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Brain age predicts long-term recovery 
in post-stroke aphasia

Sigfus Kristinsson,1 Natalie Busby,1 Christopher Rorden,1,2 Roger Newman-Norlund,1,2 

Dirk B. den Ouden,1,3 Sigridur Magnusdottir,4 Haukur Hjaltason,4,5 Helga Thors,4 

Argye E. Hillis,1,6 Olafur Kjartansson,5 Leonardo Bonilha1,7 and Julius Fridriksson1,3

The association between age and language recovery in stroke remains unclear. Here, we used neuroimaging data to estimate brain age, a 
measure of structural integrity, and examined the extent to which brain age at stroke onset is associated with (i) cross-sectional language 
performance, and (ii) longitudinal recovery of language function, beyond chronological age alone. A total of 49 participants (age: 65.2 ± 
12.2 years, 25 female) underwent routine clinical neuroimaging (T1) and a bedside evaluation of language performance (Bedside 
Evaluation Screening Test-2) at onset of left hemisphere stroke. Brain age was estimated from enantiomorphically reconstructed brain scans 
using a machine learning algorithm trained on a large sample of healthy adults. A subsample of 30 participants returned for follow-up lan
guage assessments at least 2 years after stroke onset. To account for variability in age at stroke, we calculated proportional brain age differ
ence, i.e. the proportional difference between brain age and chronological age. Multiple regression models were constructed to test the effects 
of proportional brain age difference on language outcomes. Lesion volume and chronological age were included as covariates in all models. 
Accelerated brain age compared with age was associated with worse overall aphasia severity (F(1, 48) = 5.65, P = 0.022), naming (F(1, 48) = 
5.13, P = 0.028), and speech repetition (F(1, 48) = 8.49, P = 0.006) at stroke onset. Follow-up assessments were carried out ≥2 years after 
onset; decelerated brain age relative to age was significantly associated with reduced overall aphasia severity (F(1, 26) = 5.45, P = 0.028) and 
marginally failed to reach statistical significance for auditory comprehension (F(1, 26) = 2.87, P = 0.103). Proportional brain age difference 
was not found to be associated with changes in naming (F(1, 26) = 0.23, P = 0.880) and speech repetition (F(1, 26) = 0.00, P = 0.978). 
Chronological age was only associated with naming performance at stroke onset (F(1, 48) = 4.18, P = 0.047). These results indicate that 
brain age as estimated based on routine clinical brain scans may be a strong biomarker for language function and recovery after stroke.
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Graphical Abstract

Introduction
Aphasia is a language impairment that is generally recog
nized as one of the most disabling consequences of a stroke 
affecting the language-dominant brain hemisphere.1 Most 
individuals with aphasia recover some language functions 
in the days and months following the stroke,2 but the factors 
associated with recovery remain poorly understood.3 Prior 
studies indicate that the initial severity of aphasia,4,5 the 
size of the cortical infarct,6,7 and the lesion site6,8 account 
for substantial variability in long-term outcomes.

The relationship between recovery and other variables such 
as age is less clear.9 Neuroplastic properties of the brain de
crease with age,10,11 suggesting that age might be an important 
factor in aphasia recovery. However, older individuals are 
more likely to present with severe aphasia,1,2 which may indi
cate that the effect of age on recovery is confounded by aphasia 
severity, at least in some age groups. Recent research suggests 
that brain age, which is based on an estimate of cortical tissue 
integrity, is a more useful indicator of neuroplastic properties 
of the brain.12,13 In the current study, we report the first 
acute-to-chronic examination of the impact of estimated brain 
age for longitudinal language recovery in aphasia.

Healthy ageing is accompanied by reliable changes to 
structural integrity of the brain; in particular, atrophy of 
grey matter, reduced volume of white matter connections, 
and distorted functional connectivity have been observed 
with magnetic resonance imaging.14–22 The recently coined 
concept of brain age broadly represents these changes.

Brain age is generally predicted using machine learning al
gorithms that leverage neuroimaging-derived measures of 

structural atrophy to estimate how old the brain looks com
pared to a large sample of healthy control subjects.12 The ex
tent to which brain age deviates from chronological age has 
been found to be associated with onset of psychiatric and 
neurologic diseases,13,23 physical functioning,24,25 and cog
nitive abilities.24,26–28 This suggests that estimated brain 
age may potentially be implemented as a surrogate measure 
for cognitive reserve.

The presence of a brain lesion presents a challenge for the 
estimation of brain age since current approaches depend on 
the quality of normalization of the neuroimages, i.e. warping 
individual brains into standard space. Necrotic brain tissue 
can markedly distort the normalization, which is generally 
designed to process healthy brain images.29 This issue can 
be bypassed by applying an enantiomorphic algorithm to na
tive T1 images to effectively ‘heal’ the damaged hemi
sphere.30 The enantiomorphic ‘healing’ takes advantage of 
the left-right symmetry across hemispheres to replace tissue 
in the damaged hemisphere with a mirror image of healthy 
tissue from the contralateral hemisphere. This approach 
has been successfully applied in our prior work,31–34 as 
well as by other groups.35–37

The rate of brain atrophy is increasingly implemented as a 
clinical biomarker in various neurological disorders charac
terized by a marked deviation between brain age and chrono
logical age.38–40 In the context of stroke, recent studies have 
emphasized the detrimental impact of stroke as manifested in 
accelerated brain age.41,42 Others have observed an associ
ation between brain age and stroke risk,43 potentially indi
cating that biological brain age may both be a biomarker 
for stroke risk and exacerbated as a consequence of brain 
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damage. Critically, while the association between neurode
generation and cognitive function has been observed in 
many neurological disorders,23,26,44 the relationship be
tween brain age and cognitive outcomes in post-stroke func
tional recovery remains to be studied in detail.45–48

To this end, we examined the association between brain 
age and language outcomes after stroke. Specifically, we 
tested the hypothesis that brain age at stroke onset is asso
ciated with: (i) cross-sectional language function and (ii) 
long-term recovery of language function, beyond chrono
logical age. We expected accelerated brain age relative to 
chronological age to be associated with poorer language 
function and worse recovery. This study leveraged retro
spective clinical neuroimaging data and language assess
ments collected at stroke onset and at follow-up least 2 
years after stroke onset.

Methods
Participants
A total of 49 individuals with acute left hemisphere injury 
were included in the study. Participants were recruited 
through the neurology ward at the National University 
Hospital of Iceland, Reykjavk. Participants were eligible 
for inclusion in the study if they (i) had incurred a single, uni
lateral left hemisphere stroke, (ii) were in the acute phase of 
recovery, (iii) had their stroke confirmed by a CT/MRI scan, 
(iv) had no history of prior stroke, major psychiatric illness 
or other neurologic impairment affecting the brain, (v) 
were native speakers of Icelandic, and (vi) gave informed 
consent for study participation. All study procedures were 
approved by the Institutional Review Board of the 
University of Iceland. For a detailed description of partici
pants and procedures, see Magnusdottir et al.49 and 
Kristinsson et al.50

Participants underwent MRI and language assessments 
within three days of hospital admission. At stroke onset, 
the average age of the sample was 65.2 years (SD = 12.2 
years, range: 34–85 years) and 25 participants were female. 
A subsample of 30 participants returned for a follow-up lan
guage assessment at least 24 months post-onset. At the time 
of retesting, the average age of the sample was 67.5 years 
(SD = 10.2 years, range: 43–82 years). The range of time post- 
stroke across participants was 2.4–5.4 years (mean = 4.0 
years, SD = 0.9 years) at retesting. Figure 1 shows time post- 
onset (TPO) across participants.

Language assessments
Speech and language impairment was assessed with the Bedside 
Evaluation Screening Test-Second Edition (BEST-2).51 The 
BEST-2 is designed to assess language function at bedside in 
acute patients who may not be able to complete a full language 
assessment battery. In addition to providing an assessment of 
overall language impairment (henceforth, overall score), the 

BEST-2 assesses several language domains, including naming, 
speech repetition, and auditory comprehension. As these do
mains correspond to the main subtests on the Western 
Aphasia Battery-Revised,52 which is the most widely used 
aphasia test,53 we included all four scores in the data analyses. 
Importantly, despite being a short evaluation, our prior work 
has shown that the BEST-2 is sensitive to language impairment 
and longitudinal changes in language function.49,50,54

MRI
MRI data were collected as part of routine clinical care in 
acute stroke on a 1.5 T Siemens scanner. We obtained 
T1-weighted images, diffusion-weighted imaging (DWI), 
and fluid-attenuated inversion recovery (FLAIR) scans. The 
details for these sequences are as follows: T1-weighted image 
[3D GR\IR sequence, repetition time (TR) = 1160 ms, inver
sion time (TI) = 600 ms, echo time (TE) = 4.24 ms, flip angle = 
15°, the 256 × 256 matrix was reconstructed at 512 × 512, 
yielding a 0.45 × 0.45 mm2 in axial-plane resolution, with 
192 0.9 mm slices), diffusion-weighted images (three scans 
with B0 = 0, 500, and 1000; TR = 3808 ms, TE = 89 ms, 
flip angle = 90o, Nx = 4, 192 × 192 matrix, 1.2 × 1.2 mm2 

in axial plane, 24 slices, each 5 mm thick with 1.5 mm 
gap), and T2-weighted FLAIR image (TR = 9000 ms, TI = 
2500 ms, TE = 112 ms, flip angle = 15°, 280 × 320 matrix 
with 0.72 × 0.72 mm2 in axial-plane resolution, 24 slices, 
each 5 mm thick with 1.5 mm gap). Images were converted 
from DICOM to NIfTI format using dcm2niix,55 which pre
serves spatial coordinates (yielding a good starting estimate 
for the subsequent co-registration of the T1 image to the T2 

scan).
An expert neurologist or trained study staff member with 

extensive experience/training in lesion drawing manually de
marcated the brain lesions on FLAIR images using 
MRIcroGL12.56 DWI images were used to guide lesion 
drawing as needed to ensure lesion boundaries were precisely 
demarcated.

Calculating brain age
Each individual’s brain scan was ‘healed’ to exclude the ef
fects of the stroke lesion on automated brain age estimates. 
First, each participant’s FLAIR/lesion maps were 
co-registered to align to their own T1 scan. Next, each parti
cipant’s T1 and spatially aligned lesion map were used to cre
ate an enantiomorphically healed version of their T1.30 The 
enantiomorphic healing process exploits the symmetrical na
ture of the brain (i.e. the right and left sides of the brain are 
roughly symmetrical), as well as the fact that the lesions in 
our sample were unilateral (and thus all lesions had corre
sponding contralateral intact brain tissue with which we 
could repair them). In the current study, enantiomorphic 
healing involved replacement of damaged tissue in the ipsile
sional hemisphere with healthy tissue from homologous 
areas of the contralateral, non-lesioned hemisphere. This 
step was completed using the clinical toolbox.57 The 
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enantiomorphically ‘healed’ brain image represents the best 
estimation of the structural integrity of the brain prior to 
stroke. All images were subject to visual inspection by study 
staff blinded to participants’ age. Because the BrainAgeR 
analysis pipeline expects images in native space as input, 
we did not normalize the enantiomorphically healed brains.

The BrainAgeR analysis pipeline (github.com/james-cole/ 
brainageR)24 was applied to estimate biological brain age 
using default settings. First, the DARTEL toolbox58 in 
SPM12 was used to segment and normalize the T1 images. 
For quality control, probabilistic tissue maps were visually 
inspected by an expert neurologist to ensure proper segmen
tation. Second, cerebrospinal fluid was parcellated out, and 
grey and white matter probabilistic tissues were vectorized, 
concatenated, and fed into a principal component analysis 
(PCA) to reduce dimensionality. The PCA-derived compo
nents accounting for the top 80% of variance were retained 
for estimation of brain age. A pretrained Gaussian regression 
model in the R package Kernlab was implemented to predict 
brain age for each individual. The pretrained model was cre
ated based on input images from healthy individuals (N = 
3377) and validated in a separate sample of healthy indivi
duals (N = 611) between 18 and 90 years old,24 thus serving 
as inherent control data in the current study.

To adjust for variability in chronological age, we deter
mined the proportional deviation of predicted brain age 
from chronological age as follows:

[(brain age − chronological age) / chronological age] 

Each participant’s proportional brain age difference (PBAD) 
score indicates whether predicted age is accelerated or decel
erated relative to her/his own chronological age. More spe
cifically, positive values indicate premature brain ageing, 
whereas negative values suggest greater tissue integrity 
than the same age group in a normative sample.

Statistical analyses
Multiple linear regression models were constructed to test the 
hypothesis that brain age at stroke onset is independently as
sociated with language function (onset models). Each model 
included three terms: lesion volume, chronological age, and 
PBAD. Separate models were run for four outcome variables: 
overall score, naming, speech repetition, and auditory com
prehension subscores. To test our second hypothesis, that 
brain age is associated with longitudinal recovery of language 
function, we applied the same paradigm for change in each 

Figure 1 Time post-onset. TPO of left hemisphere stroke in years at retesting (min = 2.4y, max = 5.4y; N = 30). The boxplot shown at the top 
of the figure represents median TPO, quartiles and whiskers denote the range of values.
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subscore from stroke onset to follow-up assessment (recovery 
models). In addition to lesion volume, chronological age, and 
PBAD, the recovery models were adjusted for baseline per
formance on each language task (i.e. naming recovery model 
was adjusted for BEST-2 naming score at baseline). 
Associations between other variables were explored using 
Pearson’s or Spearman’s correlation coefficients as appropri
ate. All analyses were conducted in SPSS version 28.59

Data availability
Data presented in this study is not publicly available at pre
sent. However, de-identifiable participant data is available 
from the primary author upon reasonable request.

Results
Fig. 2 presents a lesion overlay map for the study sample. 
Most participants presented with relatively small lesions 
(average lesion volume = 5.5 ± 6.0 cm3). Across the group, 
lesions primarily covered the middle cerebral artery 
peri-Sylvian region, with greatest overlap observed in the in
sula extending into inferior frontal territory.

Brain age at stroke onset was estimated for all 49 partici
pants. Estimated brain age was on average decelerated by 3.7 
± 7.5 years (range: −24.1 to 10.1 years) relative to chrono
logical age. The corresponding PBAD values were −0.06 ± 
0.11 (range: −0.40 to 0.16). Fig. 3 demonstrates an example 
of two participants of similar chronological age and with 
comparable lesion profiles but vastly different brain age.

Estimated brain age correlated significantly with chrono
logical age (ρ= 0.80, P < 0.001) and with lesion volume (ρ= 
−0.29, P = 0.042). Chronological age was similarly correlated 
with lesion volume (ρ= −0.32, P = 0.026). Critically, PBAD 
was neither correlated with chronological age (ρ= −0.06, P = 
0.704) nor with lesion volume (ρ= −0.07, P = 0.631).

Brain age is associated with language 
function at stroke onset
Our first aim sought to test the hypothesis that estimated brain 
age is associated with language function at stroke onset inde
pendently of chronological age. To this end, multiple regression 
models were used to predict language outcomes based on lesion 
volume, chronological age, and PBAD. We found that PBAD 
was a significant predictor of overall score (F(1, 48) = 5.65, 

P = 0.022), naming (F(1, 48) = 5.13, P = 0.028), and speech 
repetition (F(1, 48) = 8.49, P = 0.006), but not auditory com
prehension (F(1, 48) = 2.06, P = 0.158). In each case, the stan
dardized beta (ß) value for PBAD was negative (−0.29 to 
−0.22; Table 1), suggesting a negative association between ac
celerated brain age relative to chronological age and language 
performance. Lesion volume was a significant predictor of all 
language outcomes (P = <0.001 to.005). Chronological age 
emerged as a significant predictor of naming (F(1, 48) = 
4.18, P = 0.047), but the effect of chronological age was not 
significant in other models (all P > 0.20). Model parameters 
are shown in Table 1. Figure 4 demonstrates actual and pre
dicted language scores based on onset models.

Brain age is associated with 
longitudinal language recovery
On average, the subsample of participants who returned for 
a second language assessment showed a significant improve
ment on all language outcomes from stroke onset to follow- 
up (paired t(29) range: 2.8–4.8, all P < 0.01; Fig. 5). In order 
to examine the effects of brain age on longitudinal recovery 
of language function, we applied the same paradigm to mod
el change in language performance from stroke onset to 
follow-up assessments (recovery models). Given the strong 
correlation between baseline and follow-up language assess
ments (r = 0.45–0.67, all P < 0.05), each recovery model was 
additionally adjusted for baseline BEST scores.

PBAD emerged as a significant predictor of change in over
all language function from stroke onset to follow-up 
(F(1, 26) = 5.45, P = 0.028). The standardized beta coeffi
cient was negative (ß = −0.22), suggesting that decelerated 
brain age relative to chronological age (negative PBAD va
lue) was associated with better language recovery, whereas 
relatively accelerated brain age (positive PBAD value) was 
associated with poorer recovery. No statistically significant 
main effects of PBAD were observed for change in naming 
(F(1, 26) = 0.23, P = 0.880) or speech repetition (F(1, 26) = 
0.11, P = 0.978), and PBAD marginally failed to reach statis
tical significance for change in auditory comprehension 
(F(1, 26) = 2.87, P = 0.103).

As expected, baseline performance was the strongest pre
dictor in each model (all P < 0.001), independently account
ing for > 70% of variability in language recovery. Lesion 
volume emerged as a significant predictor of change in over
all score (P = 0.003), naming (P < 0.001), and auditory 

Figure 2 Lesion overlay map. Lesion overlap across participants. The colour bar represents proportional overlap (max = 37% overlap).
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comprehension (P = 0.005) but marginally failed to reach 
statistical significance for speech repetition (P = 0.064). 
Chronological age was not associated with longitudinal 
change in any recovery model (all P > 0.20).

Given the variability in TPO at the follow-up assessment, 
we performed a post hoc analysis to investigate the effects of 
TPO on language recovery. TPO did not emerge as a signifi
cant factor in any model (all P > 0.30) and did not impact 
other results. Full models are shown in Table 2.

Finally, we ran each recovery model without adjustment 
for baseline BEST scores to enable direct comparison to the 

cross-sectional results reported above. Together, lesion vol
ume, chronological age, and PBAD accounted for 19%, 
33%, 14%, and 20% of variability in change scores in nam
ing, speech repetition, auditory comprehension, and overall 
score, respectively. Without adjustment for baseline per
formance, PBAD was associated with change in speech repe
tition (P = 0.017) and marginally failed to reach statistical 
significance for change in naming (P = 0.072), whereas 
chronological age was not a significant factor in any model 
(all P > 0.100; Supplementary Table 1).

Discussion
This study tested the hypothesis that brain age, as estimated 
based on neuroimaging-derived measures of brain atrophy, 
is associated with language function and recovery following 
stroke independent of chronological age. Our results support 
this hypothesis. Specifically, we found that accelerated brain 
age relative to chronological age is negatively associated with 
both language function at stroke onset and long-term lan
guage recovery. This effect was independent of overall lesion 
volume and TPO. Thus, the present study demonstrates for 
the first time the utility of brain age estimated based on rou
tine clinical-grade brain scans to inform longitudinal recov
ery of language function following left hemisphere stroke. 
The significance of these findings is discussed below.

Association between age and 
language performance in stroke
Neuroplastic properties of the brain deteriorate with age due 
to progressive atrophy of grey and white matter tissue.60,61

Figure 3 Example grey matter volume maps. Probabilistic 
grey matter estimates from two representative participants. Top 
panel: male, chronological age = 60.2 years, brain age = 36.9 years, 
PBAG = −0.39); bottom panel: male, chronological age = 62.4 
years, brain age = 71.7, PBAG = 0.15). The colour bar represents 
the probabilistic measure of grey matter volume (darker colours 
suggesting less grey matter).

Table 1 Multiple regression models (df = 48) predicting 
language performance at stroke onset

F t ß η2 P

Overall score
Model 25.97 0.63 (R2 = 0.61) <0.001**
Lesion volume 72.72 −8.53 −0.82 0.62 <0.001**
Chronological age 0.41 −0.64 −0.06 0.01 0.525
PBAD 5.65 2.38 −0.22 0.11 0.022*
Naming
Model 19.96 0.57 (R2 = 0.54) <0.001**
Lesion volume 58.99 −7.68 −0.80 0.57 <0.001**
Chronological age 4.18 −2.05 −0.21 0.09 0.047*
PBAD 5.13 2.26 −0.23 0.10 0.028*
Speech repetition
Model 20.70 0.58 (R2 = 0.55) <0.001**
Lesion volume 57.91 −7.61 −0.79 0.56 <0.001**
Chronological age 1.18 −1.08 −0.11 0.03 0.284
PBAD 8.49 2.91 −0.29 0.16 0.006**
Auditory comprehension
Model 3.29 0.18 (R2 = 0.13) 0.029
Lesion volume 8.93 −2.99 −0.43 0.17 0.005**
Chronological age 1.68 −1.30 −0.18 0.04 0.202
PBAD 2.06 1.44 −0.20 0.04 0.158

*P< 0.05. **P< 0.01.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac252#supplementary-data
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As a consequence, healthy ageing is accompanied by gradual 
cognitive decline,62,63 including in language function.64 The 
rate of age-related cognitive decline is associated with in
creased risk of neurogenic diseases, such as dementia.62

Moreover, the diminished structural integrity of the brain 
has been shown to be associated with worse functional out
comes in stroke recovery.65,66

Despite ample evidence suggesting a strong causal link be
tween structural integrity of intact brain regions and recov
ery, prior work has failed to find a consistent relationship 
between age and language recovery in post-stroke aphasia.9

Several potential reasons for this contradiction have been 
postulated. For instance, some studies have observed more 
severe language deficits in older patients at stroke onset.1,2

As aphasia severity is generally considered a strong predictor 
of language recovery,4,5 this may negate any possible inde
pendent effects of age. Alternatively, the large interindividual 
variability in age-related brain changes22,67 may reduce stat
istical power to detect effects of interest in a literature that is 
dominated by single-subject and small group studies.68

Predicted brain age largely bypasses these issues and offers 
a novel approach to inform the true integrity of the brain.44

Our results revealed a positive correlation between 

chronological age and brain age (ρ= 0.80, P < 0.001), sug
gesting that these two measures are strongly related. 
Notwithstanding, we found that the relative deviance be
tween estimated brain age and age was associated with per
formance on naming and speech repetition, as well as overall 
score at stroke onset (see Table 1) and longitudinal recovery 
of overall language function (see Table 2) when variability 
explained by chronological age was accounted for. In further 
post hoc analysis, all significant main effects were replicated 
after ceiling scores were removed (Supplementary Tables 2 
and 3). These findings are consistent with the notion that 
there is not a direct correspondence between chronological 
age and cognitive decline69,70 and, instead, indicate that esti
mated brain age accounts for unique variability unrelated to 
chronological age.

Recent research has shown that other cerebrovascular risk 
factors are similarly correlated with brain age, such as blood 
pressure71 and BMI.13 Cerebrovascular biomarkers are un
equivocally associated with overall brain health and struc
tural brain atrophy.72,73 To this end, estimated brain age 
may capture atrophy explained by other factors than 
chronological age. In the context of the current study, these 
additional factors account for a significant amount of 

Figure 4 Actual and predicted language scores. Empirical versus predicted language scores at stroke onset. Multiple regression models 
included lesion volume, chronological age and brain age as independent terms.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac252#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac252#supplementary-data
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variability in language function and recovery. Importantly, 
our results echo findings in other neurogenic diseases74–76

and corroborate recent findings reported in the stroke recov
ery literature.42,45,46

Implications
While prior studies in the aphasia literature have not incor
porated an estimate of brain age to inform language func
tion, various approaches have been successfully 
implemented to reveal a strong association between struc
tural integrity of intact brain regions and language perform
ance.77,78 The novelty of the current study lies instead in the 
approach used. We applied enantiomorphic ‘healing’ to clin
ical T1-weighted brain scans to avoid complications intro
duced by lesioned brain tissue and enable accurate 
computation of brain age. Proportional brain age gap was 
unrelated to lesion volume, indicating that the healed brain 
image was unaffected by lesion characteristics. This is im
portant for two main reasons. First, the sheer extent of lesion 
damage is a critical determinant of the subsequent functional 
consequences.7 This notion is strongly supported by our 
findings as lesion volume was a strong predictor in most re
gression models, typically accounting for one- to two-thirds 
of variability in the dependent variable. Critically, the effect 
of brain age was independent of lesion volume.

Second, measures of structural integrity used to investi
gate language function in post-stroke aphasia are frequently 
derived from DWI, T2-weighted scans, or other sophisticated 
imaging modalities that use long acquisition times, multi- 
echo sequences, and ultra-high field resolution only possible 
on high field strength (3 T) scanners. These research-grade 
scans are generally not collected as part of routine clinical 
care in stroke, where the primary goal is to acquire time- 
sensitive information about coarse lesion characteristics. In 
the current study, the scans came from a 1.5 T scanner, 
which is common for clinical scans. The ability to derive clin
ically meaningful prognostic information from clinical scans 

offers the potential to substantially improve prognostication 
procedures in aphasia.79

Therefore, the current study serves as a proof-of-principle 
for a novel, effective and simple to use approach to inform 
post-stroke language recovery. The extent to which brain 
age, as indicative of total and/or regional brain atrophy, 
can be implemented as a tool to guide clinical decision mak
ing in aphasia remains to be examined. Future studies will 
need to determine the unique contribution of brain age rela
tive to other lesion, neuropsychological, and biographical 
factors associated with language outcomes. As a biomarker 
of cognitive reserve, brain age is less dependent on factors 
like language, education, and socio-economic status, which 
frequently influence cognitive testing.80,81 At the same 
time, brain age is sensitive both to modifiable environmental 
factors, such as training,28,39 and changes in cognitive abil
ities.82,83 Thus, brain age may be a particularly promising 
marker of long-term therapy success.

Limitations
The results reported herein, despite being promising, should 
be interpreted with caution given the novel approach imple
mented. Several other important limitations of the study 
design warrant discussion. First, and perhaps most import
antly, we included a relatively small sample size that may 
not support generalization of the results to another sample. 
Although the sample size is fairly typical for aphasia re
search,84 the heterogenous nature of language deficits in 
aphasia reduces statistical power to detect subtle effects of 
interest.85 Notwithstanding, it is worth noting that the 
strength of the association between brain age and language 
performance in the current study increases our confidence 
that these findings are not spurious.

Second, estimated brain age was considerably lower on aver
age than chronological age (mean = −3.7 years). This estimate 
is lower than that reported in most prior studies.86 There are 
several potential reasons for this; one potential reason is that 

Figure 5 Longitudinal recovery of language. Longitudinal recovery across language domains. A paired-samples t-test revealed a significant 
average improvement on all language outcomes from stroke onset to follow-up (df = 29, toverall = 4.8, tnaming = 3.4, trepetition = 3.0, tcomprehension = 
2.8, all P < 0.01).
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cerebrovascular health statistics are generally good in Iceland, 
especially for women.87 Importantly, 25/49 participants in 
the current study were women. Additionally, the Icelandic 
population has comparatively good access to high quality 
health care at a low out-of-pocket cost.88

Third, one potential criticism of this work is that the en
antiomorphic healing process could have introduced arte
facts into the brain images that were then used by 
BrainAgeR to estimate age. We argue that this is unlikely 
due to our finding that lesion size (and thus the extent to 
which damaged tissue was replaced with healthy tissue) 
was not significantly related to estimated brain age differ
ences. Last, the BEST-2 is a coarse measure that may not be 
sensitive to subtle changes in language function. However, gi
ven the substantial functional changes expected in the acute 
recovery phase89 in addition to observed improvements 
across all language tests, this should not affect our results.

Conclusions
In conclusion, our results show for the first time that 
neuroimaging-based estimation of brain age—as a measure 
of overall structural integrity of the brain—is associated 
with language function and recovery following acute stroke. 
Critically, brain age explained more variability in language 
performance than chronological age alone. These results 
hold substantial promise to enhance understanding of the 
neural bases of aphasia recovery and to improve prognosti
cation in the clinical management of aphasia.
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