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Abstract
Background: Epidemiological studies observed gender differences in COVID-19 outcomes, 
however, whether sex hormone plays a causal in COVID-19 risk remains unclear. This study aimed 
to examine associations of sex hormone, sex hormones-binding globulin (SHBG), insulin-like growth 
factor-1 (IGF-1), and COVID-19 risk.
Methods: Two-sample Mendelian randomization (TSMR) study was performed to explore the causal 
associations between testosterone, estrogen, SHBG, IGF-1, and the risk of COVID-19 (susceptibility, 
hospitalization, and severity) using genome-wide association study (GWAS) summary level data from 
the COVID-19 Host Genetics Initiative (N=1,348,701). Random-effects inverse variance weighted 
(IVW) MR approach was used as the primary MR method and the weighted median, MR-Egger, and 
MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test were conducted as sensitivity analyses.
Results: Higher genetically predicted IGF-1 levels have nominally significant association with 
reduced risk of COVID-19 susceptibility and hospitalization. For one standard deviation increase in 
genetically predicted IGF-1 levels, the odds ratio was 0.77 (95% confidence interval [CI], 0.61–0.97, 
p=0.027) for COVID-19 susceptibility, 0.62 (95% CI: 0.25–0.51, p=0.018) for COVID-19 hospital-
ization, and 0.85 (95% CI: 0.52–1.38, p=0.513) for COVID-19 severity. There was no evidence that 
testosterone, estrogen, and SHBG are associated with the risk of COVID-19 susceptibility, hospital-
ization, and severity in either overall or sex-stratified TSMR analysis.
Conclusions: Our study indicated that genetically predicted high IGF-1 levels were associated with 
decrease the risk of COVID-19 susceptibility and hospitalization, but these associations did not 
survive the Bonferroni correction of multiple testing. Further studies are needed to validate the 
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findings and explore whether IGF-1 could be a potential intervention target to reduce COVID-19 
risk.
Funding: We acknowledge support from NSFC (LR22H260001), CRUK (C31250/A22804), SHLF 
(Hjärt-Lungfonden, 20210351), VR (Vetenskapsrådet, 2019-00977), and SCI (Cancerfonden).

Editor's evaluation
Using publicly available genetic data, Li and colleagues tested the association and inferred the 
causality of genetic variants predicted to alter the levels of testosterone, estrogen, SHBG, or IGF-1, 
against susceptibility, severity and outcome of SARS-Cov2 infection. The main strength of the study 
is the large cohort which adds to the robustness of the data.

Introduction
The COVID-19 pandemic has emerged as the most important health concern across the globe since 
December 2019. A notable finding that has been noted in many affected countries is a male predom-
inance of COVID-19-related hospitalization and death (Grasselli et al., 2020; Peckham et al., 2020). 
Globally, more than 60% of deaths from COVID-19 are reported in males (Richardson et al., 2020). 
This epidemiological pattern indicates the need for urgent public health actions, as well as for further 
investigations on the contributing factors of sex differences in COVID-19 risk and its underlying 
biological mechanisms.

Sex hormones play important roles in the immune response in which estrogen was thought to 
be immune boosting and testosterone to be immunosuppressing (Strope et al., 2020). Due to the 
higher levels of testosterone in male than female, it has been hypothesized that testosterone might 
be a promoter of SARS‐CoV‐2 infection and progression in males, considering the regulatory effect of 
androgen receptor (AR) and testosterone on the transcription of a transmembrane protease serine 2, 
which is a critical factor enabling cellular infection by coronaviruses, including SARS‐CoV‐2 (Peckham 
et al., 2020; Pozzilli and Lenzi, 2020; Cattrini et al., 2020). Estrogen has been shown not only to 
enhance immunological markers and response, but also to be linked to T-cell proliferation, which might 
be involved in the immune response to the infection of SARS-CoV-2 (Taneja, 2018). Most hormone 
(about 60%) is tightly bound to sex hormone-binding globulin (SHBG), which is an important regulator 
of the bioactivities of estrogens and testosterone (Raverot et al., 2010; Dimou et al., 2021). In addi-
tion, sex hormone signaling could also regulate the insulin-like growth factor (IGF-1) concentrations, 
which were also reported to be associated with acute respiratory distress syndrome (Ahasic et al., 
2012). It is therefore hypothesized that sex hormone and its related biomarkers might contribute to 
the sex difference of COVID-19 outcomes. A number of observational studies examined the associa-
tions between sex hormones and COVID-19 risk, however, the causality of these associations remains 
unestablished due to potential limitations of observational studies (e.g., residual confounding and 
reverse causality) and lack of high-quality data from randomized trials (Tsang et al., 2016).

Mendelian randomization (MR) analysis is an epidemiological approach that can strengthen the 
casual inference by utilizing genetic variants as instrumental variables to mimic biological effects of 
related biomarkers (Burgess and Thompson, 2015). Here, we conducted a two-sample MR (TSMR) 
study to explore the causal associations testosterone, estrogen, SHBG, and IGF-1 with the risk of 
COVID-19 (susceptibility, hospitalization, and severity) using genome-wide association study (GWAS) 
summary level data from the COVID-19 Host Genetics Initiative (COVID-19 HGI). Sex-stratified MR 
analyses for testosterone and estradiol were further performed to explore the associations in males 
and females separately.

Materials and methods
Study design
We firstly conducted a TSMR analysis to explore the causal links between testosterone, estrogen, 
SHBG, IGF-1, and the risk of COVID-19 (susceptibility, hospitalization, and severity), based on 
GWAS summary level data from COVID-19 HGI. We then performed sex-stratified MR analysis to 
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further examine the associations between genetically determined circulating levels of testosterone 
and estrogen and COVID-19 outcomes in males and females separately. The design of this study is 
explained in Figure 1.

Genetic instruments of testosterone, estradiol, SHBG, and IGF-1
Single-nucleotide polymorphisms (SNPs) associated with testosterone, estradiol, SHBG, and IGF-1 
levels were identified from genome-wide association analyses in up to 425,097 participants of Euro-
pean ancestry (Ruth et al., 2020; Sinnott-Armstrong et al., 2021). Sex-stratified SNPs related to 
estradiol were obtained from a GWAS including 147,690 males and 163,985 females in UK Biobank 
(Schmitz et al., 2021). We restricted the analysis to SNPs in linkage equilibrium which were identified 
in the relevant GWAS at p<5 × 10−8 clumped on r2=0.01 within 10,000 kb using the 1000 genomes 
reference panel (Hemani et al., 2018) to ensure sufficient statistical effectiveness. Among those pairs 
of SNPs that had LD r2 above the specified threshold (r2 = 0.01), only the SNP with the lower p value 
would be retained. SNPs absent from the LD reference panel were also removed. To test whether 

Figure 1. Overall study design. Abbreviation: IGF-1, insulin-like growth factor-1; GWAS, genome-wide association study; SNP, single-nucleotide 
polymorphism; LD, linkage disequilibrium; IVW, inverse variance weighting; MR, Mendelian randomization.

https://doi.org/10.7554/eLife.79720
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there was a weak instrumental variable bias, namely genetic variants selected as instrumental vari-
ables had a weak association with exposure, we calculated the F statistic if it is much greater than 10 
for the instrument-exposure association, the possibility of weak instrumental variable bias is small. 
These analyses were conducted using the R package ‘TwoSampleMR’ (Yavorska and Burgess, 2017). 
Consequently, a total of 320, 316, 7, and 18 SNPs were used as instrumental variables for SHBG, 
testosterone, estradiol, and IGF-1, respectively. Given that genetic variants predicting testosterone 
and estradiol levels differ for men and women, we selected sex-specific SNPs for testosterone (130 
SNPs in males, 151 SNPs in females) and estradiol (10 SNPs in males and females) separately for MR 
sensitivity analyses. Detailed information on the genetic instruments were provided in Supplementary 
file 1a-d. We used the STROBE case-control checklist when writing our report (von Elm et al., 2014).

Data source from COVID-19 HGI
We obtained the summary level data of COVID-19 susceptibility, hospitalization, and severity from 
the COVID-19-HGI GWAS meta-analyses of data across 60 studies from 25 countries (Round 5, Euro-
pean population) where UK Biobank data were excluded (COVID-19 Host Genetics Initiative, 2020). 
The HGI dataset included 1,348,701 participants (32,494 laboratory-confirmed cases of SARS-CoV-2 
infection and 1,316,207 population controls) for COVID-19 susceptibility, 1,557,411 participants (8316 
hospitalized COVID-19 patients and 1,549,095 population controls) for COVID-19 hospitalization, 
and 1,059,456 participants (4792 very severe respiratory-confirmed COVID-19 cases and 1,054,664 
controls) for COVID-19 severity. COVID-19-HGI defined very severe respiratory-confirmed COVID-19 
cases as patients hospitalized for laboratory-confirmed SARS-CoV-2 infection who died or were given 
respiratory support. The characteristics of the participants are shown in Table 1.

TSMR analyses
We applied the inverse variance weighted (IVW) method under the random-effects model as the 
primary MR analysis. We performed sensitivity analyses, including the weighted median, MR-Egger 
regression, leave-one-out analysis, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
methods, to examine the consistency of associations and to detect and correct for potential pleiot-
ropy. The weighted median method was performed to provide unbiased causal estimates if at least 
50% instrumental variables were valid (Bowden et  al., 2016). MR-Egger regression was used to 
observe and correct potential directional pleiotropy, which was assessed by its intercept test (Bowden 
et al., 2015). MR-PRESSO method can detect SNP outliers and estimate the association after removal 
of these outliers. The differences in estimates between before and after outlier removal were exam-
ined by the embedded distortion test (Wu et al., 2020). Cochrane’s Q value was used to assess the 

Table 1. Sources of data for Mendelian randomization analysis in COVID-19 HGI.

Phenotype Participants

Susceptibility

Meta-analysis of 35 GWAS performed in individuals of European ancestry

 � Cases: 32,494 individuals with COVID-19 by laboratory confirmation, chart review, or self-
report

 � Controls: 1,316,207 individuals without confirmation or history of COVID-19

Hospitalization

Meta-analysis of 23 GWAS performed in individuals of European ancestry

 � Cases: 8316 hospitalized individuals with COVID-19

 � Controls: 1,549,095 individuals without confirmation or history of COVID-19

Severity

Meta-analysis of 14 GWAS performed in individuals of European ancestry

 � Cases: 4792 SARS-CoV-2 infected hospitalized individuals who died or required respiratory 
support (intubation, CPAP, BiPAP, continuous external negative pressure, high flow nasal 
cannula).

 � Controls:1,054,664 individuals without confirmation or history of COVID-19

Notes: COVID-19 outcomes are taken from the COVID-19 HGI.
HGI = Host Genetics Initiative. GWAS = genome-wide association study. UKB = UK Biobank. CPAP = continuous 
positive airway pressure ventilation. BiPAP = bilevel positive airway pressure ventilation.
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heterogeneity among estimates of genetic instruments and the p value for intercept in MR-Egger was 
used to detect horizontal pleiotropy (Bowden et al., 2015). All statistical analyses were two-sided and 
performed in R 4.0.4 software using the R package TwoSampleMR and MR-PRESSO (Yavorska and 
Burgess, 2017).

Sensitivity analyses
We additionally used the SNP rs7173595 in CYP19A1 gene, which encodes aromatase, an enzyme that 
converts androgens to estrogens. Rs7173595 has previously been shown to be strongly associated 
with serum E2 levels in GWAS of men (Ruth et al., 2020; Eriksson et al., 2018) and postmenopausal 
women (Thompson et al., 2016). This SNP was also associated with serum E2 in 25,502 premeno-
pausal European women (<50 years of age and not reporting a hysterectomy or that menopause has 
occurred) in UK Biobank. The associations of serum E2 instrumented by rs7173595 in the CYP19A1 
gene region with COVID-19 outcomes were estimated using the Wald ratio method. We further 
performed a sensitivity analysis using a list of genetic instruments consisting of 10 correlated SNPs 
(r2 < 0.4) located in the IGF-1 gene region (genomic position on build GRCh37/hg19: chromosome 
12:102789652–102874341) and associated with IGF-1 levels at the genome-wide significance level. 
A matrix of linkage disequilibrium among these SNPs was introduced in the MR analysis model. To 
control potential data confounder, we selected SNPs associated with testosterone, estrogen, SHBG, 
and IGF-1 only, excluding SNPs associated with BMI which is thought to be a causal risk factor for 
COVID-19 (Freuer et al., 2021) at the threshold of 5×10–8 in European ancestry samples by querying 
PhenoScanner (Yavorska and Burgess, 2017). SNPs in estrogen were not excluded because their 
irrelevance to BMI.

Results
Table  2 presents the TSMR estimates for the associations between sex hormones, SHBG, IGF-1, 
and the risk of COVID-19 susceptibility, hospitalization, and severity based on the data from HGI. 
Higher genetically predicted IGF-1 levels have nominally significant association with reduced risk 
of COVID-19 susceptibility and hospitalization. For one standard deviation increase in genetically 
predicted IGF-1 levels, the odds ratio was 0.77 (95% confidence interval [CI], 0.61–0.97, p=0.027) 
for COVID-19 susceptibility, 0.62 (95% CI: 0.25–0.51, p=0.018) for COVID-19 hospitalization, and 
0.85 (95% CI: 0.52–1.38, p=0.513) for COVID-19 severity. Associations of IGF-1 levels with COVID-19 
susceptibility and hospitalization were not statistically significant after Bonferroni correction, albeit 
showing a nominal significance at p<0.05. No outlying SNPs were identified by MR-PRESSO anal-
yses. Estimates from the MR-Egger and weighted mode analyses were in the same direction as those 
from the IVW analysis (Figure 2, Figure 2—figure supplement 1, Figure 2—figure supplement 2). 
The MR-Egger intercept p was 0.614 and 0.595 for susceptibility and hospitalization, respectively, 
indicating the absence of directional pleiotropy. The associations remained directionally consistent in 
the sensitivity analysis based on SNPs located in the IGF-1 gene region as instrumental variables with 
risk of COVID-19 susceptibility (OR = 0.99, 95% CI: 0.91–1.07, p=0.777), hospitalization (OR = 0.90; 
95% CI: 0.74–1.10, p=0.645), and severity (OR = 1.01; 95% CI: 0.82–1.24, p=0.415) (Table 3).

In the analyses based on data from the genetic consortia, we found no causal associations of genet-
ically predicted testosterone with the risk of COVID-19 susceptibility (OR = 0.94; 95% CI: 0.83–1.06, 
p=0.309), hospitalization (OR = 0.82; 95% CI: 0.64–1.04, p=0.103), risk of severity (OR = 0.83; 95% CI: 
0.60–1.15, p=0.256). Null association was also noticed between SHBG and COVID-19 susceptibility 
(OR = 0.91; 95% CI: 0.80–1.04, p=0.182), hospitalization (OR = 0.86; 95% CI: 0.66–1.11, p=0.255), 
risk of severity (OR = 0.92; 95% CI: 0.65–1.29, p=0.618). Overall, no significant associations between 
testosterone, estrogen, SHBG, and COVID-19 outcomes were observed from TSMR analyses. Sex-
specific associations of genetically testosterone and estradiol levels with COVID-19 risk (Table 4) were 
still nonsignificant. We noticed that the p for intercept in MR-Egger regression analysis was more than 
0.05 for both genders, and no outlier was detected. Genetic predisposition to higher serum E2 levels 
proxied by rs7173595 in the CYP19A1 gene was not associated with the risk of COVID-19 suscep-
tibility (OR = 0.32; 95%  CI, 0.06–1.80, p = 0.195), hospitalization (OR = 0.28; 95%  CI: 0.01–6.46, 
p=0.426), and severity (OR = 0.22; 95% CI: 0.00–12.73, p=0.469) in females; similarly, the associa-
tions remained directionally consistent in males with susceptibility (OR = 0.37; 95% CI, 0.08–1.67, 
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p = 0.195), hospitalization (OR = 0.33; 95% CI: 0.02–5.11, p=0.426), and severity (OR = 0.27; 95% CI: 
0.01–9.26, p=0.469) (Table 5). As shown in Table 6, after removing SNPs associated with BMI, we 
found similar associations of genetically predicted IGF-1 levels with the risk of COVID-19 susceptibility 
(OR = 0.76; 95% CI: 0.60–0.96, p=0.021), hospitalization (OR = 0.61; 95% CI: 0.41–0.90, p=0.014), risk 
of severity (OR = 0.84; 95% CI: 0.52–1.38, p=0.497) in which we detected no moderate heterogeneity, 
and no indication of horizontal pleiotropy in MR-Egger, and no outlier in MR-PRESSO analyses. No 
causal associations of genetically predicted testosterone and SHBG with COVID-19 were found, but 
the directions were consistent with results in Table 2.

Discussion
In this study, we assessed whether there were any causal associations between sex hormone-related 
biomarkers and the risk of COVID-19 outcomes. We found suggestive evidence for associations 
between genetic liability to high IGF-1 levels and decreased risk of COVID-19 susceptibility and hospi-
talization. Our findings suggest a potential role of IGF-1 in COVID-19 risk and have implications for 
tailored treatment of COVID-19 patients.

Our MR findings were consistent with the multiple epidemiological studies that reported a nominal 
association between measured IGF-1 levels and COVID-19 illness. There is one observational study 
that demonstrated an inverse association between pre-diagnostic circulating levels of IGF-1 and 
COVID-19 mortality risk among COVID-19 patients in UK Biobank (Fan et al., 2021). Another obser-
vational study in Greece reported lower IGF-1 levels in critically ill COVID-19 patients compared to 
their counterparts with less severe disease or without COVID-19 (Ilias et  al., 2021). A single-cell 
analysis revealed that the exhaustion of CD8+ T cells together with several cytokines including IGF-1 
was associated with the pathogenesis of severe SARS-CoV-2 infection (He et al., 2021). Our MR anal-
yses found a negative association between genetically determined high circulating IGF-1 levels and 
decreased risk of COVID-19 susceptibility and hospitalization, indicating IGF-1 may be a protective 
factor of COVID-19 risk.

IGF-1 has been found to be pro-survival/anti-aging, anti-inflammatory, and antioxidant with neuro- 
and hepatoprotective properties. A study by the Narasaraju group demonstrated that IGF-1 plays 
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Figure 2. IGF-1 and COVID-19 outcomes in Mendelian randomization (MR) analyses. Abbreviation: IGF-1, insulin-like growth factor-1; SNP, single-
nucleotide polymorphism; IVW, inverse variance weighting; OR, odds ratio; CI, confidence interval.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Leave-one-out plot for IGF-1 and COVID-19 susceptibility, hospitalization and severity in Mendelian randomization analysis.

Figure supplement 2. Funnel plot for IGF-1 and COVID-19 susceptibility, hospitalization and severity in Mendelian randomization analysis.
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an important role in the repair of lung tissue by regulating the proliferation and differentiation of 
alveolar epithelial cells (AECs) (Narasaraju et al., 2006). Airway inflammation can be mitigated when 
apoptotic cells are engulfed by pulmonary epithelial cells (Juncadella et al., 2013). IGF-1 has also 
been shown to upregulate engulfment by professional phagocytes such as dendritic cells (Xuan et al., 
2017), and inhibit IL-6 production from lipopolysaccharide-induced AECs (Wang et al., 2019). Both 
of these mechanisms are beneficial to the regression of local inflammation. Jakn et al. showed that 
IGF-1 binds to IGF-1 receptor (IGF-1R) on airway epithelial cells of non-professional phagocytic cells, 
which can promote the phagocytosis of microparticles by airway epithelial cells (Han et al., 2016). 
Transforming growth factor β1 derived from AECs activated alveolar macrophages (AMs) to secrete 
IGF-1 into the alveolar fluid in response to stimulation of the airway by inflammatory signals. This 
AM-derived IGF-1 attenuated the p38 mitogen-activated protein kinase inflammatory signal in AECs 
and promoted the phagocytosis of apoptotic cells by AECs. This two-way communication between 
AECs and AMs represents a well-tuned system for the regulation of the inflammatory response in 
alveoli (Mu et al., 2020). Taken together, these studies provide biological evidence supporting that 
IGF-1 might be an important anti-inflammatory factor in the alveolar microenvironment and thus may 
contribute to improve COVID-19 outcomes. More studies are required to determine whether novel 
therapeutic strategy targeting on IGF-1 pathway might improve COVID-19 prognosis.

IGF-1 level is regulated by estrogen and the functional interactions between estradiol and IGF-1 
signaling system involve several transcriptional and posttranscriptional mechanisms. Specifically, IGF-1 
can affect estrogen receptor α action by enhancing its expression and potentiating its transcriptional 
activity in a ligand-independent manner (Lange, 2004; Edwards et al., 1993; Shupnik, 2004). On 
the other hand, E2 can enhance IGF-1 signaling by upregulating the expression of IGF-1 (Umayahara 
et al., 1994), IGF-1R (Bartucci et al., 2001), and some IGF-1-binding proteins (Qin et al., 1999). This 
may explain the same direction from the IVW analysis of IGF-1, estradiol, and COVID-19 outcomes. 
Estrogen is found to have immune enhancing effect (Taneja, 2018) to trigger the local immune 
response by activating a plethora of cells such as phagocytes, dendritic cells, natural killers, and CD8+ 
T cells. Once these immune cells are activated, they could fight against the infection by destroying 
the virus and thus preventing its diffusion to the lower respiratory tract or by decreasing the viral load. 
Experimental tests have also reported that estradiol can affect angiotensin-converting enzyme 2 and 
FURIN expression, with the potential of mitigating SARS-CoV-2 infection (Glinsky, 2020). However, 
our study did not find any supportive evidence for the associations between estradiol and COVID-19, 
which might be due to the small variance of estradiol explained by genetic instruments.

Our studies showed that SHBG or testosterone may not be associated with COVID-19 outcomes, 
which is consistent with the research findings of Liu et al., 2022. They also observed a null causal 
relationship for testosterone or SHBG levels with COVID-19 outcomes in females and males. Mean-
while, epidemiologic data (Peckham et al., 2020) indicate that while men are not more predisposed 
to contracting COVID-19, they are more likely to develop severe illness following the infection 
compared with women. However, our study observed null causal relationship for testosterone levels 
with COVID-19 outcomes in both females and males. According to the available evidence on the role 
of testosterone in COVID-19, it appears that both high and low testosterone levels can be associ-
ated with poor COVID-19 outcomes (Ho et al., 2022). A study demonstrated androgen deprivation 

Table 5. Associations of serum E2 levels instrumented by rs7173595 in the CYP19A1 gene region 
with COVID-19 outcomes.

Sex Phenotype beta SE OR (95% CI) p Effect

Female

Susceptibility –1.14 0.88 0.32 (0.06, 1.80) 0.195

Hospitalization –1.27 1.60 0.28 (0.01, 6.46) 0.426

Severity –1.49 2.06 0.22 (0.00, 12.73) 0.469

Male

Susceptibility –1.00 0.77 0.37 (0.08, 1.67) 0.195

Hospitalization –1.11 1.40 0.33 (0.02, 5.11) 0.426

Severity –1.31 1.80 0.27 (0.01, 9.26) 0.469

E2 = estradiol. OR = odds ratio. CI = confidence interval.
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therapy (ADT) exposure was associated with a reduction in COVID-19 severity (Lee et al., 2022). By 
contrast, the Ohio study did not identify any protective effect of ADT on the severity of COVID-19 
outcomes (Klein et  al., 2021). Androgen-related treatments showed that transmembrane serine 
protease 2 (TMPRSS2) expression and SARS-CoV-2 entry in human lung cells have been reduced by 
antiandrogens (Leach et al., 2021; Deng et al., 2021; Qiao et al., 2020). Additionally, androgens 
have numerous immunosuppressive effects such as decreasing proinflammatory cytokine release (e.g., 
IFNγ and TNF) or increasing anti-inflammatory cytokine release (e.g., IL-4 and IL-10), reducing T helper 
1 (Th1) and T helper 17 (Th17) cell differentiation, inducing Treg differentiation and regulating B-cell 
development (Olsen and Kovacs, 2011; Henze et al., 2020; Trigunaite et al., 2015). Paradoxically, 
these immunosuppressive effects of testosterone might be beneficial to overcome the heightened 
inflammatory environment that predisposes to severe COVID-19. Recent research has revealed that 
males with COVID-19 have lower testosterone levels (Ma et al., 2021). Another study found a nega-
tive association between total testosterone levels and biochemical markers of COVID-19 severity 
(Rastrelli et al., 2021). Lower testosterone concentrations were associated with higher concentra-
tions of IL-6, CRP, IL-1 receptor antagonist, hepatocyte growth factor, and IFNγ-inducible protein 
10 (Dhindsa et al., 2021). Therefore, additional research efforts need to be made to investigate the 
complex relationships furtherly.

The major advantage of our study is the design taking the advantages of MR approach and used 
several sensitivity analyses to test the robustness of the MR findings. The application of MR analysis 
reduces the influence of confounding factors and reverse causality so that reliable causal estimations 
were obtained to complement the observational findings. The potential limitations of this study also 
need to be acknowledged. Our study may suffer from weak instrument bias, especially within sensi-
tivity analyses that restricted to smaller sets of genetic instruments. In TSMR, this bias would tend to 
make estimates closer to the null. Since there is no available data on recovery status for COVID-19 
patients in UK Biobank, the current study did not take recovery as a potential competing risk into 
account. We could not assess the sex-specific associations in IGF-1 and COVID-19 due to no data by 
sex in HGI. Moreover, the MR was merely based on individuals of European ancestry. Our findings 
might not be generalized to other populations. It should also be noted that the study findings are 
based on evidence from genetic data, additional large and prospective cohort studies with available 
IGF-1 data and information on COVID-19 susceptibility and clinical outcomes are needed to validate 
the findings.

In conclusion, our study indicated that genetically predicted high IGF-1 levels were associated with 
decrease the risk of COVID-19 susceptibility and hospitalization, but these associations did not survive 
the Bonferroni correction of multiple testing. Further studies are needed to validate the findings and 
explore whether IGF-1 could be a potential intervention target to reduce COVID-19 risk.

Data availability statement
Data analyzed in the present study are GWAS summary statistics, which have been made publicly 
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downloaded from GWAS catalog. All genome-wide significant SNPs have been provided in Supple-
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