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Abstract

We propose and demonstrate a representation learning approach by maximizing the mutual 

information between local features of images and text. The goal of this approach is to learn 

useful image representations by taking advantage of the rich information contained in the free 

text that describes the findings in the image. Our method trains image and text encoders by 

encouraging the resulting representations to exhibit high local mutual information. We make 

use of recent advances in mutual information estimation with neural network discriminators. We 

argue that the sum of local mutual information is typically a lower bound on the global mutual 

information. Our experimental results in the downstream image classification tasks demonstrate 

the advantages of using local features for image-text representation learning. Our code is available 

at: https://github.com/RayRuizhiLiao/mutual_info_img_txt.
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1 Introduction

We present a novel approach for image-text representation learning by maximizing the 

mutual information between local features of the images and the text. In the context of 

medical imaging, the images could be, for example, radiographs and the text could be 

radiology reports that capture radiologists’ impressions of the images. A large number of 

such image-text pairs are generated in the clinical workflow every day [7, 13]. Jointly 

learning from images and raw text can support a leap in the quality of medical vision models 

by taking advantage of existing expert descriptions of the images.

Learning to extract useful feature representations from training data is an essential objective 

of a deep learning model. The definition of usefulness is task-specific [3,5,25]. In this work, 

we aim to learn image representations that improve classification tasks, such as pathology 
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detection, by making use of the rich information contained in the raw text that describe the 

findings in the image.

We exploit mutual information (MI) to learn useful image representations jointly with 

text. MI quantifies statistical dependencies between two random variables. Prior work has 

estimated and optimized MI across images for image registration [20,29], and MI between 

images and image features for unsupervised learning [6, 10, 23]. Since the text usually 

describes image findings that are relevant for downstream image classification tasks, it is 

sensible to encourage the image and text representations to exhibit high MI.

We propose to learn an image encoder and a text encoder by maximizing the MI of 

their resulting image and text representations. Moreover, we estimate and optimize the 

MI between local image features and sentence-level text representations. Fig. 1 shows an 

example image-text pair, where the image is a chest radiograph and the document is the 

associated radiology report [13]. Each sentence in the report describes a local region in the 

image. A sentence is usually a minimal and complete semantic unit [24, 32]. The findings 

described in that semantic unit are usually captured in a local region of the image [8].

Prior work in image-text joint learning has leveraged image-based text generation as an 

auxiliary task during the image model training [21, 27, 31], or has blended image and text 

features for downstream inference tasks [22]. Other work has leveraged contrastive learning, 

an approach to maximize a lower bound on MI to learn image and text representations 

jointly [4, 32]. To the best of our knowledge, this work represents the first attempt to exploit 

the image spatial structure and sentence-level text features with MI maximization to learn 

image and text representations that are useful for subsequent analysis of images. In our 

experimental results, we demonstrate that the maximization of local MI yields the greatest 

improvement in the downstream image classification tasks.

This paper is organized as follows. In Section 2, we derive our approach for image-

text representation learning by maximizing local MI. Section 3 discusses the theoretical 

motivation behind local mutual information. This is followed by empirical evaluation in 

Section 4, where we describe the implementation details of our algorithms in application to 

chest radiographs and radiology reports.

2 Methods

Let xI be an image and xR be the associated free text such as a radiology report or a 

pathology report that describes findings in the image. The objective is to learn useful 

latent image representations zI(xI) and text representations zR(xR) from image-text data 

X = xj j = 1
N , where xj = xjI, xjR . We construct an image encoder and a text encoder 

parameterized by θE
I  and θE

R, respectively, to generate the representations zI xI; θE
I  and 

zR xR; θE
R .
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Mutual Information Maximization.

We seek such image and text encoders and learn their representations by maximizing MI 

between the image representation and the text representation:

I zI, zR ΔEp zI, zR log p zI, zR

p zI p zR . (1)

We employ MI as a statistical measure that captures dependency between images and text 

in the joint representation space. Maximizing MI between image and text representations is 

equivalent to maximizing the difference of the entropy and the conditional entropy of image 

representation given text: I(zI, zR) = H(zI) − H(zI|zR). This criterion encourages the model to 

learn feature representations where the information from one modality reduces the entropy 

of the other data modality, which is a better choice than solely minimizing the conditional 

entropy, where the image encoder could generate identical features for all data to achieve the 

conditional entropy minimum.

Stochastic Optimization of MI.

Estimating mutual information between high-dimensional continuous variables from finite 

data samples is challenging. We leverage the recent advances that employ neural network 

discriminators for MI estimation and maximization [2, 18, 23, 26]. The key idea is to 

construct a discriminator f ziI, zjR; θD , parameterized by θD, that estimates the likelihood (or 

the likelihood ratio) of whether a sample pair ziI, zjR  is sampled from the joint distribution 

p(zI, zR) or from the product of marginals p(zI)p(zR). The discriminator is commonly found 

by maximizing the lower bound of the MI approximated by the likelihood ratio in Eq. (1) [2, 

23].

We train the discriminator f ziI, zjR; θD  jointly with image and text encoders zI xI; θE
I  and 

zR xR; θE
R  via MI maximization:

θE
I , θE

R, θD = arg max
θE
I , θE

R, θD
I zI xI; θE

I , zR xR; θE
R ; θD , (2)

where Î(zI, zR;θD) is a lower bound on I(zI, zR). We consider two MI lower bounds: Mutual 

Information Neural Estimation (MINE) [2] and Contrastive Predictive Coding (CPC) [23]. 

In our experiments, we empirically show that our method is not sensitive to the choice of 

the lower bound. MINE estimates the MI lower bound by approximating the log likelihood 

ratio in Eq. (1), using the Donsker-Varadhan (DV) variational formula of the KL divergence 

between the joint distribution and the product of the marginals, which yields the lower 

bound

I θE
I , θE

R, θD
(MINE)

zI, zR = Ep zI, zR f zI, zR; θD − logEp zI p zR ef zI, zR; θD . (3)
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CPC computes the MI lower bound by approximating the likelihood of an image-text feature 

pair being sampled from the joint distribution over the product of marginals, which leads to 

the objective function

I θE
I , θE

R, θD
CPC

zI, zR = Ep zI, zR f zI, zR; θD − Ep zI p zR log ∑
zj

R ∈ zR
ef zI, zj

R; θD . (4)

Both methods sample from the matched image-text pairs and from shuffled pairs (to 

approximate the product of marginals), and train the discriminator to differentiate between 

these two types of sample pairs.

Local MI Maximization.

We propose to maximize MI between local features of images and sentence-level features 

from text. Given a sentence-level feature in the text, we estimate the MI values between all 

local image features and this sentence, select the image feature with the highest MI, and 

maximize the MI between that image feature and the sentence feature (Fig. 2). We train the 

image and text encoders, as well as the MI discriminator based on all the image-text data:

θE
I , θE

R, θD = arg max
θE
I , θE

R, θD
∑

j
∑

m
maxnI zj, (n)

I , zj, (m)
R ,

(5)

where zj, (n)
I  is the n-th local feature in image xjI, and zj, (m)

R  is the m-th sentence feature in 

text xjR. We use this one-way maximum, because in image captioning, every sentence was 

written to describe some finding in the corresponding image. In contrast, not every region in 

the image has a related sentence in the text that describes it.

3 Generative Model and Motivation

To provide further insight into the theoretical motivation behind local mutual information, 

we describe a conjectured generative model for how paired chest radiograph and radiology 

report are constructed. As shown in Fig 3, each local image region xnI  has a hidden variable 

Hn that specifies the physiological processes and disease status in that region. This image 

region xnI  is generated by the hidden variable Hn and another random variable VI that is 

independent of Hn (e.g., the image acquisition protocol). The corresponding sentence in the 

radiology report is generated by first choosing the sentence index m (mapping from the 

image region index n via M, i.e., m = f (n; M )) and then generated as a function of Hn 

and another random variable VR that is independent of H (e.g., the radiologist’s training 

background).

The task we are interested in is to predict the hidden disease statuses {Hn} given an image 

xI. Therefore, it is sensible to learn an image feature representation zI that has high mutual 

information with {Hn}, i.e., Σn I(zI, Hn). zI is the concatenation of znI  and znI , where the znI
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is the feature of the local image region generated from Hn and znI  is the rest of the image 

features. Applying the chain rule of mutual information, we have:

I zI, Hn = I znI , Hn + I znI , Hn ∣ zI (6)

≥ I znI , Hn . (7)

Since I znI , Hn  is a lower bound to I(zI, Hn), we maximize I znI , Hn . The challenge of 

learning such image feature representations is that we have limited labels for disease 

status. However, both the local image region and the corresponding sentence in the report 

are generated by the same hidden disease status. Assuming VI and VR are independent, 

maximizing I znI , zmR  will likely lead to high I znI , Hn , because Hn is the only source of 

information shared by znI  and znR. Here we do the index mapping by selecting the sentence in 

the report that has the highest mutual information with znI .

Therefore, conjecturing this generative model by making structural (conditional 

independence) assumptions of the image and report data results in our proposed local mutual 

information maximization approach. The local MI optimization is usually an easier task 

given its lower dimension and more training samples to discover useful representations. The 

utility of our strategy is supported by our experimental results.

4 Experiments

Data and Model Evaluation.

We demonstrate our approach on the MIMIC-CXR dataset v2.0 [13] that includes around 

250K frontal-view chest radiographs with their associated radiology reports. We evaluate our 

representation learning methods on two downstream classification tasks:

• Pathology9. Detecting 9 pathologies from the chest radiographs against the 

labels that were extracted from the corresponding radiology reports using a 

radiology report labeler CheXpert [12,14,15]. Note that there are 14 findings 

available in the repository [14]. We only train and evaluate 9 for which there are 

more than around 100 images available in the test set.

• EdemaSeverity. Assessing pulmonary edema severity from chest radiographs 

against the labels that were annotated by radiologists on the images [11, 17, 19, 

28]. The severity level ranges from 0 to 3 with a higher score indicating higher 

risk.

The test sets provided in MIMIC-CXR with CheXpert labels [14] and with edema severity 

labels [17] are used to evaluate our methods. The patients that are in either of the two test 

sets are excluded from the model training. Table 1 summarizes the size of the (labeled) 

training data and test data.
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Experimental Design.

Our goal is to learn representations that are useful for downstream classification tasks. 

Therefore, we use a fully supervised image model trained on the chest radiographs with 

available training labels as our benchmark. We compare two ways to use our image 

representations when re-training the image classifier: 1) freezing the image encoder; 2) 

fine-tuning the image encoder. In either case, the image encoder followed by a classifier is 

trained on the same training set that is used to train the fully supervised image model.

We compare our MI maximization approach on local features with the global MI 

maximization. We test both MINE [2] and CPC [23] as MI estimators. To summarize, we 

evaluate the variants of our model and training regimes as follows:

• image-only-supervised: An image-only model trained on the training data 

provided in [14, 17].

• global-mi-mine, global-mi-cpc: Representation learning on the chest 

radiographs and the radiology reports using global MI maximization.

– encoder-frozen, encoder-tuned: Once representation learning is 

completed, the image encoder followed by a classifier is re-trained on 

the labeled training image data, with the encoder frozen or fine-tuned.

• local-mi-mine, local-mi-cpc: Representation learning using local MI 

maximization in Eq. (5).

– encoder-frozen, encoder-tuned: The resulting image encoder followed 

by a classifier is re-trained, with the encoder frozen or fine-tuned.

At the image model training or re-training time, all variants are trained on the same training 

sets. Note that the local-mi approach makes use of lower level image features. To make the 

encoder-frozen experiments comparable between local-mi and global-mi, we only freeze 

the same lower level feature extractor in both encoders.

Implementation Details.

Chest radiographs are downsampled to 256×256. We use a 5-block resnet [9] as the 

image encoder in the local MI approach and the image feature representation zI is 

16×512 (4×4×512) feature vectors. We use a 6-block resnet as the image encoder for 

the global MI maximization, where the image representation zI from this encoder is a 

768-dimensional feature vector. We use the clinical BERT model [1] as the text encoder 

for both report-level and sentence-level feature extraction. The [CLS] token is used as 

the text feature zR, which is a 768-dimensional vector. The MI discriminator for both 

MINE and CPC is a 1280→1024→512→1 multilayer perceptron to estimate local MI and 

a 1536→1024→512→1 multilayer perceptron to estimate global MI. The image feature 

and the text feature are concatenated to construct the input for the discriminator for MI 

estimation. The image models in all training variants at the image training or re-training time 

have the same architecture (6-block resnet followed by a fully connected layer).
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The AdamW [30] optimizer is employed for the BERT encoder and the Adam [16] optimizer 

is used for the other parts of the model. The initial learning rate is 5·10−4. The representation 

learning phase is trained for 5 epochs and the image model re-training phase is trained for 

50 epochs. The fully supervised image model is trained for 100 epochs. Data augmentation 

including random rotation, translation, and cropping is performed on the images during 

training.

Results.

In Table 2 and Table 3, we present the area under the receiver operating characteristic curve 

(AUC) statistics for the variants of our algorithms on the EdemaSeverity classification task 

and the Pathology9 binary classification tasks. For most classification tasks, the local MI 

approach with encoder tuning performs the best and significantly improves the performance 

over solely supervised learning on labeled images. The local MI approach brings in 

noteworthy improvement compared to global MI. Both CPC and MINE perform similar 

in most tasks. Remarkably, the classification results from the frozen encoders approach the 

fully supervised learning results in many tasks, suggesting that the unsupervised learning 

captures useful features for image classification tasks even before supervision is provided.

The local MI offers substantial improvement in performance when the features are fine-

tuned with the downstream model, while its performance is comparable with global MI 

if the features are frozen for the subsequent classification. In our experiments, training 

jointly with the downstream classifier (fine-tuning) typically improves performance of all 

tasks, with greater benefits for local MI. This suggests that local MI yields more flexible 

representations that adjust better for the downstream task. Our results are also supported 

by the analysis in Section 3 that shows certain structural assumptions lead to the local MI 

approach, which is easier to discover useful representations due to its lower dimension and 

more training samples.

5 Conclusion

In this paper, we proposed a multimodal representation learning framework for images and 

text by maximizing the mutual information between their local features. The advantages 

of the local MI approach are tri-fold: 1) better fit to image-text structure: each sentence is 

typically a minimal and complete semantic unit that describes a local image region (Fig. 

1) and therefore learning at the level of sentences and local image regions is more efficient 

than learning global descriptors; 2) better optimization landscape: the dimensionality of 

the representation is lower and every training image-report pair provides more samples of 

image-text descriptor pairs; 3) better representation fit to downstream tasks: as demonstrated 

in prior work, image classification usually relies on local features (e.g., pleural effusion 

detection based on the appearance of the region below the lungs) [10] and thus by learning 

local representations local MI improves classification performance.

By encouraging sentence-level features in the text to exhibit high MI with local image 

features, the image encoder learns to extract useful feature representations for subsequent 

image analysis. We provided further insight into local MI by showing that, under a Markov 

condition, maximizing local MI is equivalent to maximizing global MI. Our experimental 
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results demonstrate that the local MI approach offers the greatest improvement for the 

downstream image classification tasks, and is not sensitive to the choice of the MI estimator.
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Fig. 1. 
An example image-text pair (a chest radiograph and its associated radiology report). Each 

sentence describes the image findings in a particular region of the image. This figure is best 

viewed in color.
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Fig. 2. 
Local MI Maximization. First, we randomly select a sentence in the text and encode the 

sentence into a sentence-level feature. The corresponding image is encoded into a M×M×D 

feature block. We estimate the MI values between all local image features and the sentence 

feature. Note that the MI estimation needs shuffled image-text data, which is not illustrated 

in this diagram. We select the local image feature with the highest MI and update the image 

encoder, text encoder, and the MI discriminator such that the local MI between that image 

feature and the sentence feature is maximized.
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Fig. 3. 
A conjectured generative model that describes how paired chest radiograph and radiology 

report are constructed and the underlying structural assumptions.
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Table 1.

The number of images in the (labeled) training sets and the test sets.

– Support Devices Cardiomegaly Consolidation Edema Lung Opacity

training 76,492 65,129 20,074 56,203 58,105

test 286 404 95 373 318

– Pleural Effusion Pneumonia Pneumothorax Atelectasis Edema Severity

training 86,871 43,951 56,472 50,416 7,066

test 451 195 191 262 141
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Table 2.

The AUCs on the EdemaSeverity ordinal regression task. The average AUC score of tuned local-mi is 0.88 

(±0.05); The average AUC score of tuned global-mi is 0.85 (±0.06).

Method Re-train Encoder? Level 0 vs 1,2,3 Level 0,1 vs 2,3 Level 0,1,2 vs 3

– – CPC MINE CPC MINE CPC MINE

image-only N/A 0.80 0.71 0.90

global-mi frozen 0.81 0.83 0.77 0.78 0.93 0.89

global-mi tuned 0.81 0.82 0.79 0.81 0.93 0.93

local-mi frozen 0.77 0.76 0.72 0.76 0.75 0.86

local-mi tuned 0.87 0.83 0.83 0.85 0.97 0.93

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 October 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liao et al. Page 15

Table 3.

The AUCs on the Pathology9 binary classification tasks. The average AUC score of tuned local-mi is 0.84 

(±0.05); The average AUC score of tuned global-mi is 0.81 (±0.05).

Method Re-train Encoder? Atelectasis Cardiomegaly Consolidation

– – CPC MINE CPC MINE CPC MINE

image-only N/A 0.76 0.71 0.78

global-mi frozen 0.65 0.63 0.79 0.79 0.67 0.65

global-mi tuned 0.74 0.77 0.81 0.81 0.81 0.82

local-mi frozen 0.74 0.61 0.73 0.77 0.65 0.65

local-mi tuned 0.73 0.86 0.82 0.84 0.83 0.83

– – Edema Lung Opacity Pleural Effusion

– – CPC MINE CPC MINE CPC MINE

image-only N/A 0.89 0.86 0.69

global-mi frozen 0.81 0.81 0.69 0.68 0.74 0.74

global-mi tuned 0.87 0.88 0.83 0.84 0.90 0.90

local-mi frozen 0.78 0.80 0.66 0.69 0.69 0.72

local-mi tuned 0.89 0.89 0.82 0.88 0.92 0.92

– – Pneumonia Pneumothorax Support Devices

– – CPC MINE CPC MINE CPC MINE

image-only N/A 0.75 0.65 0.72

global-mi frozen 0.71 0.70 0.65 0.66 0.70 0.68

global-mi tuned 0.75 0.76 0.75 0.77 0.77 0.79

local-mi frozen 0.61 0.66 0.70 0.67 0.72 0.74

local-mi tuned 0.78 0.79 0.79 0.76 0.87 0.81
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