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Introduction 

Since its emergence from Wuhan (Hubei, China) [1], to date, the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has been held accountable for millions of deaths 
and billions of active cases globally [2]. The causative agent of coronavirus disease 2019 
(COVID-19), SARS-CoV-2 is one of many pathogens of zoonotic origin [3] that were 
able to direct cross-species transmission, driving low to severe health complications in 
masses, leading to epidemics and pandemics [4]. Coronaviruses (CoVs) have been infect-
ing humans since the 1960s, with alphacoronaviruses HCoV-229E and HCoV-OC43 
dominating the infections. Previous studies have found that bats and rodents are the most 
notable hosts to zoonotic viruses [5,6]. Bats, particularly, are a favorable host for CoVs, 
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A pandemic of respiratory disease named coronavirus disease 2019 (COVID-19) is caused 
by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is 
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ase serine subtype 2 (TMPRSS2) and the C-X-C motif 10 (CXCL10). When SARS-CoV-2 
binds to the host cell via S protein–angiotensin-converting enzyme-2 receptor interaction, 
TMPRSS2 contributes in the proteolytic cleavage of the S protein, allowing the viral and 
cellular membranes to fuse. CXCL10 is a cytokine found in elevated level in both COVID-19 
and cancer-causing cytokine storm. We discovered that TMPRSS2 and CXCL10 are overex-
pressed in prostate cancer and COVID-19 using the UALCAN and GEPIA2 datasets. The 
functional importance of TMPRSS2 and CXCL10 in prostate cancer development was then 
determined by analyzing the frequency of genetic changes in their amino acid sequences 
using the cBioPortal online portal. Finally, we used the PANTHER database to examine the 
pathology of the targeted genes. We observed that TMPRSS2 and CXCL10, together with 
their often co-expressed genes, are important in the binding activity and immune respons-
es in prostate cancer and COVID-19 infection, respectively. Finally, we found that TMPRSS2 
and CXCL10 are two putative biomarkers responsible for the increased vulnerability and fa-
tality of prostate cancer patients to COVID-19. 
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with 31% of the bat viromes being constituted by CoVs [7-9]. Pre-
vious epidemics and pandemics that resulted from zoonotic spill-
over caused deaths from hundreds to millions in number. Given 
the severity of the clinical and social burden epidemics and pan-
demics impose, studying the underlying mechanisms of zoonosis 
in detail is crucial [10,11].  

Comorbidity, as a risk factor for COVID-19 has been accentuat-
ed in multiple clinical and epidemiological studies [1,12-14]. Mul-
tiple comorbid conditions, such as cardiovascular diseases, diabe-
tes, chronic kidney diseases, hypertension, respiratory diseases and 
cancer make individuals vulnerable to both pathogenic and 
non-pathogenic diseases as their immunity system is compro-
mised. Often, certain metabolic pathways, genes and proteins are 
upregulated in individuals with cancer, which is favorable for op-
portunistic pathogens, allowing them to multiply at an amplified 
rate in host cells [15]. 

During SARS-CoV-2’s life cycle within a host, a number of bio-
molecules play both active and passive roles in promoting its 
pathogenesis. The fundamental molecule in this case is the angio-
tensin-converting enzyme-2 (ACE2) receptor, which the virus uti-
lizes to harbor its spike protein for entering inside the host cell. 
However, the virus cannot fuse with the host cell’s membrane un-
less the spike (S) protein undergoes proteolytic priming [16,17]. 
When SARS-CoV-2 anchors itself to the host cell with the help of 
S protein-ACE2 receptor binding, a type II transmembrane serine 
protease called transmembrane protease serine subtype 2 (TM-
PRSS2) participates in the proteolytic cleavage of the S protein, fa-
cilitating the fusion of the viral membrane and the cellular mem-
brane [18]. Another group of molecules that act as key indicators 
during the pathogenesis are cytokines [19]. When SARS-CoV-2 
invades a host cell, the host’s innate immune response is activated. 
The cells of the innate immune system act using pattern recogni-
tion receptors (PRRs). PRRs detect pathogen associated molecu-
lar patterns which are distinctive to SARS-CoV-2 and deploy in-
flammatory responses against the invading virus by activating a 
cascade of signaling pathways and transcription factors [20]. 
These signaling pathways activate three pro-inflammatory cyto-
kines interleukin (IL)-1, tumor necrosis factor (TNF)-α, and IL-6, 
which are upregulated to such an extent that the effect of this up-
regulation becomes debilitating for the host, resulting in tissue 
damage, multi-organ failure and often, death [21-23]. According 
to a study, the C-X-C motif 10 (CXCL10), or Interferon gam-
ma-induced protein 10 is a notable cytokine molecule in the prog-
nosis of COVID-19, which is capable of causing severe tissue dam-
age and is also involved in pathological processes of infectious dis-
eases [24,25]. 

As the number of COVID-19 active cases and deaths started to 
peak, a sex bias was observed in the prevalence rate as well as the 
mortality rates [26,27]. Multiple studies conducted in different 
countries and populations reported that males are at a higher risk 
of being infected with SARS-CoV-2 and some studies linked this 
higher prevalence with that of prostate cancer [28,29]. Prostate 
cancer or prostate adenocarcinoma (PRAD) is the second most 
frequently occurring cancer among males, with the most recent 
epidemiology stating a total 1,276,106 new cases and 358,989 
deaths (which is 3.8% of all deaths caused by cancer in men) [30]. 
Individuals with prostate cancer are at no lesser risk of developing 
a severe clinical prognosis of COVID-19 than other cancer types. 
The ACE2 receptor is not only unique to lung cells, but they are 
also found in the kidneys, prostate and intestine [31]. The pres-
ence of the ACE2 receptor in other organs suggests a possibility of 
SARS-CoV-2’s metastasis and localization in other cells. Moreover, 
the androgen receptor is a key transcription factor of TMPRSS2, 
which is upregulated in the presence of testosterone. The TM-
PRSS2 protease is also found to be upregulated in both normal 
and metastatic cancer cells [32-34]. As for the chemokine mole-
cules, studies support that CXCL10 is associated with exacerbating 
inflammation and also plays a role in the pathological process of 
cancers [24,25]. Based on these facts, it is plausible to state that 
because ACE2, TMPRSS2, and CXCL10 are commonly contribut-
ing molecules in both the pathogenesis of SARS-CoV-2 and 
PRAD, men could be more susceptible to acquiring COVID-19. 

In this study, we used a computational approach to investigate 
the expression patterns, molecular and functional characterization 
of CXCL10 and TMPRSS2 and their coexpressed genes in PRAD 
and COVID-19. The study was carried out in silico, using existing, 
open access cancer omics databases and bioinformatics tools 
whose algorithms have been upgraded to provide well-grounded 
results based on real scientific evidence of clinical value. Two simi-
lar studies carried out by Hoang et al. [35] and Kalkanli et al. [36] 
have also performed an assessment of the susceptibility of PRAD 
patients towards COVID-19. However, these two studies were fo-
cused towards the expression analysis of ACE2 and TMPRSS2 
rather than CXCL10, which is an important inflammatory cyto-
kine that plays an active role in cancer metastasis [37-39]. More-
over, we also analyzed the commonly coexpressed genes in both 
PRAD and COVID-19 to identify common pathways leading to a 
severe prognosis of COVID-19 in PRAD patients. We compared 
the expression patterns of the aforementioned genes in both nor-
mal cells and cancer cells to truly assess the differences in the ex-
pression levels; and gauge the degree of risk prostate cancer pa-
tients are at when it comes to being infected by SARS-CoV-2 and 
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developing COVID-19 associated health complications. 

Methods 

Expression analysis of TMPRSS2 and CXCL10 in PRAD 
For assessing the magnitude of mRNA expression of TMPRSS2 
and CXCL10 genes in PRAD, we used TIMER 2.0 web server 
(http://timer.comp-genomics.org/). TIMER 2.0 implements six 
robust algorithms to expression profiles of tumors obtained from 
The Cancer Genome Atlas (TCGA), which is an upgrade to its 
previous single algorithm version to analyze and compare immune 
infiltrates in tumor cells and normal cells [40]. To further investi-
gate the expression profiles of TMPRSS2 and CXCL10, UALCAN 
web server was used (http://ualcan.path.uab.edu/). UALCAN 
web server allows comprehensive analysis of a target gene expres-
sion in tumor cells and normal cells using real time data from a 
range of clinical profiles. The analyses are conducted to provide in-
sights on the variation of clinicopathologic features based on race, 
sex, ethnicity as well as stages in a particular type of cancer [41]. 
GEPIA2 (http://gepia2.cancer-pku.cn/#index) web server was 
used to compare the median expressions of CXCL10 and TM-
PRSS2 genes between normal and tumor samples of PRAD. GE-
PIA2 processes query data using expression profiles obtained from 
TCGA and GTEx databases and returns gene specific analyses 
based on multiple cancer types [42]. 

Determination of mutations and copy number alterations 
in TMPRSS2 and CXCL10 
We used cBio Cancer Genomics Portal (https://www.cbioportal.
org/) to identify genetic alterations of TMPRSS2 and CXCL10 
genes and analyse their molecular and clinical profiles. cBioPortal 
curates data from large scale cancer genomics projects, providing a 
substantial amount of data on molecular profiles of cell lines and 
cancer tissues that can be translated into facts of biological and 
clinical significance [43]. 

Protein-protein interaction network construction 
We prepared a list of determinant genes of the clinical prognosis of 
COVID-19 using Comparative Toxicogenomics Database (CTD, 
http://ctdbase.org/). The CTD database is a centralized resource 
that collects data from valid and proven scientific studies and pres-
ents the relationship of specific chemicals, genes and proteins with 
a myriad of diseases and disorders [44]. Upon preparing a list of 
genes that have a remarkable contribution in the clinical prognosis 
of COVID-19, we analyzed the interaction between the protein 
products of these genes using the STRING database (https://

string-db.org/). The STRING database constructs a protein-pro-
tein interaction network between targeted proteins by interpreting 
protein-protein associated data that are either known or predicted 
in a large number of organisms. The reliability and authenticity of 
the generated physical and functional interactions of the proteins 
in question are annotated using confidence scores and the evi-
dences supporting the results are traceable [45]. 

Identification of coexpressed genes 
We used R2: Genomics and Visualization platform (https://hg-
server1.amc.nl/cgi-bin/r2/main.cgi) an open access omics data-
base to identify the commonly expressed genes in correlation with 
TMPRSS2 and CXCL10. This database includes data from differ-
ent biomedical analyses that can be used for enhanced molecular 
analysis of target genes in regards to multiple diseases producing 
insights of clinical value [46]. A Venn diagram was generated using 
the Bioinformatics and Evolutionary Genomics (http://bioinfor-
matics.psb.ugent.be/webtools/Venn/) web tool to represent the 
identified coexpressed genes of TMPRSS2 and CXCL10 in 
COVID-19 and PRAD. 

Results 

TMPRSS2 and CXCL10 expression in prostate cancer 
To start, first different expression patterns of TMPRSS2 and 
CXCL10 in multidisciplinary cancer types were analyzed using the 
TIMER database. Both TMPRSS2 and CXCL10 showed an esca-
lated pattern of expression in PRAD compared to normal tissue 
(Fig. 1). p-value for TMPRSS2 gene was <0.05 whereas CXCL10 
gene showed p-value <0.001 in the PRAD patients. TMPRSS2 
manifested the highest level of expression in PRAD than any other 
cancer tissue. 

Analysis of TMPRSS2 and CXCL10 expression pattern in 
PRAD 
We performed an extensive analysis to evaluate the association of 
CXCL10 and TMPRSS2 expression with multiple clinicopatho-
logical parameters using the TCGA dataset retrieved from the 
UALCAN data mining platform. Here, we found an overall upreg-
ulated expression pattern of CXCL10 and TMPRSS2 compared to 
a normal state depending on the individual stages of cancer and 
different age groups (Fig. 2). In terms of nodal metastasis status, 
both genes showed higher expression in PRAD patients with N0 
and N1 stages compared to normal individuals. For CXCL10, the 
highest expression was found at N1 stage while the expression of 
TMPRSS2 peaked at N0 stage. Patients with PRAD showed the 
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Fig. 1. Analysis of expression of CXCL10 and TMPRSS2 in different cancer by using TIMER. (A) Different level of CXCL10 mRNA expression is 
shown in multiple cancer studies whereas the overexpression of CXCL10 in PRAD, is marked in the red box. (B) Different level of TMPRSS2 
mRNA expression is shown in multiple cancer studies whereas the overexpression of TMPRSS2 in PRAD is marked in the red box. *p < 0.05, 
**p < 0.01, ***p < 0.001. CXCL10, C-X-C motif 10; TMPRSS2, transmembrane protease serine subtype 2; ACC, adrenocortical carcinoma; 
BLCA, bladder urothelial carcinoma; BRCA, breast invasiva carcinoma; CESC, cervical squamous cell carcinoma; CHOL, cholangiocarcinoma; 
COAD, colon adenocarcinoma; DLBC, diffuse Large B-cell Lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, 
head and neck squamous cell carcinoma; HPV, human papillomavirus; KICH, kidney chromophobe; KIRC, kidney clear cell carcinoma; KIRP, 
kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum 
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular r germ cell tumors; 
THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal 
melanoma.
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Fig. 2. Expression analysis of CXCL10 and TMPRSS2 in prostate cancer using the UALCAN database. (A) CXCL10 gene expression in PRAD 
based on different nodal metastasis status. (B) TMPRSS2 gene expression in PRAD based on different nodal metastasis status. (C) CXCL10 
gene expression in PRAD according to the different age groups. (D) Expression of the TMPRSS2 gene in PRAD according to different age 
groups. (E) Expression of the CXCL10 gene in in PRAD in different cancer stages based on Gleason score. (F) TMPRSS2 gene expression in 
PRAD in different cancer stages based on Gleason score. CXCL10, C-X-C motif 10; TMPRSS2, transmembrane protease serine subtype 2; 
PRAD, prostate adenocarcinoma; TCGA, The Cancer Genome Atlas.
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Fig. 3. The functional characterization of CXCL10 and TMPRSS2 in prostate cancer development by using the cBioPortal database using 5,584 
samples of 5,389 prostate cancer patients from 18 studies. (A) Mutations in CXCL10 protein sequence was figured out by using lollipop plots. (B) 
Types of alteration frequencies of CXCL10 in prostate cancer were presented in bar diagram. (C) The expression level of differently categorized 
genetic alterations was presented for CXCL10. (D) Total mutation in TMPRSS2 protein was presented by lollipop plots. (E) Three variant types of 
alteration frequency in TMPRSS2 were presented in the bar diagrams. (F) The expression level regarding the multiple categories of genetic alteration 
was represented in graphical plots based on Z-scores relative to diploid samples. CXCL10, C-X-C motif 10; TMPRSS2, transmembrane protease 
serine subtype 2; PRAD, prostate adenocarcinoma; CNA, copy number alteration; VUS, variant of uncertain significance.
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Fig. 4. A protein-protein interaction network illustrating the interconnection of the functional proteins related to COVID-19 infection. 
TMPRSS2 is mainly interconnected with ACE2 and TMPRSS4 whereas CXCL10 is interlinked with other cytokines such as IL6, IL7, TNF, and 
IL10. Other proteins have several cross-linked connections as well. CXCL10, C-X-C motif 10; ACE2, angiotensin converting enzyme 2; AGT, 
angiotensin; COVID-19, coronavirus disease 2019; CXCL8, C-X-C motif 8; IL6, interleukin 6; TMPRSS2, transmembrane protease, serine 2; 
TMPRSS4, transmembrane protease, serine 4; IL2, interleukin 2; IL2RA, interleukin 2 receptor alpha chain; CCL2, C-C motif ligand 2; TNF, 
tumor necrosis factor; IL10, interleukin 10; CSF3, colony stimulating factor; CRP, C-reactive protein; IL1B, interleukin 1 beta; CCL3, C-C 
motif ligand 3; IL7, interleukin 7; BTK, Bruton's tyrosine kinase.

highest level of CXCL10 expression at age between 41 and 60 
years whereas prostate cancer patients at age 61–80 years showed 
highest level of expression for TMPRSS2. PRAD patients with 
Gleason score 10 showed the highest level of expression for 
CXCL10. On the other hand, expression of TMPRSS2 peaked in 
patients having Gleason score 7. 

Determination of mutations and copy number alterations 
in target proteins 
Data generation was done representing multiple genetic variations 
in TMPRSS2 and CXCL10 mRNA using the cBioPortal database 
to assess the functional significance of TMPRSS2 and CXCL10 in 
prostate cancer development (Fig. 3). Firstly, we prepared a query 
for CXCL10 in this database using 5,584 samples of 5,389 prostate 
cancer patients from 18 studies. From this analysis, we found no 
mutations for CXCL10 in PRAD patients. We observed that 

CXCL10 is mostly altered in PRAD ranging the highest frequency 
of 1.82%. In this case, we found that the highest level of CNA oc-
curred due to the diploid type of genetic alteration. The second 
most significant genetic change is done by shallow deletion type of 
CNA. From our investigation it was found that 47 mutations oc-
curred for TMPRSS2 in prostate cancer patients (Supplementary 
Table 1). TMPRSS2 showed most genetic alterations in prostate 
adenocarcinoma with alterations frequency of 4.81%. Forty-seven 
mutations were found in 30 locations of TMPRSS2 protein in 
prostate cancer patients. Shallow deletion accounted for the sec-
ond most genetic alterations of TMPRSS2 in prostate cancer while 
most alterations did not account for mutation. 

Association of TMPRSS2 and CXCL10 assisted protein-protein 
interaction network with the of COVID-19 development 
COVID19 is caused by a number of genes that are either directly 
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or indirectly involved in its development. Based on their inference 
score, we were able to discover 7,235 genes related with 
COVID-19 disease using the CTD. Each of these genes has a cu-
rated illness relationship or an assumed disease association based 
on a curated chemical interaction. Following the analysis of the 
large data collection, 20 curated genes were identified as biomark-
ers or therapeutic candidates for COVID-19 therapy, including 
TMPRSS2 and CXCL10 (Supplementary Table 2). By utilizing 
the translated protein sequences of these 20 genes a protein-pro-
tein interaction network was constructed through the STRING 
database (Fig. 4). Following this, we found 96 connecting edges 
among the selected proteins though the expected edges were only 
20 according to the information provided by the database itself. 
That means the PPI network harbors more interlinks than the ex-
pected result. Such a relationship indicates that the proteins are 
functionally connected, as a group. We also found that TMPRSS2 
and CXCL10 proteins are interconnected along with other protein 
components associated with COVID-19 development. 

Estimation of the commonly co-expressed genes of 
TMPRSS2 and CXCL10 associated with prostate cancer 
and COVID-19 development 
Identification of genes that tied in with the expression of TM-
PRSS2 and CXCL10 was completed through a comprehensive 
analysis by using the R2: Genomics and Visualization web portal. 
This identification assisted in exploring the co-expressed genes of 

TMPRSS2 and CXCL10 responsible for prostate cancer and 
COVID-19 development by utilizing the TCGA data. In particu-
lar, a total of 7,843 co-expressed genes of the TMPRSS2 associated 
with PRAD whereas the number of co-expressed genes related to 
COVID-19 was 7,231. In terms of CXCL10, 4,549 genes hap-
pened to co-express with prostate cancer development while those 
with COVID-19 were 7,230. A restriction of p-value < 0.01 was 
applied to each case of the analysis. Afterward Venn diagrams were 
contrived using the Bioinformatics and Evolutionary Genomics 
web tool in order to show the lists representing common co-ex-
pressed genes of TMPRSS2 and CXCL10 in each of the cases of 
prostate cancer and COVID-19. Overall, 1,656 and 2,669 genes 
co-expressed with CXCL10 and TMPRSS2 respectively, were 
found to be common prostate cancer and COVID-19 progression 
(Fig. 5). 

Analysis of the functional role of the TMPRSS2 and 
CXCL10 
To interpret the functional activity of TMPRSS2 and CXCL10 in 
prostate cancer and COVID-19, we used the set of previously de-
termined co-expressed genes while using the PANTHER data-
base. To begin, we ran a query to determine the molecular activity 
of TMPRSS2 by using the 2,669 commonly co-expressed genes 
that had previously been found. We looked at a variety of molecu-
lar activities and observed that a large number of these genes (918) 
are engaged in binding activity, whereas 26.70% (729) are involved 

Fig. 5. Graphical representation of commonly co-expressed genes of TMPRSS2 and CXCL10 in prostate cancer and COVID-19. Identification 
of co-expressed genes of TMPRSS2 and CXCL10 was completed through a comprehensive analysis by using the R2: Genomics and 
Visualization web portal. (A) The Venn diagram represents 2,669 commonly co-expressed genes of TMPRSS2. (B) The Venn diagram 
represents 1,656 commonly co-expressed genes of CXCL10 associated with both of the diseases. TMPRSS2, transmembrane protease serine 
subtype 2; CXCL10, C-X-C motif 10; COVID-19, coronavirus disease 2019.
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Fig. 6. Using the PANTHER database, the functional attitudes of TMPRSS2 and CXCL10 were evaluated. (A) A pie chart was used to show 
eight different types of molecular activity of TMPRSS2 and its co-expressed genes. (B) In total 14 variant types of binding activities of 918 
genes were represented by using a bar chart. (C) Total 20 unique types of biological activities of CXCL10 and its co-expressed genes were 
represented using a pie chart. (D) Nine differently categorized immune system processes of the corresponding 98 co-expressed genes were 
presented through a bar chart. TMPRSS2, transmembrane protease serine subtype 2; CXCL10, C-X-C motif 10.
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in catalytic activity (Fig. 6A). We observed the diverse nature of 
the binding activities of corresponding 918 genes through an ex-
tended study. Following this analysis, we observed that most of the 
genes having binding activity are involved in protein binding 
(49.50%; 454 genes) (Fig. 6B). 

We also investigated the functional attitude of CXCL10 using 
the list of previously determined 1,656 commonly co-expressed 
genes which have association with prostate cancer and COVID-19 
development. We found that the mentioned genes are engaged in a 
wide range of biological activities, including cellular processes, bi-
ological regulation, metabolic processes, immune system process-
es, localization, biogenesis, and so on, after evaluating the biologi-
cal processes (Fig. 6C). After performing an extended analysis 
with the co-expressed genes of CXCL10 involved in different im-
mune processes, we explored that 65 genes are involved in im-
mune response, 16 genes are responsible for immune system de-
velopment, 33 genes are responsible for leukocyte activation 
whereas 18 genes are responsible for leukocyte migration, 17 
genes contribute to the activation of immune response and 29 
genes lead the immune effector process (Fig. 6D). Overall, a sig-
nificant number of the co-expressed genes of CXCL10 are found 
to have important roles in various branches of the immune system 
along with the functional activity of CXCL10. 

Discussion 

Since the emergence of COVID-19 and its outspread globally, 
mortality rates have been more inclined towards the male popula-
tion as compared to the female population, which has been estab-
lished by multiple epidemiological studies [47-49]. Severe clinical 
prognosis of COVID-19 has also been attributed to comorbidities, 
with special emphasis on the presence of cancer [50-52]. PRAD is 
a prevalent cancer type in males, and multiple biomolecules that 
act as markers of PRAD are in common with COVID-19 (Both 
TMPRSS2 and CXCL10 were upregulated in PRAD patients). 
TMPRSS2 has been reported as a prominent transmembrane pro-
tein that is upregulated in PRAD patients [28]. The upregulation 
of this protein has also been found to be a crucial factor for ACE2 
priming, which is the major receptor for SARS-CoV-2 entry. Cyto-
kine storms have been a widely discussed phenomenon in regards 
to both COVID-19 and cancer [53,54]. CXCL10 is a notable cy-
tokine, which has been found in elevated levels in both cancer and 
COVID-19 patients, driving metastasis, inflammation and poor 
clinical outcomes in both the cases [55,56]. A study by Gwak et al. 
[57] on the prostate cancer microenvironment found that multi-
ple inflammatory cytokines including CXCL10 were upregulated 

in PRAD patients. CXCL10 plays a significant role in the tumor 
metastasis and immunesuppression in prostate cancer and being a 
tumor-associated macrophage, it also promotes tumor microenvi-
ronment creation, migration and invasion of prostate cancer cells 
[37-39]. Thus, in the case of both PRAD and COVID-19, TM-
PRSS2 and CXCL10 can be considered as two prominent bio-
markers. In this study, we analyzed the expression levels of TM-
PRSS2 and CXCL10 in PRAD patients. We found significant ex-
pressions of mRNA for both TMPRSS2 (p < 0.05) and CXCL10 
(p < 0.001) in PRAD patients with higher levels as compared to 
normal individuals. Additionally, the demographic expression data 
revealed that both TMPRSS2 and CXCL10 were upregulated in 
PRAD patients aged 41–60 years and 61–80 years respectively 
with Gleason scores 7 to 9. These results align with a study con-
ducted by Chen et al. [58], which found a significant upregulation 
of TMPRSS2 in patients aged 40–65 years having a median glea-
son score of 7 to 9 but patients with advanced stage like metastasis 
did not show considerable expression change. Although adults 
aged 65 or more have been identified to be more susceptible to-
wards SARS-CoV-2 infection [59], people aged 60 years and less 
are at no lesser risk. In a recent cross-sectional survey conducted in 
various countries of Europe and America, it was found that 4%–
22% of COVID-19 associated fatalities were more prevalent in in-
dividuals aged less than 65 years [60]. According to a report by the 
American Cancer Society, PRAD is more prevalent in males aged 
65 or more, which is also the risk cohort for COVID-19. In a study 
conducted by Peng et al. [61], an increase in TMPRSS2 expres-
sions in oral epithelial cells has been found with age. A study by 
Schuler et al. [62] has also found elevated expressions of TM-
PRSS2 in lung epithelium of adults. TMPRSS2 is also expressed 
on the luminal side of the normal prostatic epithelium, which is 
upregulated in malignant prostatic tissue [29]. Hence, the expres-
sion analysis data of TMPRSS2 and CXCL10 aligns with the find-
ings of previous studies. 

For genomic analyses of TMPRSS2 and CXCL10 coding genes, 
we scrutinized whether mutations were present in TMPRSS2 and 
CXCL10 in PRAD patients. The reference database consisted of 
data obtained from 18 different studies on PRAD. We found the 
highest level of alterations in TMPRSS2 (4.81% alteration frequen-
cy) and a total of 47 mutations were observed. A 1.82% alteration 
frequency was also observed for CXCL10 in PRAD patients. Ge-
netic alterations in PRAD patients have been found to be related 
to the disparity among prostate cancer patients globally. Genomic 
aberrations, gene expression signature, and other molecular alter-
ations in tumors have also led to variation in disease progression in 
PRAD patients, leading to distinct pathways based on clinical het-
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erogeneity. These genomic alterations can happen at any stage of 
the cancer progression, yielding three possible molecular subtypes 
of prostate cancer: (1) clinically localized, treatment naïve prostate 
cancer, (2) aggressive metastatic but, hormone sensitive prostate 
cancer, and (3) lethal, androgen deprivation therapy insensitive, 
castration resistant prostate cancer [63]. Analysis of CNAs in TM-
PRSS2 and CXCL10 may help in assessing the clinical features of 
COVID-19 patients with aggressive or indolent prostate cancer. It 
may also assist in better understanding immunological pathways 
that are triggered in different subtypes of prostate cancer in pres-
ence of SARS-CoV-2 providing better opportunities for specific 
treatment and management of COVID-19 in this cohort. In addi-
tion, deletions, CNAs and other types of genetic modifications in 
active biomolecules can also contribute to understanding the sig-
nificance of these molecules in disease development even among 
different populations [64].  

As clinical manifestations in the cases of both COVID-19 and 
PRAD may metastasize and localize in other organs and systems, 
we carried out a functional assessment of TMPRSS2 and CXCL10 
to identify what additional genes and their protein products are re-
lated to COVID-19 and PRAD prognosis. Based on inference 
score, we selected 20 such genes that are involved in the prognosis 
of both COVID-19 and PRAD. Multiple cytokines were found to 
have higher inference scores, which supports the fact that the cyto-
kine storm is mediated by multiple chemokines [55]. 

In this study, we identified 1,656 genes co-expressed with 
CXCL10 in both PRAD and COVID-19 and 2,669 genes co-ex-
pressed with TMPRSS2 for the same. To properly understand the 
association of TMPRSS2 and CXCL10 with respect to the coex-
pressed genes and how these genes may contribute in disease 
prognosis, we selected 20 genes based on their inference scores es-
tablished a PPI network between these two proteins and the trans-
lation products of the 20 genes. PPI network analysis tools utilize 
state-of-the-art algorithms and data from peer-reviewed research 
articles to illustrate the connection between proteins for better in-
terpretation of underlying biological mechanisms for different dis-
eases. PPI network analysis has been widely used in multiple can-
cer studies as it eases the interpretation of protein matrices on a 
molecular level [65-67]. From the PPI network analysis results, it 
is evident that TMPRSS2 is a crucial factor in COVID-19 progno-
sis, as its nodes connect to ACE2 and as per previous studies, TM-
PRSS2 is a notable ACE2 primer. This also suggests that because 
TMPRSS2 is already upregulated in PRAD patients, the patients 
show increased susceptibility towards SARS-CoV-2 infection as an 
upregulation of TMPRSS2 will promote ACE2 priming [28,68,69]. 
Additional nodes were also found that connected CXCL10 with 

other cytokines such as IL-6, IL-7, TNF, and IL-10. This finding 
aligns with previous reports that have observed that severely ill 
COVID-19 patients had elevated levels of IL-6 [22]. Our findings 
also align with the results of a study conducted on 41 COVID-19 
confirmed cases in China, which found that IL-6, IL-7, TNF, and 
IL-10 were upregulated in the plasma of the study subjects [19]. 
Although CXCL10 shows no evident interconnection with TM-
PRSS2 in the PPI network, in PRAD patients, it has been linked to 
a group of tumor associated macrophages (TAMs) which are fur-
ther classified into two different subtypes, M1 and M2. TNF-α, in-
terferon γ, IL-12, and IL-23 comprise the M1 TAMs that have been 
found to have pro-inflammatory functions. IL-1β, IL-6, CXCL8, 
CXCL10, and vascular endothelial growth factor comprise the M2 
TAMs that contribute to cancer metastasis, immune suppression, 
and tumor growth. Moreover, elevated levels of CXCL8, CCL2, 
CXCL10, and CCL20 have been found in prostate cancer patients 
with Gleason score ≥ 8 [57]. Again, COVID-19 patients too have 
upregulated levels of inflammatory cytokines which makes the dis-
ease prognosis critical in patients. Based on these facts, it can be 
suggested that coexpressed genes of TMPRSS2 and CXCL10 in 
both PRAD and COVID-19 play an active role in mediating the 
pathways responsible for disease prognosis. 

The coexpressed genes were then further characterized func-
tionally and it was found that of the 2,669 genes that were co-ex-
pressed with TMPRSS2, 33.70% were associated with binding ac-
tivity, while 26.70% had involvement in catalytic activity. Further 
breakdown of the 33.70% genes associated with binding activity 
revealed that 49.50% of these genes are involved in protein bind-
ing. These findings can be supported by the fact that in PRAD cas-
es, upregulation of TMPRSS2 facilitates more activation of ACE2 
receptors which further makes a host more susceptible to SARS-
CoV-2 infection. On the other hand, an extensive analysis of 
CXCL10 co-expressed genes reported the association of multiple 
genes with immune response stages, including activation and de-
velopment of immune response, leukocyte activation, leukocyte 
migration and immune effector processes. Noteworthy to mention 
that a full-fledged immune reaction is deployed against SARS-
CoV-2 invasion as a consequence of an inflammatory trigger, and 
each step in this reaction requires the involvement of multiple im-
mune cells and chemical responders. CXCL10 is a key responder 
as it also attracts as a chemoattractant for immune cells like mono-
cytes, T cells, and natural killer cells. In both cases of cancer and 
COVID-19, CXCL10 exacerbates inflammation that causes tissue 
damage. In severe cases, cytokine storms accompanied by other 
chemokines due to severe inflammatory response can become fa-
tal [25,70]. In regards to our study, as the findings indicate that the 
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association of the co-expressed genes that take part in different im-
mune response mechanisms are common to both PRAD and 
COVID-19, it can be predicted that PRAD patients, as they have 
higher levels of CXCL10 (Fig. 2A), if diagnosed with COVID-19 
have a possibility of developing cytokine storm mediated fatality. 

This study was conducted in silico through utilization of differ-
ent omics databases and genome analysis tools to identify how 
much of a threat COVID-19 is to patients with prostate cancer. 
Overall, we analyzed the expression patterns of two important de-
terminant proteins of PRAD and COVID-19, TMPRSS2 and 
CXCL10; scrutinized how the expression levels compare between 
age groups and explored the functional characteristics of associat-
ed genes of TMPRSS2 and CXCL10. The data obtained from our 
analyses and previous relevant findings suggest that PRAD pa-
tients can be placed within the risk group of COVID-19 suscepti-
bility and fatality. 

Biological processes are regulated through the interaction of a 
myriad of chemicals and biomolecules that form perpetually com-
plex meshes of pathways. These pathways become even more 
complicated in a state of infection or disorder. Often, early diagno-
sis of certain diseases cannot be carried out using conventional di-
agnostic tools. However, if certain biomarkers for these diseases 
can be identified, early prevention, treatment and management of 
diseases can be possible in different risk groups. Based on our in 
silico analysis, it can be said that TMPRSS2 and CXCL10 can serve 
as biomarkers for analyzing the susceptibility of prostate cancer 
patients towards COVID-19. The findings of this study can be uti-
lized to identify possible associated proteins that also participate in 
the pathophysiology of PRAD and COVID-19, which can be used 
as targets for development of therapeutics directed towards pros-
tate cancer patients. Although this in silico study presents substan-
tial data that supports TMPRSS2 and CXCL10’s association with 
COVID-19 susceptibility in prostate cancer patients, further ex-
periments are required for deeper understanding of co-expressed 
genes, protein networks and host genetics that contribute to the 
polymorphism of TMPRSS2 and CXCL10 in individuals. 
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