is a 

linear combination of n canonical eigenfunctions cos kπxγ ∣ k ∈ ℤ+ , each corresponding to 

a degree of freedom xγ ⊂ ℝn. As an example from our analysis using SS2, we show that the 

leading ΩPD eigenfunctions appear in the form

Ψi = cos(θ)cos(vπx) + sin(θ)cos(wπy) = Aψv + Bψw (3)

Using this explicit expression, we are able to near-perfectly approximate the heuristically-

derived embeddings [41]. Further, the sum of the squared coefficients is conserved across 

pairs of eigenvectors, such that the base functions Ψi′ = ψv and Ψj′ = ψw can be expressed as a 

rotation Ψ = RT Ψ′, with form

Ψi(θ)
Ψj(θ) =

cos(θ)ψv + sin(θ)ψw
−sin(θ)ψv + cos(θ)ψw

(4)

From our analytical expression, it is clear that, depending on the PD, CM information—

pertaining to each of the system’s degrees of freedom—will lie on some linear combination 

of the embedded manifold’s orthogonal eigenvectors. We denote this feature as a result of 

eigenfunction misalignments, which are neither described nor accounted for in the original 

ManifoldEM framework, and explain some of its previously-documented problems [35], 

[36], [38].

Analysis of Data-type II.

As finite SNR is an important attribute of any experimental data set, we next sought to 

understand how the structure of the PD embeddings change with varying SNR (Fig. 15) 

and state space coverage. For both PCA and DM as dimensionality-reduction technique, the 

fidelity of the resulting spectral geometry to the state space ordering decayed with increasing 
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noise level. Overall, the behavior of the embeddings from each PCA and DM became 

increasingly similar as the SNR was decreased (Fig. 3).

At the same time, we investigated the effects of varying state space coverage across several 

SNR regimes, and its effects on the robustness of the corresponding embeddings. For this 

study, we used the 20 images in PD1 representing SS1 (i.e., one full range of conformational 

motion), and varied both the number of times (τ) these M = 20 ground-truth states were 

duplicated as a group—with each instance having a different realization of additive Gaussian 

noise—and the SNR of each image therein. Here, Gaussian noise of constant variance 

was applied for each SNR regime and uniquely added to each of the τM = N images 

independently. An excerpt from the results of our analysis is shown in Fig. 3, where a highly 

structured pattern emerged. Specifically, when noise at increasing levels was added to each 

image (decreasing SNR), increasingly larger values of state occupancy were required to 

reestablish a coherent structure in the spectral geometry. We found that as the value of τ 
is increased, there exists a lower threshold (τc) such that the arrangement of points in the 

embedding is in highest achievable consistency with its ground-truth state space. In other 

words, there is a fixed amount of coverage that is sufficient.

This trend is demonstrated in Fig. 4 for three PDs where CM1 is highly pronounced (with 

arm motion along the projection plane), while CM2 is visually obscured to different extents. 

Due to these relations, the point clouds corresponding to CM2 appear far less structured than 

their CM1 counterparts. In general, due to PD disparity, we found that the characteristics 

of each CM-parabola can be seen to vary significantly depending on viewing direction. The 

variations include average width, length, density, trajectory, and spread of data points in 

each parabolic point cloud, with aberrations occurring most frequently in CM subspaces 

generated from PDs where the apparent range of the given CM is diminished. As a result, 

while the CM subspaces for all PD manifolds carry reliable content for recovery of 3D 

density maps along a conformational trajectory, certain clusters of PDs ⊂ S2 offer less 

reliable geometric structure for accurately estimating occupancies of CM states therein.

Analysis of Data-type III.

We finally analyzed the PD manifolds obtained from image ensembles generated 

with experimentally-relevant CTFs and SNR, as detailed in Supplementary Section C. 

Specifically, we tested the performance of the CTF double-filtering kernel [1], and 

found a noticeable inward-curling at the ends of the resulting CM subspace parabolas. 

Notwithstanding this artifact, the double-filtering kernel was successful in preserving the 

most important aspects of the manifold, and proved superior to alternative techniques 

explored, such as embedding using the standard kernel from sets of CTF-corrected images.

Additional Considerations.

In the following section, several considerations are provided pertaining to the relevancy 

and breadth of this heuristic analysis. Our preceding analysis is focused on data models 

originating from molecules undergoing collective rigid-body motions, which we believe 

are sufficient for most molecular machines, but may fall short of addressing instances 

involving more complex situations. This is especially the case for those machines entailing 
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the concerted binding and release of ligands, which naturally require a separate state space 

for each possible combination of the machine with its binding partners. For such a situation, 

a similar heuristic analysis could be conducted using synthetic models occupying two or 

more state spaces.

For completeness, we further tested the ability of PCA and DM to correctly embed PD 

manifolds formed from models exercising more complex motions. For this purpose, an 

ensemble of projections of the mouth-wings toy model (Fig. 14) was generated as described 

in Supplementary Material Section B. Compared to the synthetic framework used to 

generate the Hsp90 data set, this workflow provides a radically different approach, and 

incorporates concerted translation of atoms along different directions and magnitudes in 

the mouth section, which differ from domain rotations. Nonetheless, the embedding of 

these mouth-wings images still manifested all essential geometric characteristics previously 

detailed for Hsp90: presenting SS2 across a parabolic sheet (Fig. 5), as expected. Although 

the procurement of the mouth-wings model is nowhere near an exhaustive coverage of 

possible motion modalities, we believe the correspondence between its outputs and those of 

the independently-designed Hsp90 data set establishes some generality for our discoveries.

Finally for consideration, we have only dealt here with synthetic models that specifically 

exhibit each of their domain motions along an independent and mutually unrestricted 

sequence of quasi-continuous states. All n-wise combinations of these bounded intervals 

(one for each CM) produce an n-dimensional shape with a rectangular boundary. As a 

prerequisite to our conditions for adequate continuum reconstruction, the minimum coverage 

of cryo-EM images must be obtained (i.e., as achieved near τc) so as to effectively fill in 

this hypercube. For experimental conditions where each state occurs with a given frequency 

as dictated by its underlying free energy, this condition must be met for the least abundant 

states in the data set. As it turns out, this condition must only be met for a handful of PDs at 

minimum, to be described at length in our discussion.

Once this condition is met, we have further shown that the corresponding Laplacian 

eigenfunctions are well defined for the hypercube domain [41]. However, in general, 

analytically solving the Laplacian for any arbitrary boundary is impossible. Eigenfunctions 

can change drastically depending on the boundary, and are analytically only known for 

certain elementary shapes, such as rectangles, discs, ellipses and special triangles [47]. On 

the other hand, geometric machine learning approaches can obtain solutions numerically, in 

principle for any boundary. However, such geometric machine learning methods still require 

the boundary to be known a priori. For systems with unknown boundaries, the problem is 

intractable.

As the set of all possible molecular machines is unfathomably complex, it is unlikely that 

one single algorithm could ever be so versatile as to anticipate every possible instance. 

Instead, we are interested in casting a wide enough net so as to capture the dynamics of 

a large portion of these systems, which we surmise operate within rectangular boundaries 

of an n-dimensional latent space of relatively-rigid multi-body motions. However, one can 

still imagine all sorts of other situations, such as a system where one domain blocks—via 

steric hindrance—another domain from its full range of motion in a specific region of the 
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state space. We will return to this topic after the introduction of the ESPER method in the 

following chapter.

IV. The ESPER Method

Having conducted our detailed heuristic analysis, we now describe the ESPER method 

for recovery of conformational continuum from each ΩPD embedding. Our method has 

been designed to leverage the geometric features discovered upon applying ManifoldEM to 

synthetic data and address some of the problems encountered before; later we will detail 

caveats for data obtained from experiment. ESPER includes several novel strategies required 

to form the final free-energy landscape and corresponding 3D movies. These strategies 

include realignment of eigenfunctions, partitioning of 2D subspaces, and compilation of CM 

information on S2. In the following, each of these strategies will be outlined in turn.

Eigenfunction Realignment.

Previously, we described how the observed CM eigenfunctions may be misaligned with 

respect to the ideal eigenfunctions of the LBO, such that the correct sequence of 

conformational information is obfuscated along the given eigenvectors, to different degrees 

depending on PD. Since these misalignments are due to the change in apparent PD-

dependent interatomic distances, they are inevitable and pose a fundamental problem that 

must be addressed. As a remedy, the ESPER method aims to isolate the set of orthogonal 

sinusoids representing each CM in their complete form within each ΩPD eigenbasis.

In our previous exposition [41], we show that by use of appropriate rotation operators Ri,j, 

the canonical eigenbasis for each CM can be recovered. As a result of this decoupling of 

eigenfunctions onto a set of appropriate eigenvectors, each corresponding parabolic surface 

becomes aligned within its 2D subspace, and the projected structure is again that of a single 

parabola carrying information about a single CM along its curve. Thus, as long as each 

parabolic trajectory corresponding to a given CM is aligned with the plane of an independent 

2D subspace, we can restrict our study to an analysis of only a few essential subspaces; one 

for each degree of freedom.

As a demonstration of this technique—termed eigenfunction realignment—Fig. 6(a) shows 

the eigenvectors (reordered along CM1) for a highly-misaligned PD eigenbasis from SS2 

in data-type I. As seen in the first column, while Ψ1 = ψ1
1, Ψ4 = ψ2

2 and Ψ5 = ψ3
1 are in 

agreement with expectations, Ψ2 = ψ2
1 and Ψ3 = ψ1

2 appear heavily deformed. (Recall that the 

planar distributions are in fact sinusoids when visualized in the CM2 frame of reference). 

As a direct consequence, any subspace composed in combination with Ψ2 or Ψ3 will be 

misaligned with respect to its ideal form (Fig. 6(b)).

ESPER is designed to correct for these misalignments using orthogonal transformations. 

Specifically, we apply a rotation operator represented by a d × d matrix O of sufficiently 

large dimensions, as required for encompassing all CM subspaces, to single-handedly 

reorient all aberrant surfaces in their respective 2D subspaces. The matrix O can be 

represented by the product of d(d − l)/2 rotation sub-matrices Ri,j, with each sub-matrix 
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parameterized by a unique angle and operating on a specific plane. The results of this 

operation in a selected example can be seen in Fig. 6(b) and (c); before and after applying a 

5D rotation matrix, respectively.

For the specific case of the 5D rotation matrix, there exist 10 rotation sub-matrices in total, 

with each corresponding to a specific rotation on the eigenbasis. Of these 10 matrices, we 

found that only one had to be altered for this case to achieve the results shown, having 

general form

R2, 3(θ) =

1 0 0 0 ⋯
0 cos(θ) −sin(θ) 0 ⋯
0 sin(θ) cos(θ) 0 ⋯
0 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

(5)

As this R2,3(θ) operator corresponds to transformations performed solely on Ψ2 and Ψ3 

(row 2 and 3 of the rotation matrix, respectively), eigenvectors previously identified as 

problematic are thus isolated. The result of this transformation on the full set of eigenvectors 

can be seen in the three columns of Fig. 6(a), which visualize the R2,3(θ) rotation under 

0°, 10° and 20°, respectively. Only Ψ2 and Ψ3 undergo change, as expected. After this 

operation, the initially entangled sinusoidal information contained in part between Ψ2 and 

Ψ3 is maximally separated between both eigenvectors, ultimately resulting in the alignment 

of all corresponding surfaces with their 2D subspaces (Fig. 6(c)), as desired. We also show 

the effects of applying a 4D rotation on SS2 in data-type II in Movie 3, where only one of 

the six possible Ri,j was altered to realign both CM1 and CM2 parabolas to the plane of their 

respective 2D subspaces.
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To generalize this solution for any ΩPD embedding, there are thus three unknowns: (i) the 

dimensionality d of the matrix O; (ii) the required rotation sub-matrices Ri,j; and, for each 

of these Ri,j, (iii) the rotation angle θ. After careful observation of all PDs across numerous 

data sets, we have determined that the dimensionality d and rotation operators Ri,j required 

are linked to the indices of eigenvectors housing each CM parabola. As a consequence, 

we need to first determine these CM subspaces, which can be identified by a systematic 

comparison of least-squares fits, while eliminating subspaces housing parabolic harmonics. 

The pseudocode of the eigenfunction determination procedure is given in Algorithm 1.

As a result of Algorithm 1, eigenvectors housing CM subspaces ℘ are identified (line 1.11)

—while excluding the possibility of parabolic harmonics (line 1.13)—with n!2
(n − 2)!  essential 

d-dimensional Ri,j operators defined (line 1.18). The rationale for removal of harmonics 

can be easily understood, since any 2D subspace formed in part by an eigenfunction 

corresponding to a known CM parabola cannot combine to form some other orthogonal 

CM parabola. Once these CM subspaces are known, we approximate the third unknown—

the rotation angle—using 2D histograms. In the case of noisy data, as each 2D subspace 

is rotated by a given Ri,j (θ), it exhibits a unique profile that can be characterized by a 

sequence of 2D histograms on that subspace, with one 2D histogram per each rotation 

angle θ. When we plot the number of nonzero bins in the corresponding 2D histogram as 

a function of Ri,j (θ), the minimum in this distribution corresponds to the angle required 

to properly counter-rotate each 2D subspace by the current operator (Movie 4). The 

pseudocode of the eigenfunction realignment procedure is provided in Algorithm 2.
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To good approximation, the d-dimensional rotations performed for each Ri,j operator in 

Algorithm 2 realign the essential eigenfunctions of each ΩPD CM subspace. An example 

visualization of this entire workflow, demonstrating the performance of Algorithm 1 and 

Algorithm 2 applied on a SS2 embedding from data-type II, is provided in Movie 5. 

We additionally perform a final least-squares fit Ψfit  on each rotated CM subspace. For 

data-type III, we found an implicit equation of a general conic section to be most flexible, 

defined by a polynomial of degree two

ax2 + bxy + cy2 + dx + ey + f = 0, (6)

which allows for the possibility of parabolic-like trajectories with elliptic or hyperbolic 

features. This flexibility is essential for fitting parabolic-like point clouds with inward 

curling near the boundaries, as was observed for manifolds formed by images modified by 

the CTF.

Subspace Partitioning.

Once each CM subspace is identified and rotated for a single PD, we must next correct 

for the nonuniform rates of change along the parabolas, which arise innately as a result of 

taking the Cartesian product of sinusoids. As a remedy, we apply an inverse-cosine mapping 

on each CM eigenvector, which presents the coordinates of the respective eigenfunctions 

in a space with uniform rates of change, consistent with the ground-truth relationships 

between atomic-coordinate structures [41]. We will indicate any eigenvector Ψi under this 

transformation with the insignium Φi. Each {Φi × Φj} CM subspace is then partitioned 

into a set of contiguous equal-area bins, representing collectively a quasi-continuum of 

conformational states, as shown in Fig. 7.

The motivation for this approach stems from the analysis of PD disparity in the presence of 

noise, where it is observed that the ground-truth bins and overall area of each point cloud 

manifest in a variety of sizes depending on viewing angle. Our area-based point-cloud fitting 

approach is able to correctly chart spatial discrepancies while remaining unencumbered by 

changing densities (i.e., occupancies) along each trajectory. For partitioning of each CM 

subspace, we first use the alpha shapes algorithm [49] to define the overall area of each 
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CM point cloud with a polygon—a generalization of the convex hull—representing the key 

features of its geometric shape (Fig. 7(b) and (c)). Next, using rays emanating from a point 

opposite the point cloud’s apex (Fig. 7(d)), we divide this polygon into a collection of 

contiguous sub-polygons of equal area (Fig. 7(f)). Each of these sub-polygons, in sequence, 

corresponds to one of the CM’s unique states, with the total number of points contained 

within each sub-polygon defining the corresponding state’s occupancy (Fig. 7(g)).

Since the points in any CM subspace that are aligned orthogonal to the respective projection 

plane describe ulterior CM information, averaging points together in that subspace only 

reveals the conformational information corresponding to the current CM. Hence, cryo-EM 

images assigned to each state can be averaged to generate each frame of the respective 

CM’s 2D movie. This process is then repeated for the 2D subspace where the second CM 

parabola resides, and so on for higher degrees of freedom. The pseudocode for the subspace 
partitioning procedure is given in Algorithm 3 in Supplementary Material Section G. The 2D 

movies obtained by this procedure for the example chosen can be found in Movie 6, showing 

both CM1 and CM2 captured along SS2 subspaces from images generated with SNR of 0.1 

and τ = 5 via data-type II. A similar output can be found in Movie 7 for data-type IV.

Conformation Compilation.

After aligning eigenfunctions and generating all 2D movies (one per CM for each PD), 

both the type of CM present in the 2D movie (e.g., CM1 or CM2) as well as its sense 
must be determined individually for each PD. This is a precondition for matching PD 

content globally on S2, since the ordering direction of states along a CM trajectory is 

arbitrary for each PD, due to arbitrary eigenfunction-polarity assignment inherent to any 

eigendecomposition [50]. While this information can be derived by visual assessment of 2D 

movies, a comprehensive automated strategy has also been developed using optical flow and 

belief propagation algorithms [37]. Once CM types and senses are assigned, the 2D movie 

of a given CM—housing indices of all images within its frames—can next be compiled 

together with all other 2D movies of that same CM across all PDs.

Following the ESPER method, we next generate an n-dimensional occupancy map by taking 

the intersection (overlap) of image indices corresponding to each combination of bins in 

the CM trajectories per PD. (Intuition for this procedure can be found in Supplementary 

Material Section G). Since the CM coordinates are intrinsically linked by the independent 

occurrence of image indices from the same PD image stack, this operation effectively 

reconstructs the n-dimensional hypersurface on which the images jointly reside. (If only 

one degree of freedom is desired, naturally no intersection is required). Next, image stacks

—one for each state—are generated and paired with an alignment file that carries the 

input alignment and microscopy information for each image therein. These files can then 

be used as input for the 3D reconstruction (e.g., as can be performed by RELION [51]) 

of the molecule in each state in the compiled state space. A more detailed description 

of all preceding steps in the ESPER method is additionally available [41], including 

comprehensive Python code [52].

Finally, to place ESPER within the context of the overarching ManifoldEM framework 

[1], we have provided a schematic in Fig. 8. Here, the ESPER method branches off 
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from the ManifoldEM workflow after completion of step 2. While ManifoldEM next 

performs a series of steps required by NLSA (see Supplementary Material Section E for 

a brief summary), ESPER instead performs eigenfunction realignment (steps 3 and 4) and 

subspace partitioning (steps 5 and 6). The two methods meet again at step 7 to achieve 

reconciliation of PD manifolds across S2, before splitting off once again to form final 

outputs independently in step 8.

For our analysis of synthetic continua in each data-type, we note that the stipulation in 

step 1 of the workflow in Fig. 8 is satisfied, with all PD manifolds formed with sufficient 

qualities for the observance of parabolic point clouds. The performance of the ESPER 

method hinges on the presence of this geometric information, and, as we will next show 

with a direct comparison to NLSA, a great number of benefits emerge when it is available. 

After this comparison, we will more concisely quantify the conditions for parabolic point 

clouds during our analysis of experimental data. Additionally, in the event that only a subset 

of ΩPD embeddings exist meeting these conditions, we will provide a strategy for alternating 

between use of ESPER and NLSA within the ManifoldEM framework.

V. Results With Synthetic Data

The results of applying the entire ESPER method on the 126 PDs from SS2 in data-type 

IV (with experimentally-relevant SNR and CTF) are shown in Fig. 9 and Movie 8. The 

former demonstrates the accuracy of occupancy assignments for comparison with Fig. 16 in 

Supplementary Material Section C, with the 2D occupancy map obtained via the intersection 

of image indices in all pairwise combinations of CM1 and CM2 bins (corrected for sense) 

in each of the 126 PDs. Overall, the results prove to be very accurate, with only subtle 

differences in occupancies near the boundaries of each CM, which manifest on the four 

corners of the 2D occupancy map. These discrepancies are mainly due to a combination 

of PD disparity, CTF-induced inward curling, and the vanishing derivatives of the DM 

eigenfunctions at the boundaries [22], [50], arising in each ΩPD embedding. To circumvent 

issues stemming from inclusion of CM subspaces with poor geometric structure arising from 

PD disparity, we note that while all images are used for subsequent 3D reconstructions, only 

those occupancy assignments for CM subspaces above an ℛ2 threshold value (0.7) were 

integrated during this analysis. In Movie 8, the occupancy map without ℛ2 thresholding is 

shown, along with the corresponding final 3D density maps for an example trajectory (3D 

movie) from the compiled 2D state space. As can be seen, the ESPER outputs uphold the 

spatial relationships in the ground-truth CMs with striking accuracy.

We additionally validated our results by calculating the Fourier shell correlation (FSC) 

[5] between 3D density maps recovered by the ESPER method and their ground-truth 

counterparts (Fig. 10), and found a good agreement of all states up to a resolution near 3 

Å, the ground-truth value. Q-scores [53] were also used as a local quantitative validation 

of the structural fidelity of the ESPER outputs. Using this approach on the ground-truth 

atomic-coordinate structures and their corresponding ESPER-recovered 3D density maps, 

we found highly favorable agreement across all residues in each state. On average, the 

Q-scores obtained were approximately 1.3 times that of the expected value (i.e., the average 
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Q-score at a resolution of 3 Å), as calculated based on a data bank of reported resolutions of 

3D cryo-EM density maps [53].

A comparison of the outputs of ManifoldEM using either the ESPER or NLSA route for 

three example PDs from data-type IV are provided in Movie 9 (with a snapshot shown 

in Fig. 11), with these PDs selected based on both the visual appearance of their images 

and their embedded geometries. It should be noted that the same preliminary steps were 

performed for both methods (i.e., steps 1 and 2 in Fig. 8) before the branch in the workflow. 

During this branch, recall that the ESPER method includes the use of a unique 2D subspace 

per CM, while avoiding parabolic harmonics and applying eigenfunction realignments, 

ultimately resulting in 2D and 3D movies that retain the raw cryo-EM images. In contrast, 

the NLSA approach operates on only one of the initial DM eigenvectors per CM, and 

performs no steps for avoiding eigenvectors or realigning subspaces. In the process, the raw 

cryo-EM images are unavoidably discarded during the NLSA procedure, ultimately resulting 

in final 2D and 3D movies formed from NLSA-interpolated images.

Immediately apparent for all three PDs in Movie 9 is the difference in quality of the 

Hsp90 domains under motion corresponding to the given CM. For ESPER, these domains 

are highly resolved across all frames produced, while for NLSA these regions are much 

less resolved and noticeably smeared out. Second, while the visual differences between 

frames of the ESPER movies appear to evolve at an even pace, differences in frames appear 

less emphasized near the beginning and end of the NLSA movies, as if the movie was 

decelerating near these regions. In addition, the NLSA occupancies share little resemblance 

to our ground truth, with errors accentuated near the boundaries. Similar boundary problems 

do exist but are significantly less pronounced in the ESPER-derived occupancy maps, with 

each map showing reasonable agreement with ground truth (i.e., bimodal for CM1 and 

unimodal for CM2).

Differences in outputs due to methodology are most pronounced for the example PD33, 

which is a representative from the class of embeddings with appreciably unaligned 

eigenfunctions from the ideal eigenbasis, with the subspace of CM2 here requiring a 

larger counter-rotation than CM1. As can be seen, the overall range of motion for 

CM1 is noticeably reduced compared to outputs from ESPER. For CM2, matters are 

much worse. While our procedure using ESPER correctly charted a rotated, properly-

aligned set of eigenfunctions, ManifoldEM employing NLSA used the existing embedding 

without accounting for realignment. As a result, the 2D movie produced by the NLSA 

method having closest resemblance to CM2 (i.e., Ψ4) demonstrated a physically-impossible 

sequence of motions: the splitting of the CM2 domain into two separate domains. At the end 

of Movie 9, the NLSA 2D movies obtained for the leading four eigenvectors are shown for 

comparison. Here, both (i) a physically-impossible splitting of the CM1 domain, and (ii) a 

subdued CM2 motion can be seen in the 2D movies obtained for both Ψ2 and Ψ3. A more 

detailed account of this comparison is also available [41].

In summary, while the NLSA and ESPER methods have operated on the exact same data

—even up to generation of identical manifold embeddings—only ESPER is able to fully 

leverage the geometric structure present to consistently recapitulate ground-truth CMs and 
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occupancies from a variety of PD manifolds. Further, while the ESPER method offers 

strategies to procedurally avoid introduction of nonsensical contextual output, NLSA can 

generate 2D movies with a wide range of defects [35], [36], [38], with each having the 

potential of appearing as a likely CM candidate to the naïve eye.

Finally, we note the total computation time for performing these two techniques on the 

same CM-eigenvector (Ψ1) from PD2, with final output a single 2D movie (as seen in 

Movie 9). While the application of the ESPER method to retrieve a 2D movie required 

approximately three minutes, the total computation time for NLSA for this same endeavor 

was over 90 times longer, with both methods having been run using a single-processor 

on the same workstation (3.8 GHz 8-Core Intel Core i7; 8 GB 2667 MHz DDR4). We 

additionally note that in the current release of the ManifoldEM framework [35], [36], it is 

required that this time-expensive NLSA computation is repeated in its entirety for every 

ΩPD eigenvector chosen during final compilation of the free-energy landscape. Meanwhile, 

applying our intersection of image-indices approach—as afforded by retainment of the raw 

cryo-EM images—the ESPER method compiles CM content for all PDs and generates the 

free-energy landscape within minutes. All in all, the ESPER method has the potential to 

push the total computation time for a typical data set of approximately 500,000 images down 

from weeks or months to only a few days.

These high computational demands were rationalized for the implementation of NLSA as a 

way to handle unknown manifold structures [1]. In contrast, our heuristic analysis directly 

informs us of anticipated characteristics of the spectral geometry, enabling us to circumvent 

these previous unknowns, and perform the necessary operations required to accurately 

retrieve high-resolution images and a corresponding occupancy map for all CM states. Based 

on this knowledge, the ESPER method is able to produce appreciably more accurate outputs 

than the previous technique in a fraction of the time.

VI. Results With Experimental Data

To assess the performance of ESPER—and the capacity of our heuristic knowledge—on 

real, experimentally-obtained data, we deploy our method on two data sets: the 80S 

ribosome from yeast [1] and ryanodine receptor type 1 (RyR1, ligand-free) [54]; both 

of which have been previously studied using ManifoldEM with NLSA [1], [24]. As 

these data sets are used only to compare outputs using either ESPER or NLSA, minimal 

conclusions will be supplied pertaining to the biological context of the results. Descriptions 

of experimental details are available in Supplementary Section F.

Motivated by our analysis of the synthetic data, we first searched through the experimental 

data sets for ΩPD embeddings with distinct geometric features matching those encountered 

during our ground-truth studies. This search was enabled by the interactive tools in the 

ManifoldEM Python GUI [36], which provides a flexible means to view the distribution of 

images and occupancy of each PD as the angular width of each PD is uniformly altered. 

For different PD angular widths, up to 10° on S2, we embedded a set of highest-occupancy 

PDs and analyzed the results. Overall, the structure of all ΩPD embeddings observed across 
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these data sets fell into three broad categories, with leading subspaces exhibiting either a (i) 
robust; (ii) marginal; or (iii) featureless, globular geometric form.

For the majority of manifolds analyzed, embeddings with globular form were the most 

frequently encountered, followed by marginal, then robust. We found that the presence of 

each could be reliably predicted based on two parameters: the angular width and occupancy 

of the respective PD. Specifically, for PDs with small angular widths (approximately 3°) and 

a relatively high occupancy (typically greater than 1000 images), robust parabolic features 

emerged in the corresponding embedded subspaces.

Of the two experimental data sets, only the 80S ribosome was able to meet this criterion 

(and consistently for numerous PDs), which was statistically favored given the sheer number 

of images available: nearly 850,000 total. For the approximately 350,000 RyR1 images, PDs 

formed with 3° angular widths typically contained less than 400 images each, resulting in 

globular-shaped embeddings as expected from the results in Fig. 3. In the case of the RyR1 

data set, as the angular width was increased to include a sufficient number of images in each 

PD, embeddings with marginal parabolic features emerged. Even still, these were intermixed 

with other PD embeddings exhibiting no apparent geometric features, which we assume is 

indicative of the presence of compounding factors, including: alignment mis-estimations, 

aberrant particles, and dispersed arrangement of angular assignments in a given PD. Further, 

since a vastly different manifold [19] (i.e., not a hypercube) is formed for images distributed 

on S2, the spectral geometry corresponding to a set of images falling within increasingly 

larger aperture widths, compared to a single point on S2, will become less marked by the 

features of a hypercube. Given this initial assessment, we next provide the outputs of ESPER 

on example subspaces exhibiting each of the three geometric properties observed.

80S Ribosome.

The results of applying subspace partitioning (Algorithm 3) via ESPER on an embedded 

subspace with robust parabolic features is shown in Fig. 12. Since robust parabolic features 

were present only in the leading subspace {Ψ1 × Ψ2}, and given appropriate use of ℛmin
2

in Algorithm 1, eigenfunction realignment was not applied. To note, after defining CM1 at 

{Ψ1 × Ψ2}, Algorithm 1 additionally defined all eigenvectors Ψj in composite with Ψ2 

(i.e., {Ψi × Ψj}) as CM1 harmonics. The 2D movie results for the first four eigenvectors 

are provided in Movie 10, with outputs using ESPER compared directly with those obtained 

from the same ΩPD embedding using NLSA. At the end of Movie 10, a schematic of the 80S 

ribosome is shown as viewed from this PD, with domains labelled.

The 2D movies produced by NLSA align well with the findings described in the original 

analysis [1], which were obtained from a suitable great circle in that analysis, where 

“typical” embeddings showed a parabolic form. The 2D NLSA movie we obtained 

corresponding to Ψ1 appears to exhibit the previously-described CM1 as seen from the 

current PD, including a ratchet-like intersubunit motion, a closing of the L1 stalk towards 

the intersubunit space, and a rotation of small subunit head along its long axis [1]. The 

2D movie corresponding to Ψ2 likewise appears to describe CM2 : a so-called nodding 

motion of the head which is needed for selection of tRNA during decoding [1]. However, 
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this motion is not isolated, and is also accompanied by similar—yet more subtle—domain 

motions as seen in the Ψ1 NLSA movie. The third NLSA movie (Ψ3) exhibits a collection 

of subtle domain motions as seen in the first two NLSA movies, while in the fourth NLSA 

movie (Ψ4), there appears to be a previously-undescribed shift in intensity within the 

intersubunit space. Through NLSA, the original work [1] defines the {Ψ1 × Ψ2} subspace as 

the basis for constructing the 2D energy landscape, corresponding to the motions observed 

in both the Ψ1 and Ψ2 NLSA movies.

As seen in Movie 10, the ESPER method provides nearly identical outputs as achieved by 

NLSA for Ψ2, Ψ3 and Ψ4. (To note, we had to force the calculation of Ψ2 in the ESPER 

workflow, as it was initially removed as a harmonic in Algorithm 1). A striking difference 

appears, however, in the sequence of states describing the leading CM, and specifically as it 

pertains to the trajectory of the head subunit. Instead of a simple left-to-right head motion 

as seen via NLSA, the motion charted by our method shares a likeness to a combination of 

the motions observed in both the first and second NLSA movies. Specifically, in the ESPER 

movie, the head subunit is first seen moving up and to the left, followed by a downwards 

motion (nodding) into the intersubunit space. Meanwhile, all other domains charted for CM1 

by the ESPER method move in a consistent fashion to those seen in the Ψ1 NLSA movie.

As understood in our approach, and in contrast to the analysis performed using NLSA, 

the {Ψ1 × Ψ2} subspace is fundamentally not a 2D state space {CM1, CM2} laid out 

conspicuously like a parabola, but actually a parabolic point-cloud ψ1
1 × ψ2

1  representing 

a single degree of freedom (CM1). Accordingly, our analysis calls into question the 

authenticity of the NLSA-interpolated motion along the base of the triangular path in the 

original 2D landscape [1]. This noticeable difference in interpretation arises strictly due to 

the different treatments of subspace geometry by the two methods. While NLSA projects 

onto one eigenvector before organizing images into supervectors to form interpolated NLSA 

movies, the ESPER method carefully charts the geometric structure of the 2D subspace, and 

creates each frame of the respective movie by selectively averaging subsets of the available 

cryo-EM images.

Ryanodine receptor (RyR1).

We next describe the results of ESPER on embeddings with marginal and globular geometric 

structure. In Movie 11, we show the 2D movies obtained from an RyR1 PD containing 976 

images within an angular diameter of 6°. Here, the {Ψ1 × Ψ3} point cloud corresponding 

to CM1 has a significantly more marginal parabolic appearance compared to those observed 

for the ribosome, while the best-fit point cloud for CM2 at {Ψ2 × Ψ4} appeared devoid 

of parabolic features al-together. For this embedding, the conformational motions output by 

using ESPER for each 2D subspace were highly similar—albeit noisier—to those output by 

NLSA for each eigenvector individually. In either case, the leading CM corresponds to the 

entire assembly of cytoplasmic shell, activation core and pore (appearing like an opening 

of the central channel pore), while CM2 corresponds to movement of the cytoplasmic shell 

resulting in an apparent lowering of the handle and clamp domains.
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Overall, these results are comparable to those described in the original study [24], with no 

major deviations observed, other than noise, between the performance of NLSA and ESPER. 

For this latter discrepancy, we found that by noise-filtering each 2D movie produced by 

ESPER using singular value decomposition (as denoted in Movie 11 with the initials 

“SVD”), we were able to very closely reproduce the appearance of the NLSA outputs 

(which, recall, are intrinsically noise-reduced). This likeness increases with the occupancy 

of the PD, which corresponds to the presence of more pronounced signal in the initial 2D 

movie used for decomposition during SVD. As a loose estimate, below 900 images we begin 

to see a significant drop in the consistency of these SVD outputs.

VIII. Discussion

The findings in this study are based on heuristic information obtained from simulated, 

controlled data sets which we have thoroughly analyzed to formulate a method—

termed ESPER—able to accurately and efficiently recapitulate ground-truth information. 

Specifically, we have identified the way sets of images originating from a molecular 

machine’s varying atomic structure are represented in low-dimensional embeddings obtained 

by prominent dimensionality-reduction techniques, and how to navigate this spectral 

geometry to recover the machine’s conformational continuum. Our findings on synthetic 

data sets—which encompass multiple degrees of freedom, nonuniform occupancy maps, and 

experimentally-relevant noise and CTF—provide a number of new insights unaccounted for 

in the founding ManifoldEM framework [1].

We additionally introduced alternative methods for producing synthetic data, which were 

used to create the Hsp90 and the mouth-wings continua. The latter example, which includes 

complex conformational changes that go beyond rotation of domains, illustrates the broader 

scope of our heuristic analysis, which not only provides insights for cryo-EM data, but 

also for projection data obtained through other methods of visualization. Several portions of 

our more-detailed heuristic analysis have also been directly extended to other experimental 

techniques dealing with alternative manifold inputs, such as the use of atomic coordinates 

in molecular dynamics and 3D density maps in cryo-electron tomography [41]. As such, 

we believe that there is a potential for the application of these insights to a wide range 

of experimental data sets beyond cryo-EM, and particularly those obtained from systems 

exercising multiple degrees of freedom in a continuous manner.

By applying the ManifoldEM framework on our synthetic data, we demonstrate that serious 

problems can emerge in the analysis, including presence of physically-impossible, stunted, 

or hybrid conformational motions (CMs), as well as erroneous occupancy maps. These 

issues mainly arise during one critical step, where the geometry of each embedding 

must be correctly charted to render a set of CMs and corresponding occupancies. This 

task is originally performed in most part by the application of NLSA [33], where each 

eigenvector of the diffusion map (DM) embedding is treated as an independent coordinate 

for a conformational change. By concatenating cryo-EM images along a given eigenvector, 

interpolated images are produced via NLSA, and re-embedded to form a new space from 

which a 2D NLSA movie is extracted representing the deduced CM.
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However, our heuristic analysis shows that the observed problems can arise when each 

eigenvector is treated as an independent source for a CM, while in actuality, a single 

eigenvector can correspond to some combination of CM eigenfunctions, as well as to 

eigenfunction harmonics. We additionally demonstrate how each CM is better mapped by a 

parabolic trajectory in a 2D subspace defined by two corrected eigenvectors, for which the 

projection of that trajectory onto a single eigenvector is naturally problematic. Our analysis 

found that it was essential to correct for these properties in order to accurately map each 

CM. Depending on the PD and data characteristics, these issues can combine to create 

several systematic errors, limitations and uncertainties that were previously pointed out [35], 

[36], [38].

We have developed the ESPER method as a means to circumvent these problems and refine 

the existing framework. The operations introduced in this study offer several enhancements, 

including our procedure for isolating CM subspaces, removing CM harmonics, correcting 

for eigenfunction misalignments, and directly retrieving each CM from the raw cryo-EM 

snapshots as arranged within the initial (corrected) embedding. In the last case, the use of 

the raw images is shown to improve both the accuracy of occupancy determination and final 

resolution of 3D structures, while providing a vastly simplified workflow for determining 

multidimensional free-energy landscapes. We have further shown that our implementation of 

these enhancements drastically decreases the overall computation cost.

All of this said, the ESPER method is not without its own limitations and uncertainties, 

which are least pronounced for relatively well-behaved synthetic data. Despite its 

remarkable performance on our 126-PD data set with experimentally-relevant SNR and CTF, 

we believe there is still room for improvement of our eigenfunction realignment technique. 

Specifically, future works could aim to deal with complex physical constraints (e.g., due 

to steric hindrance between moving domains) as well as data sets with a larger number 

of degrees of freedom. In the former case, the use of additional rotation operators may 

be required [41], creating a more complex tree of decisions, with ESPER outputs possibly 

refined by a maximum-likelihood approach or by using a neural network. Furthermore, 

for noisier, less-structured embeddings, the 2D histogram method may provide suboptimal 

counter-rotations. Besides, more robust procedures should be employed to identify and 

fit both highly-structured and less-structured regimes, such as a constrained least squares 

method [55] or a generalized Hough transform [56].

With the use of synthetic data, we also show that final occupancy assignments can have 

slight inaccuracies, which are most emphasized near the boundaries of each CM. Although 

not pursued here, since our method retains the raw cryo-EM images, these misassignments 

could be further corrected to improve 3D density maps and corresponding occupancy 

distributions. Specifically, an optimization approach could be designed to compare images 

within each bin and reassign erroneously-assigned snapshots into neighboring bins in which 

they most likely belong. To note, a maximum-likelihood approach does already exist that 

aims to extract such granular conformational heterogeneity [42], as does a method based 

on neural networks [32]. A more comprehensive discussion of additional, less-impactful 

improvements to the core ESPER method is also available [41].
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Our findings on both synthetic and experimental data sets establish a minimum requirement 

for PD-manifold studies of conformational continuum. Specifically, we have found that for 

maximal fidelity of final outputs with ground truth, a data set must contain well-structured 

geometry when embedded. The performance of ESPER hinges on the presence of such 

geometric information, and as the quality of the embedded geometry increases, more of our 

method’s benefits become available. As seen in our two examples, the ability to sensibly 

avoid harmonics or apply eigenvector rotations is only applicable up to the number of CMs 

present having pronounced geometric structure that is viable for reliable parabolic fits. If no 

geometric form can be deciphered in a PD embedding, it is effectively impossible to solve 

for these unknowns. Further, upstream errors in angular assignments will only worsen these 

trends and, depending on the severity of the error, critically undermine the efficacy of the 

ManifoldEM framework [38]. These misalignments present an unavoidable conflict that can 

only be addressed at the source.

This limitation presents a problem when dealing with typical experimental data sets, where 

it is most realistic to anticipate the presence of only a subset of PD embeddings which 

have adequate geometric information as required by the ESPER approach. Even given 

just one such high-quality PD, our analysis shows that the ESPER method is able to 

provide essential information on the molecular machine’s conformational spectrum. If such 

a PD-embedding was both highly-populated and available from a viewing angle where all 

CMs were well-visualized, all information pertaining to the machine’s total number and 

approximate types of degrees of freedom—as well as corresponding occupancies—could be 

accurately calculated from the images of a single PD alone.

We next expand this idea to the more likely presence of a subpopulation of such informative 

PDs, with the ESPER approach individually applied on each. To reconstruct adequate 3D 

density maps, alternative methods would then need to be devised to effectively fill in 

conformational information for the remaining PDs lacking geometric form. Indeed, the 

reliability of our approach decreases rapidly when approaching the regime of globular 

embeddings, since there is no geometric information to leverage. For these remaining PDs, 

the NLSA approach is better suited, since it can at least retrieve reasonable 2D movies from 

low-occupancy embeddings. However, since the apparent absence of geometric features 

in these embeddings does not discount their latent presence and potential impact, NLSA 

outputs may still incur the known limitations and uncertainties [35], [36], [38]. To mitigate 

these unavoidable issues, we recommend an altered use of NLSA, which is directly informed 

by the conformational spectra obtained by the ESPER method in the highest-quality PDs. 

Under such a scheme, the ESPER outputs would serve as a high-quality template on which 

NLSA outputs can be mapped.

In this tradeoff, there exists some gray area where it is difficult to make out which technique 

should take precedence. Certainly, low-occupancy globular embeddings should be handled 

by NLSA, and although the ESPER outputs on high-occupancy globular embeddings are 

similarly convincing and highly consistent with NLSA, it is our belief that the decision to 

run ESPER over NLSA on a given PD should be governed by a sensible coefficient of 

determination threshold ℛmin
2 . Specifically, for each Ψi the fit score ℛ2 corresponding to the 
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2D subspace with the highest fit score among all other {Ψi × Ψj} subspaces should exceed 

the value of ℛmin
2 . For embeddings with fit scores above this threshold, the ESPER method 

can leverage a number of benefits over NLSA, with this number increasing as the quality 

of the geometry improves. Since the appearance of robust geometry is also dependent on 

high PD occupancy (Fig. 3), and high PD occupancy boosts signal, the ESPER method is 

additionally qualified to furnish high-quality SVD movies in this regime while retaining the 

raw cryo-EM images.

As we have shown for RyR1, these noise-filtered 2D movies have a quality almost identical 

to the respective NLSA outputs, and serve the single purpose for use by belief propagation 

across S2 during CM assignments. In noisier circumstances, SVD results can be enhanced by 

binning the movie frames to boost signal. (It is also worth investigating alternative methods 

for these means). Meanwhile, the raw cryo-EM images are retained for use during 3D 

reconstruction, and, aside from improving fidelity of those outputs, allow use of our efficient 

approach using intersection of image-indices in generating occupancy maps and energy 

landscapes. Since our proposed strategy leaves the PD-embeddings without discernable 

geometry to be analyzed using the preexisting NLSA approach, final outputs would next 

need to be combined between these two methods. Notably, for each PD analyzed by 

either ESPER or NLSA, the corresponding free-energy landscape and projections (i.e., raw 

cryo-EM images or NLSA images, respectively) must be combined to form a consolidated 

free-energy landscape and corresponding 3D density maps. If necessary, SVD could then 

be applied on the final sequence of reconstructed 3D density maps, as has previously 

been done in ManifoldEM [35], [36]. We anticipate that the next public distribution of the 

ManifoldEM Python suite [36] will include these advancements as a significant refinement 

to its workflow. Finally, we hope that the insights gained from these machine-learning 

heuristics on image ensembles will be useful not only in the cryo-EM field, but more 

broadly to other methods dealing with projection data, as well as to the general development 

of techniques aimed at untangling complex systems exercising multiple, continuous degrees 

of freedom.
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Fig. 1. 
Analysis of eigenfunctions for PD1 in SS1 from data-type I. On the left (a) are the 

sinusoidal forms ψk that emerge when points (corresponding to images) in each eigenvector 

are ordered precisely in the sequence in which the ground-truth CMs were constructed. 

Regardless of any knowledge of such a sequence, the composites of these eigenvectors will 

always form well-defined geometries (via the Lissajous curves), as shown in (b). In the first 

row are the Chebyshev polynomials of the first kind, of which the parabola {Ψ1 × Ψ2} is the 

simplest mapping of the conformational information present.
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Fig. 2. 
The spectral geometry within a subset of 2D subspaces for PD1 in SS2 is shown, as 

generated via DM. As seen for n > 1, (1) is significantly more complex, with hypersurfaces 

intermixed. The color map is defined to match the indices of points spanning CM1, such that 

CM2 points are approximately uniform in color map value (multiples of 20, overlaid).
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Fig. 3. 
Set of {PC1, PC2} subspaces produced by PCA from PD1 images in SS1 over a range of 

SNR values and levels of state space coverage.
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Fig. 4. 
Comparison of CM subspaces for three PDs generated from data-type II. Here, SNR of 0.1 

and τ = 10 is used, with embeddings achieved via PCA (similar trends were also found 

for DM). The coordinates within each point cloud are colored to indicate their ground-truth 

CM state assignment, such that each point belongs to one of the 20 CM bins, and each bin 

contains 200 points (with the same coloring scheme used regardless of CM). CM1 and CM2 

subspaces for three randomly-oriented PDs are shown in (a) and (b), respectively, so as to 

emphasize the variability in features prevalent in embeddings obtained from noisy images.
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Fig. 5. 
Comparison of PCA and DM embeddings of the 400 images of the “mouth-wing” toy 

model in SS2 from a given PD. The anticipated 20 × 20 parabolic surface is obtained by 

both techniques. Of note, the points in the PCA embedding have a slightly-less uniform 

distribution than those in the DM embedding, suggesting that DM better approximates 

intrinsic relationships in the data. Overall, these results closely match those obtained from 

application of PCA and DM on the Hsp90 SS2 synthetic continuum.
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Fig. 6. 
Application of a 5D rotation matrix R2,3(θ) on an initially misaligned ΩPD embedding 

generated from SS2 in data-type I. The three columns in (a) display the individual 

eigenfunctions (as plotted by indices corresponding to the CM1 frame of reference) before 

the R2,3(θ) rotation is applied, at R2,3(10°), and finally at R2,3(20°), respectively. Note that 

R2,3(20°) maximally decomposes Ψ2 and Ψ3 into unique sinusoids (recalling that the planar 

distribution in Ψ3 is in fact a sinusoid when visualized in the CM2 frame of reference, 

and vice versa for Ψ2). The before and after effects of these rotations on the Lissajous 

curves can likewise be seen in (b) and (c), respectively. Applying R2,3(20°) properly orients 

both parabolic surfaces corresponding to CM1 and CM2 (denoted with red and blue boxes, 

respectively), such that the eigenvectors are orthogonally aligned with the eigenbasis of the 

CMs.
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Fig. 7. 
Overview of our subspace partitioning procedure for extracting sequential conformational 

information from a given 2D subspace. For this example, a CM1 subspace from data-type 

II is shown. Subplots (a) through (g) display our algorithm’s outputs on the CM1 subspace 

of an arbitrary PD from data-type II. First, (a) shows the inverse-cosine transformation 

and corresponding preliminary fit using an absolute value function. Subplots (b) and (c) 

demonstrate the alpha-shape polygon and Φfit trajectory defined on each halved subspace, 

with an anchor point designated within the central alcove. In (d), a ray is shown passing 

from the anchor point through the point cloud. At the current angle θ shown, half of the 

area of the alpha shape has been traversed, demarcating the boundary between the 5th and 

6th (of 10) CM1 bins. Subplots (e) and (f) compare the ground-truth bins—as visualized via 

the known sequence of images in each state—with the final output bins produced by the 

ESPER method. The 1D occupancy map is provided in (g), where the horizontal red line 

(200 images) represents the ground-truth occupancy assignment per CM1 state.
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Fig. 8. 
Schematic detailing the ESPER workflow for recovery of conformational continuum, as 

contained within the overarching ManifoldEM framework. For explanation of the individual 

steps, see main text.
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Fig. 9. 
On the left, final occupancy maps for the 20 states in CM1 (top) and CM2 (bottom) are 

shown. The total number of images assigned to each state by use of the ESPER method is 

shown by the height of the corresponding bar, and the different colors represent how many 

of those assignments belong to which ground-truth states (as seen in the color keys above the 

figure), allowing an assessment of the true positive rate. On the right, the final 2D occupancy 

map for the 400 states formed by CM1 and CM2 is shown.
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Fig. 10. 
FSC curve comparing the state 05_10 input (ground-truth) and output (ESPER) 3D density 

maps. As one proceeds along the horizontal axis from the left (representing the center of 

the FT) to the right, increasingly larger shells are compared in Fourier space, such that 

the largest shells (far right) correspond to the highest resolution features. The FSC curve 

thus provides a global measure of how well one 3D density map matches the other. The 

upper dotted line indicates the threshold (0.143) used to determine the normal reproducible 

resolution [5].
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Fig. 11. 
Snapshot taken from Movie 9, showing the stark difference in resolution between the Hsp90 

arm motion (CM1, top-most domain) reconstructed by NLSA and ESPER. Occupancy 

assignments are also compared, showing an approximate bimodal (i.e., correct) distribution 

for the ESPER trajectory. An approximation of this kind is not available via the NLSA 

occupancy assignments, which also include serious problems near the boundaries.
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Fig. 12. 
Results of applying ESPER on a robust parabolic point cloud obtained from the ribosomal 

data set. The corresponding PD was formed with a 2° angular width, containing a total of 

1825 images.
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