| Algorithm 1 Pseudocode for the proposed outliers detection approaches. | |
| 1 | Input: T, alpha, apr |
| 2 | //Typicality degrees matrix in nxc dimension, and built by an |
| 3 | //unsupervised possibilistic clustering algorithm |
| 4 | // alpha, threshold possibility value for outlier testing |
| 5 | // apr, number of the approach to be used in outlier detection |
| 6 | Output: Outliers |
| 7 | //Outliers, vector of n length to store the flags of outliers |
| 8 | n <- count of rows of matrix T |
| 9 | c <- count ofcolumns of matrix T |
| 10 | // If alpha is undefined, use 0.05 as the default value |
| 11 | if alpha is null then alpha = 0.05 |
| 12 | Outliers <- {0} //Assign 0 to all elements of the outliers |
| 13 | for k = 1 to n do |
| 14 | if apr = 1 then |
| 15 | sumT <- 0 |
| 16 | for i = 1 to c do |
| 17 | sumT <- sumT + T[i,k] |
| 18 | end |
| 19 | avgT <- sumT / c |
| 20 | if avgT <= alpha then |
| 21 | Outliers[k] <- 1 |
| 22 | end |
| 23 | else |
| 24 | if apr = 2 then |
| 25 | isOutlier <- True |
| 26 | for i = 1 to c do |
| 27 | if T[i,k] >= alpha then |
| 28 | isOutlier <- False |
| 29 | end |
| 30 | end |
| 31 | if isOutlier = True then |
| 32 | Outliers[k] <- 1 |
| 33 | end |
| 34 | end |
| 35 | end |
| 36 | end |
| 37 | return Outliers |