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Introduction 

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia that results 
from a defect in insulin secretion, insulin action, or both [1]. Hyperglycaemia over the long 
term adversely impacts the microvasculature, leading to diabetic nephropathy (DN), diabet-
ic retinopathy (DR), and diabetic neuropathy (DPN) with profound impact on the quality 
of life and life expectancy [2]. DM is on the rise globally. According to the statistics from In-
ternational Diabetes Federation (accessed December 23, 2021) 90 million adults (20–79) 
are living with diabetes in the IDF South-East Asia (SEA) region in 2021 [3]. This figure is 
estimated to increase to 113 million by 2030 and 152 million by 2045. 
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Diabetes and its related complications are associated with long term damage and failure of 
various organ systems. The microvascular complications of diabetes considered in this 
study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to 
identify the weighted co-expressed and differentially expressed genes (DEGs), major path-
ways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three 
conditions. The primary goal is to identify vital DEGs in all the three conditions. The over-
lapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-ex-
pressed genes were defined as key genes, which differentially expressed in all the three 
cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of 
key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the 
key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the 
miRNA-gene and transcription factor-gene regulatory network of the five gene of interest 
in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted 
with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the 
major five gene of interest. Finally, drug-gene interaction network elucidates five potential 
drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and 
therapeutic drugs in the key signaling pathways, which may help us, understand the pro-
cesses of all three secondary microvascular problems and aid in disease detection and 
management. 

Keywords: co-expression analysis, diabetes nephropathy, diabetes neuropathy, diabetes ret-
inopathy, microvascular complication, RNA-Seq transcriptome  
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As diabetes prevalence rises and the clinical arsenal for primary 
and secondary prevention of these complications expands. It is im-
portant for physicians to understand the relationship between dia-
betes and vascular disease. Nephropathy, retinopathy, and neuropa-
thy are exacerbated by microvascular lesions, and cardiovascular 
events are associated with large vascular damage. This study exam-
ined the microvascular complications of diabetes, including DR, 
DN, and DPN. Both the duration and severity of hyperglycemia in-
creases the risk of DR and other microvascular complications [4]. 

Increased glucose influx activates cellular signaling pathways such 
as the diacylglycerol-protein kinase C (PKC) pathway, advanced 
glycation end-products (AGE), polyol pathway, hexosamine path-
way, and oxidative stress. Among diabetic microvascular complica-
tions, DR may be the most common. DR is characterized by four 
major mechanisms: increased polyol pathway flux, increased AGE 
formation, activation of PKC, and polyol pathways [5]. In case of 
other complications of diabetes, prevention is the first step in treat-
ing diabetic nephropathy. Diabetes microvascular complications, 
such as diabetic nephropathy, have strong associations with blood 
glucose control. An increase in glucose metabolic flux results in the 
activation of several metabolic pathways, resulting in an increase in 
AGE and reactive oxygen species production. This activates a num-
ber of signaling pathways that lead directly to enhanced extracellu-
lar matrix  production via PKC-β stimulation of AP-1 transcription-
al activation, ERK pathways, and, critically, transforming growth 
factor β1 (TGF-β1) synthesis, which then stimulates its signaling 
pathways to enhance extracellular matrix protein synthesis [6]. 

Despite the exact mechanism of hyperglycemia-induced nerve 
damage is unknown; it is believed to be caused by polyol accumula-
tion, AGE damage, and oxidative stress. Although there is no spe-
cific treatment for diabetic neuropathy, there are many drugs that 
can alleviate its symptoms. Controlling symptoms and preventing 
worsening of neuropathy are the primary goals of treatment [7]. 

Diabetes promotes inflammation in the nerve tissues [8] that 
manifests symptoms and augments neuropathy development. Dia-
betic nerves contain macrophages, rarely lymphocytes and release 
increased tumor necrosis factor α (TNF-α) or interleukins in hu-
mans and animals [9]. The proinflammatory state activates the 
stress kinase mitogen activated protein (MAP) kinase in diabetic 
nerves, which was reduced by pioglitazone treatment [10,11]. As a 
result, MAP kinase is evaluated as a potential target for a new dia-
betic neuropathy treatment. Nuclear factor NF-κB pathway was 
also triggered in this process, causing the cell to die or proliferate 
[12,13]. 

The previous works in the microvascular complications eluci-
dates the clinical studies and drug-based progression of the diseas-

es. The clinical studies to evaluate the presence of nephropathy 
and neuropathy in patients with DR and correlate the severity of 
DR with that of DN and DPN were studied [14]. Epalrestat, an al-
dose reductase inhibitor that is approved in Japan, prevented pro-
gression of diabetic neuropathy and retinopathy/nephropathy. 
The effect on diabetic retinopathy/nephropathy may have oc-
curred indirectly because of the prevention of progression of dia-
betic neuropathy, in addition to the inhibitory action of epalrestat 
on aldose reductase [15]. 

The goal of this experiment was to perform WGCNA (Weight-
ed Gene Correlation Networks Analysis) on DR, DN, and DPN 
samples in order to comprehend the disease's pathogenic path-
ways, and to find prospective biomarkers targets. As a result, 
RNA-sequencing (RNA-Seq) datasets from all three conditions 
were obtained from the European Nucleotide Archive (ENA)-Eu-
ropean Bioinformatics Institute (EBI) database and significant dif-
ferentially expressed genes (DEGs) were revealed. 

The samples were then introduced to WGCNA in order to con-
struct the co-expression modules. The genes that overlapped in 
both the co-expressed modules and the DEGs were found. The bi-
ological linkages of overlapping genes in the development of all 
three microvascular problems were revealed by gene ontology 
(GO) and pathway enrichment analysis. The primary pathways in-
volved in the pathophysiology of the complications of the gene of 
interest were discovered. The co-expressed genes that are differen-
tially expressed in all three circumstances were identified for fur-
ther investigation. The genes of interest’s protein-protein interac-
tion (PPI) networks are constructed. A multi-layer regulatory net-
work comprised of hub gene interrelationships, anticipated miR-
NAs, and transcription factors (TFs) and drugs targeting the genes 
were created and examined in order to uncover other regulatory 
agents impacting the expression of key genes.  

This work focuses on the co-expression analysis of the three pri-
mary microvascular complications (nephropathy, retinopathy, and 
neuropathy), and to the best of our knowledge this is the first work 
focusing on all the three primary microvascular complications. In 
this study genes co-expressed in all the three disorders were first 
identified. The results were further enhanced to identify the TF, 
and miRNA that are commonly associated. The workflow is eluci-
dated in Fig. 1. The final findings aid in pinpointing a single area 
that may be controlled or treated for all three disorders. 

Methods 

Data sources 
The RNA-Seq expression profiles of three secondary complica-
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Fig. 1. Workflow. SRA, Sequence Read Archive; TF, transcription factor; GO, gene ontology; PPI, protein-protein interaction; DE, differential 
expression.

3 / 19https://doi.org/10.5808/gi.22029

Genomics & Informatics 2022;20(3):e26

https://doi.org/10.5808/gi.22029


tions from human were chosen for the study. Diabetic nephropa-
thy - PRJNA595590 (36 samples – 28 DN and 9 control), diabetic 
neuropathy - PRJNA602424 (15 samples – 8 diabetic peripheral 
neuropathy samples and 7 normal controls), and diabetic retinop-
athy - PRJNA363068 (13 samples – 9 DR and 4 normal) were 
downloaded from ENA database (https://www.ebi.ac.uk/ena/
browser/home). DN and DR are paired end samples whereas 
DPN is single end samples. 

Differential expression analysis 
The RNA-Seq datasets of the three diabetes secondary complica-
tions were then examined for DEGs using DeSeq2 [16]. DEGs are 
genes that meet the requirements of |log fold change (FC)| > 1.5 
and adjusted p-value < 0.05. The Venn diagram web tool (http://
bioinfogp.cnb.csic.es/tools/venny/) was used to identify genes 
that were commonly seen in all three conditions. Using the ap-
proaches described above, a list of possible DEGs was compiled. 

Weighted Gene Co-expression Analysis 
WGCNA in R [17] was used to identify co-expressed genes in 
DR, DN, and DPN. The normalized count files of all the samples 
were used as the input matrix. The co-expression network was 
built using the WGCNA algorithm. WGCNA is employed in sam-
ple clustering, topological feature calculation, co-expression net-
work creation, disease-linked gene and module selection, and net-
work differential analysis. Prior to WGCNA, outlier samples were 
discovered and removed using the principal component analysis 
method. The WGCNA algorithm was then given a matrix com-
prising the intensities of DEGs for each sample. Sample clustering, 
mean connectivity and scale-free fit index for numbers 1–30 (as 
soft-threshold power) were calculated individually with the best 
result determining the co-expression similarity of the adjacency 
matrix. Finally, using hierarchical clustering and TOM dissimilari-
ty measures, all genes were classified into distinct modules (co-ex-
pression modules) based on their expression similarity. In this 
stage, after identifying module eigengenes (using pearsons correla-
tion, r), the ones with significantly associated eigengenes (r > 0.85) 
were consolidated into a single module. According to the author, 
the following parameters were utilized to identify co-expression 
modules: "soft-threshold power = 12 min." CutHeight equals 0.15 
when Merge ModuleSize = 30. 

Gene ontology and pathway enrichment of DEGs analysis 
The ToppGene (ToppFun) (https://toppgene.cchmc.org/enrich-
ment.jsp) [18] programme incorporated GO analysis (http:// ge-
neontology.org/) with Reactome (https://reactome.org/) [19] 

pathway enrichment analysis. As a result, GO analysis in Top-
pGene provides detailed annotations for functional and route in-
terpretations of the gene of interest. DEGs were uploaded to Top-
pGene for GO and Reactome pathway enrichment analysis. p < 
0.05 was chosen as the cut off criterion. The function of DEGs at 
three levels: molecular function, biological process, and cellular 
component were predicted from StringDB [20].  

Topology and PPI network analysis  
Jetpetto in Cytoscape was used for topological analysis. StringDB 
interactome (https://string-db.org/) is a database of PPIs [20]. All 
candidate DEGs were uploaded in STRING, with a confidence 
score of 0.4 chosen as the cut off parameter for PPI network build-
ing. Then, using Cytoscape (version 3.9.0, http://www.cytoscape.
org/) [21] software, a protein interaction association network was 
constructed and scaled in terms of node degree, betweenness cen-
trality, stress centrality, and closeness centrality. Three modules of 
the highest degree were selected, and the probable mechanisms of 
each module were explored using ToppGene. The filter criterion 
was set to a degree of 10. Hub genes with a high degree of similari-
ty were chosen as prospective important genes and biomarkers. 

Gene set linkage analysis of the genes 
The gene set linkage analysis (GSLA) tool in Human Interactome 
Resource (HIR) was used to analyze the gene sets of interest [22]. 
The higher the density greater the link of the gene to the pathway 
or network. HIR is created by combining six sources of evidence 
for functional gene connections from nine public datasets. The 
GSLA tool is offered to analyze the probable functional impacts of 
the numerous simultaneously altered genes based on this 
high-quality functional association network of HIR. The gene set 
of interest is compared to a gene association network that includes 
the same genes and has the same number of neighbors and filtered 
with density more than 0.01. 

TFs-gene interaction in the specific pathways 
The NetworkAnalyst database (https://www.networkanalyst.ca/) 
[23] is a free and open-source platform that focuses on TF– target 
interactions. ENCODE (Encyclopedia of DNA Elements), JAS-
PAR, and ChEA are three well-known TF–target prediction data-
bases used by NetworkAnalyst. Based on the ENCODE database, 
TFs were considered for the selected genes in this study. Cytos-
cape software was then used to visualize the network of hub genes 
and their targeted TFs. 
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MiRNA-gene interaction 
The miRNet database (https://www.mirnet.ca/) [24] is a free and 
open-source platform that primarily focuses on miRNA-target in-
teractions. TarBase, miRTarBase, miRecords, miRanda, miR2Dis-
ease, HMDD, PhenomiR, SM2miR, PharmacomiR, EpimiR, star-
Base, TransmiR, ADmiRE, and TAM 2.0 are the 14 established 
miRNA-target prediction databases used by miRNet. miRNAs 
obtained were considered targeted miRNAs of genes of interest in 
this study. Cytoscape software was then used to show the network 
of the gene of interest and their targeted miRNAs. 

Drug-gene interaction 
The Drug Bank database (version 5.0), PubChem, and Clue.io are 
used to investigate drug-gene interactions of the five genes of inter-
est. Drugs were selected using the drug-gene interaction database 
(DGIdb) based on a selected gene of interest that acts as an excit-
ing and prospective target [25]. This final drug list included only 
pharmaceuticals that have been approved by the Food and Drug 
Administration and had a DrugBank source. 

Results 

Differential expression analysis 
The RNA-Seq datasets of DR, DN, and DPN was obtained from 
the ENA-EBI. The identification of DEGs was processed with ad-
justed p < 0.05 and log FC > 1.5. A total of 2,184 genes were finally 
obtained including 1,949 up-regulated and 235 down-regulated 
genes in the DR dataset. In diabetic neuropathy 95 genes were ob-
tained which includes 93 up-regulated and two down-regulated 
genes as listed in Table 1. The resulted DEGs of each dataset were 
subjected to Venn diagrams for the identification of overlapped 
genes among three conditions (Fig. 2). A total of 56 overlapped 
genes were identified. Forty-eight genes were found to be com-
mon in both DN and DR, five genes were found common for both 
neuropathy and retinopathy, and three genes were found to be 
overlapping in DN and DPN (Table 2, Fig. 2).  

Weighted gene co-expression analysis 
The co-expressed genes are identified using WGCNA in R. Sam-
ple clustering showed no outlier among samples and soft-thresh-

Table 1. The up- and down-regulated gene of the three microvascular complications

Diabetic retinopathy Diabetic neuropathy Diabetic nephropathy
Up-regulated 1,949 93 330
Down-regulated 235 2 55

Fig. 2. The overlapping differentially expressed genes of the three microvascular complications.
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Table 2. The differentially expressed genes overlapping in the three conditions

Nephropathy and retinopathy Nephropathy and neuropathy Neuropathy and retinopathy
MAP1LC3B NIPSNAP3B PTPRE INSC TPRG1 ARL4C
PTPN1 FCGR2A MXRA5 EPPIN-WFDC6 CERKL PMAIP1
SNAPIN CEP250 GNS GPNMB PCK1 SLC7A11
MAP6D1 TPRG1L RNASE1 PDCL NDST3
PRPH2 TMC8 TKT ST8SIA4 PTGFR
SCG3 DEGS1 RAB11A PER1
UBA7 STARD4 THBD NR4A1
RPS6KB2 MARCKSL1 TYROBP FOS
PSMB4 POLG2 SLC43A3 EGR1
RPS11 COX6C HMGN4 RASGEF1B
RGS19 SRSF10 C15orf48 HSPA8
TUBB3 ITGB2 ELOVL3 PPP2CB

old power of 12 was selected based on the scale-free fit index and 
mean connectivity values. WGCNA algorithm clustered genes 
into six co-expression modules, including black, blue, turquoise, 
grey, dark-green, and light cyan modules. According to the eigen-
gene’s clustering dendrogram and adjacency heatmap, six co-ex-
pression modules were divided into two clusters. Maximum num-
ber of genes falls into the blue and turquoise modules (Fig. 3B). 
Total interactions found was 65,535, after filtering the interactions 
with a cutoff of >0.4. The genes are filtered by mapping on to the 
DEGs—2,608, thereby getting 149 genes for further analysis. 
These 149 genes are further spotted for their interactions and net-
work was generated. A4GALT and AAAS are the two major genes 
that show maximum interactions (Fig. 4). AAAS was found to be 
up-regulated in DN and has the highest degree of interactions in 
WGCNA analysis. AAAS was found to interact with MAPK3 and 
PDPK1. A4GALT was found to be interacting with PDPK1 and 
AKT1. 

The 149 DEG and co-expressed in WGCNA analysis were stud-
ied for the up or down regulation in three conditions. AKT1, 
NFKB1, MAPK3, PDPK1, and TNF were the five genes showing 
expression in all three conditions whereas all the other genes 
showed expression in either one or two conditions, thereby its ex-
cluded (Table 3, Fig. 5). 

GO and pathway enrichment analysis of 149 genes 
In order to clarify the major functions of these DEGs, the associat-
ed biological processes were explored. GO enrichment and Reac-
tome pathways analysis of DEGs were performed to analyze the 
gene function (in terms of biological processes, cellular compo-
nents, and molecular function) as well as their associated path-
ways. GO enrichment analysis of top ten significantly enriched 

terms showed that in biological process category, the genes in-
volved are concerned cellular process, metabolic process, organic 
substance metabolic process, nitrogen compound metabolic pro-
cess, macromolecule metabolic process, and regulation of macro-
molecule metabolic process. In terms of cellular component, the 
genes were enriched in intracellular organelle, intracellular mem-
brane-bounded organelle, cytoplasm, nucleus, intracellular organ-
elle lumen, and nuclear lumen. For molecular function, category 
the genes were mainly concentrated in the heterocyclic compound 
binding, organic cyclic compound binding, nucleic acid binding, 
RNA binding and transcription co-regulator activity. 

From a total of 435 pathways, 121 pathways (p < 0.05) were ob-
tained. Among the enriched pathways, eight pathways significant 
in diabetes were selected for further analysis. The major pathways 
and the respective gene of interest are given in Table 4. Nine major 
pathways in diabetes and its microvascular complications are con-
sidered for the study where all the five gene of interest is spotted. 
Reactome enrichment pathway analysis revealed that genes were 
significantly enriched in insulin resistance, phosphoinositide 3-ki-
nase (PI3K)-Akt signaling pathway, TGF-β signaling pathway, mi-
togen-activated protein kinase (MAPK) signaling pathway, insulin 
signaling pathway, TNF signaling pathway, vascular endothelial 
growth factor (VEGF) signaling pathway, AGE-RAGE (receptor 
for advanced glycation end products) signaling pathway in diabetic 
complications and AMP-activated protein kinase (AMPK) signal-
ing pathway (Fig. 6).  

Topology and PPI network analysis 
By using the STRING database, the PPI network of 149 DEGs 
and co-expressed genes were established and consisted of 2,660 
nodes and 5,066 edges (Fig. 7). Three clusters were obtained by k 
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Fig. 3. (A, B) The dendogram tree of the samples in the study clustering dendrogram of genes, with dissimilarity based on topological 
overlap. N, neuropathy; R, retinopathy; NP, nephropathy samples. (C, D) Analysis of network topology for various soft-thresholding powers. 
The left panel presents the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the 
mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis).
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means clustering of the 149 genes. The study concentrates on 
AKT1, NFKB1, MAPK3, PDPK1, and TNF genes. The five genes 
of interest were found in two clusters. From the 111 genes interact-
ing in the first cluster 73 genes from our 149 gene of interest are 
found to be interacting, AKT1, TNF, PDPK1, and NFKB1 from 
the hub genes are found to be interacting in cluster 1 (blue). In the 
green cluster (second cluster) 43 of the key genes out of the 80 
genes were found to be clustered. MAPK3 was found in the green 
cluster. In the third cluster (red), among the 74 genes interacting in 

the cluster, 31 key genes were found to be interacting. The degree 
distribution and betweeness distribution of the 149 genes on a 
logarithmic scale, shows a small number of nodes with high degree 
(the hubs) and a large number of nodes with a low degree (Fig. 8). 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of the selected modules revealed that the five gene of in-
terest were identified in the major pathways such as insulin resis-
tance, PI3K-Akt signaling pathway, TGF-beta signaling pathway, 
MAPK signaling pathway, insulin signaling pathway, TNF signal-
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ing pathway, VEGF signaling pathway, AGE-RAGE signaling 
pathway in diabetic complications and AMPK signaling pathway. 
Topology analysis elucidates from the selected 149 genes, most of 
the genes are spotted in metabolism. Diabetes being a metabolic 
disorder (Fig. 9). 

GSLA of the genes 
The GSLA of the 149 genes was performed using GSLA tool in 
HIR. HIR is prepared through the integration of functional gene 
associations from nine public databases. Based on this high-quality 
functional association network of HIR, the GSLA tool interprets 

Fig. 4. Co-expressed gene network of the 149 genes based on the weight.

Table 3. The expression of the selected genes in three conditions

S. No. Gene
Retinopathy Neuropathy Nephropathy

Up Down Up Down Up Down
1 AKT1 Y N Y N Y N
2 NFKB1 Y N N Y Y N
3 MAPK3 Y N Y N N Y
4 PDPK1 Y N Y N Y N
5 TNF Y N Y N N Y

the potential functional impacts of the multiple simultaneously 
changed genes. The gene set of interest is compared to the gene as-
sociation network consisting the same genes and having the same 
number of neighbors. TNF signaling, insulin receptor signaling 
cascade, VEGF signaling pathway, PIP3/AKT signaling, and 
MAPK1/MAPK3 signaling are the major pathways with high den-
sity and highest interaction. The genes of interest in these path-
ways are elucidated in Table 5. The density is higher the more the 
association of the gene to the pathway or network. Density consid-
ered was >0.01. 

https://doi.org/10.5808/gi.220298 / 19

Asmy VSS and Natarajan J • Co-expression analysis of RNA-Seq transcriptome

https://doi.org/10.5808/gi.22029


Fig. 5. The interaction of the AKT1, NFKB1, MAPK3, PDPK1, and TNF.

TFs-gene interaction in the specific pathways 
A total of 557 nodes and 8,063 edges of the 149 key genes were ex-
amined using Network analyst software. Subsequently, the resulted 
network was imported to Cytoscape for visualization of interac-
tion among TFs and hub genes (Fig. 10). The top ranked TFs 
were RELA, PPARG, SREBF1, BRCA1, MAX, STAT1, HNF4A, 
PDX1, MYB, NFATC2, and FOXO3 are shown in Table 6. Based 
on the results, we found that degree level of RELA was very high. 
It was co-regulated by all the five gene of interest and many other 
TFs, which fall into the major pathways. Subsequently, the net-
work of the hub genes and their targeted TFs were visualized by 
Cytoscape software. RELA, FOXO3, PDX1, and SREBF1 were 
the TFs within highest degree and interacting with the major gene 
of interest (Table 7). 

miRNA-gene interaction 
A total of 2,463 nodes and 10,246 edges of the 149 key genes and 
their miRNA interactions were examined from miRNet database. 
The list of miRNA interacting with the five gene of interest was 
further examined (Table 8). miRNA-hub gene regulatory network 
construction miRNet database was applied to screen the targeted 
miRNAs of the hub genes. Cytoscape software was used to con-
struct the miRNA-hub gene network (Fig. 11). Subsequently, the 
network of the five genes and their targeted miRNAs was visual-
ized by Cytoscape software. hsa-mir-34a-5p is the major miRNA 
which is found to interact with all the five genes (Table 8).  

Drug-gene interaction  
A total of 69 drugs were explored using DGIdb that might have the 
potential to treat the major five genes. Furthermore, downstream 
interaction networks of AKT1, NFKB1, MAPK3, PDPK1, and 
TNF were generated (Figs. 12, 13), which elucidates the common 
drugs interacting with one or more than one gene of interest. Tha-
lidomide, HMPL-004 (Andrographolide) and Pranlukast were 
found to be targeting TNF and NFKB1. Inositol 1,3,4,5-tetrakis-
phosphate was found to target both PDPK1 and AKT1. Arsenic 
trioxide was targeting AKT1 and MAPK3 form the five gene of in-
terest was studied in DrugBank source (Table 9). 

Table 4. The major enriched pathway and their gene of interest

S. No. Pathway Genes of interest p-value
1 PI3K-Akt signaling pathway AKT1 1.75E-103

NFKB1
MAPK3
PDPK1

2 MAPK signaling pathway AKT1 5.47E-83
NFKB1
MAPK3
TNF

3 AGE-RAGE signaling pathway in 
diabetic complications

AKT1 7.46E-35

NFKB1
MAPK3
TNF

4 TGF-beta signaling pathway MAPK3 4.28E-28
TNF

5 TNF signaling pathway AKT1 5.88E-27
NFKB1
MAPK3
TNF

6 AMPK signaling pathway AKT1 5.97E-25
PDPK1

7 Insulin signaling pathway AKT1 2.69E-28
NFKB1
PDPK1
TNF

8 Insulin resistance AKT1 5.21E-25
MAPK3
PDPK1

9 VEGF signaling pathway MAPK3 1.22E-13

PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; 
AGE, advanced glycation end-products; RAGE, receptor for advanced 
glycation end products; TGF, transforming growth factor; AMPK, AMP-
activated protein kinase; VEGF, vascular endothelial growth factor.
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Fig. 6. The major pathway (yellow) and the genes (blue).

Discussion 

DM produces vascular disease that accounts for the majority of 
morbidity, hospitalizations, and deaths among patients. Microvas-
cular lesions induce nephropathy, retinopathy, and neuropathy, 
whereas major blood vessel damage raises the risk of cardiovascu-
lar events. The onset of a secondary diabetic complication cannot 
be avoided or reversed. The study focused on co-expressed genes 
in all three conditions (DR, DN, and DPN), pathogenesis, and 
miRNA, TF and gene network in the key pathways involved. In 
the DR dataset, the differential expression analysis of all three 
complications includes a total of 2,184 genes, in which 1,949 
up-regulated and 235 down-regulated genes. DN qualifies 330 

genes to be up-regulated and 55 genes to be down-regulated. Dia-
betic neuropathy was found to have 95 genes, 93 of which were 
up-regulated and two were down-regulated. A total of 56 overlap-
ping genes were identified, 48 genes were found to be common in 
diabetic neuropathy and retinopathy, five genes were found to be 
common in neuropathy and retinopathy, and three genes were 
found to be overlapping in diabetic neuropathy and nephropathy. 

After filtering the interactions with a cut off of >0.4, a total of 
65,535 interactions were obtained from the co-expression analysis 
using WGCNA. By mapping the genes to the DEGs – 2,608, a to-
tal of 149 genes were obtained for further study. The relationships 
between these 149 genes were identified, and a network was creat-
ed. The two primary genes with the most interactions are 
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Fig. 7. The three clusters of the 149 genes.

A4GALT and AAAS (Fig. 4). AAAS has the highest degree of in-
teractions in WGCNA analysis and has been discovered to be 
up-regulated in DN. AAAS has been discovered to interact with 
MAPK3 and PDPK1. A4GALT has been discovered to interact 
with PDPK1 and AKT1. In order to identify the genes most often 
related with disease and their roles, it is helpful to identify the 

genes with co-expressed profiles. 
The up or down regulation of the 149 DEG and co-expressed in 

WGCNA analysis were investigated in three disease condition. The 
five genes AKT1, NFKB1, MAPK3, PDPK1, and TNF that exhibit-
ed expression in all three conditions were considered for further 
analysis. All the other genes that showed expression only in two or 
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Fig. 9. The topological segregation of the gene.

Fig. 8. The degree distribution and betweeness distribution of the 149 genes.

one condition. Diabetes-prone mice's blood glucose levels were re-
ported to be controlled by MAPK3 (ERK1) inhibitor inhibition in 
hypertrophic 3T3-L1 [26,27]. In a study involving DN and non-
DN patients, it was found that addition to poor glycemic control, 

oxidative stress and inflammation; genetic factors seem to be main 
determinants of DN in terms of both occurrence and severity 
[28]; however, the genetic mechanism causing DN is still unex-
plored. When compared to people with type 2 diabetes mellitus 

35

30

25

20

15

10

5

0

1,000

300

100

30

10

3

1

1,000

300

100

30

10

3

1

De
gr

ee
Fr

eq
ue

nc
y 

(n
um

be
r o

f n
od

es
)

Fr
eq

ue
nc

y 
(n

um
be

r o
f n

od
es

)
Betweenness

(nodes with that amount of betweenness)

Betweenness distribution (log-log)Degree distribution (log-log)

Degree
(nodes containing that amount of connections)

3001003030 1010 33 11

Shortest path length

Comparative analysis: Degree against shortest path length

■ Cellular processes  ● Genetic information processing  ▲ Uploaded gene set (median)
● Environmental information processing  ■ Human diseases  ▼ Metabolism

4.64.34.0 4.54.23.93.6 4.44.13.83.5 3.73.43.3

https://doi.org/10.5808/gi.2202912 / 19

Asmy VSS and Natarajan J • Co-expression analysis of RNA-Seq transcriptome

https://doi.org/10.5808/gi.22029


Fig. 10. Transcription factor (blue) interacting with the gene of interest (red).

without nephropathy, subjects with DN had higher levels of 
uMCP-1 and plasma TNF, and they found a significant link be-
tween uMCP-1 and plasma TNF. Gupta et al.’s study [29] has also 
emphasized the connection between DN and the single nucleotide 
polymorphism of the TNFA gene. 

The study takes into account nine key pathways in diabetes and 
associated microvascular complications, with all five genes of inter-
est being identified. Insulin resistance, PI3K-Akt signaling path-
way, TGF-beta signaling pathway, MAPK signaling pathway, insu-
lin signaling pathway, TNF signaling pathway, VEGF signaling 
pathway, AGE-RAGE signaling pathway in diabetic complications, 
and AMPK signaling pathway were all found to be significantly en-
riched in the reactome enrichment pathway analysis.  

Two major categories of regulatory elements that control gene 

expression are TFs and miRNAs. Table 6 shows the top TFs: 
RELA, PPARG, SREBF1, BRCA1, MAX, STAT1, HNF4A, PDX1, 
MYB, NFATC2, and FOXO3. Based on the findings, we discovered 
that the interaction degree of RELA was extremely high, as it was 
co-regulated by all five genes of interest as well as a slew of other 
TFs involved in significant pathways. Following that, Cytoscape 
software was used to visualize the network of hub genes and their 
targeted TFs. RELA, FOXO3, PDX1, and SREBF1 are the TFs that 
possess highest interaction with the primary gene of interest. NF-
κB is a widely distributed TF that has a role in a variety of biological 
processes. Specific inhibitors keep it in an inactive condition in the 
cytoplasm. NF-κB travels to the nucleus after the inhibitor is de-
graded and promotes transcription of certain genes. NFKB1 or 
NFKB2 are linked to REL, RELA, or RELB to form NF-κB. The 
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most common form of NF-κB is NFKB1 complexed with RELA, 
the gene's product. This gene has four transcript variants that code 
for distinct isoforms. In our study, RELA interacts with NFKB1, 
which is the most common form of complex. This complex is not 
studied in the three diabetes secondary complications [30]. Insu-
lin inhibits FoxO TFs, making them important insulin action me-
diators in diabetic mice. It has been established from the literature 
that FoxO-regulated genes are rate-limiting in the enhanced pro-
tein breakdown and muscle atrophy seen in diabetes with insuffi-
cient insulin [31]. 

The construction of a miRNA-hub gene regulation network re-

vealed that 22 significant miRNA interact with the five genes of in-
terest. The primary miRNA observed to interact with all five genes 
is hsa-mir-34a-5p. miR-34a-5p could negatively influence pancre-
atic cell proliferation via the Wnt signaling pathway using GO and 
KEGG enrichment analysis. It was also discovered to affect blood 
glucose levels via regulating insulin secretion via the insulin signal-
ing system in their study [32]. Gholaminejad, Gholaminejad et al. 
(2021) [33], in their findings states that hsa-miR-129-2-3p, hsa-
miR-34a-5p, and hsa-miR-27a-3p, as well as STAT3, were identified 
as top molecules directing the regulation of the hub genes in the 
created regulatory network in immunoglobulin A nephropathy. Mi-
croRNA-34a-5p (miR-34a) has been involved in vascular senes-
cence [34], oxidative stress [35] and apoptosis [36] as a transla-
tional inhibitor of SIRT1. MiR-34a expression is altered in a variety 
of human diseases, including cancer [37]; and cardiovascular dis-
ease [38]. From previous literatures, hsa-miR-34a-5p was found to 
be a prominent biomarker in diabetes and not found to be proved 
in DR, DN, and DPN. In our present study, hsa-miR-34a-5p was 
found to be interacting with five gene of interest in the major path-
ways in the selected diabetes secondary complications. miR-34a-5p 
and RELA were identified through the construction of a regulatory 
network as putative top molecules found to be possibly regulating 
the expression of the five identified gene of interest. 

Additionally, downstream drug-gene interaction networks for 
AKT1, NFKB1, MAPK3, PDPK1, and TNF were created (Figs. 12, 
13), revealing the common medications that interact with one or 

Table 5. The five genes and the linkage density to the respective pathway

S. No. Description Density Interaction number Overlap gene number Overlapped gene(s)
1 TNF signaling 0.03233 212 2 TNF
2 PIP3 activates AKT signaling 0.03029 1,160 22 AKT1/PDPK1/MAPK3
3 MAP2K and MAPK activation 0.06191 369 8 MAPK3
4 AKT phosphorylates targets in the cytosol 0.06833 112 2 AKT1/CDKN1A
5 Insulin receptor signaling cascade 0.04171 317 6 MAPK3
6 Insulin-like growth factor I binding 0.05857 96 2 ITGAV/ITGB4
7 VEGF signaling pathway 0.06469 588 7 AKT1/MAPK3
8 MAPK1/MAPK3 signaling 0.02869 1,227 27 MAPK3
9 IGF receptor signaling pathway 0.07046 105 1 AKT1
10 Negative regulation of insulin receptor signaling pathway 0.04785 164 1 PRKCZ
11 VEGFA-VEGFR2 Pathway 0.0563 797 14 PDPK1/AKT1
12 Insulin/IGF pathway-MAPK kinase/MAPK cascade 0.08817 381 6 MAPK3
13 Insulin/IGF pathway-protein kinase B signaling cascade 0.05119 267 4 AKT1/PDPK1
14 PI3K cascade 0.0305 200 5 PDPK1
15 Signaling by insulin receptor 0.02979 333 6 PDPK1/MAPK3
16 Signaling by VEGF 0.05317 824 16 PDPK1/AKT1

TNF, tumor necrosis factor; MAPK, mitogen-activated protein kinase; VEGF, vascular endothelial growth factor; MAP, mitogen-activated protein; IGF, 
Insulin-like growth factor; PI3K, phosphoinositide 3-kinase.

Table 6. The top ranked TFs and their degree and betweenness

S. No. TF Degree Betweenness
1 RELA 38 837.07
2 PPARG 26 389.71
3 SREBF1 24 298.59
4 BRCA1 21 248.06
5 MAX 20 199.62
6 STAT1 15 152.47
7 HNF4A 14 107.66
8 PDX1 4 7.83
9 MYB 1 0
10 NFATC2 1 0
11 FOXO3 1 0

TF, transcription factor.
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more genes of interest. TNF and NFKB1 were discovered to be 
targeted by Thalidomide, HMPL-004 (Andrographolide), and 
Pranlukast (Fig. 12). Both PDPK1 and AKT1 have been discov-
ered to be targets of inositol 1,3,4,5-tetrakisphosphate (Fig. 13). 
The five gene of interest, AKT1 and MAPK3, were targeted by ar-
senic trioxide. 

This study elucidates the key co-expressed genes, which are up 
or down-regulated in all the three microvascular complications. 
The most prominent interaction of miRNA, TF, and gene in the 
major pathways of the diabetes and its complications elucidates a 
better understanding to the pathogenesis of the diseases. Thereby 
proposing the most potential biomarkers in the regulation or pre-
vention of the diabetes secondary complications that affect the 
kidney, eye and nerves. 

Despite the fact that several of the aforementioned strategies in 
this study, have produced positive outcomes for discovering new 

information, there are still certain restrictions. In our case, data on 
DN, neuropathy, and retinopathy were collected using Illumina 
HiSeq 4,000, 3,000, and 2,000. Data loss may have occurred as a 
result of the experimental platforms' differences. The differences 
and lack of genes won't hinder the research, though, because each 
of the three disorders was studied separately. For researchers who 
seek to comprehend the related pathways involved in the patho-
physiology and progression of all the three microvascular compli-
cations, our research will be a crucial pioneer. Our results thus 
have the potential to improve future treatment of diabetes compli-
cations by identifying particular biological pathways and genes 
linked to each type of complication. 

This was the first study to construct a co-expression network to 
explore the three diabetes-associated secondary complications—
DR, DN, and DPN. Our findings revealed five key genes that acted 
as essential components in the etiology of diabetes-associated mi-
crovascular complications, which may enhance our fundamental 
knowledge of the molecular mechanisms underlying this disease. 
The TF RELA and miRNA-hsa-mir-34a-5p interacts with all the 
five genes AKT1, NFKB1, MAPK3, PDPK1, and TNF. They play 
a major role in progression of pathogenesis of the three diseases. 
Hence, these genes might act as potential biomarkers for diagnosis 

Table 7. Top ranked TFs: gene interaction in the major nine pathway

S. No. Pathway TF Gene of interest
1 PI3K-Akt signaling pathway MYB, RELA, FOXO3, BRCA1 AKT1, NFKB1, MAPK3, PDPK1
2 MAPK signaling pathway RELA, MAX, ELKI AKT1, NFKB1, MAPK3, TNF
3 AGE-RAGE signaling pathway in diabetic complications RELA, STAT1 AKT1, NFKB1, MAPK3, TNF
4 Insulin resistance RELA, PDX1, SREBF1, STAT3 AKT1, NFKB1, TNF
5 TGF-beta signaling pathway PDX1 MAPK3, TNF
6 TNF signaling pathway RELA AKT1, NFKB1, TNF
7 AMPK signaling pathway FOXO3, HNF4A, SREBF1, PPARG PDPK1, AKT1
8 Insulin signaling pathway SREBF1, PDX1, ELK1 AKT1, MAPK3, PDPK1
9 VEGF signaling pathway PDX1, NFATC2 AKT1, MAPK3

TF, transcription factor; PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; AGE, advanced glycation end-products; RAGE, receptor 
for advanced glycation end products; TGF, transforming growth factor; TNF, tumor necrosis factor; AMPK, AMP-activated protein kinase; VEGF, vascular 
endothelial growth factor.

Table 8. The five gene of interest and miRNAs interaction

S. No. Gene miRNA
1. NFKB1, MAPK3, AKT1, TNF hsa-mir-34a-5p
2. NFKB1 & MAPK3 hsa-mir-34a-5p, hsa-mir-9-3p
3. MAPK3 & AKT1 hsa-mir-34a-5p
4. TNF & PDPK1 hsa-mir-17-5p, hsa-mir-24-3p
5. TNF & AKT1 hsa-mir-19a-3p, hsa-mir-125b-5p, 

hsa-mir-34a-5p, hsa-mir-143-3p
6. AKT1 & NFKB1 hsa-mir-26b-5p, hsa-mir-138-5p, 

hsa-mir-34a-5p, hsa-mir-155-5p
7. PDPK1 & AKTI hsa-mir-125a-5p, hsa-mir-302c-3p

hsa-mir-185-5p, hsa-mir-302d-3p
hsa-mir-302a-3p, hsa-mir-654-3p
hsa-mir-302b-3p, hsa-mir-3191-5p

Table 9. The gene of interest and their respective drugs

S. No. Gene Drug
1 TNF & NFKB1 Thalidomide

HMPL-004 (andrographolide)
Pranlukast

2 PDPK1 & AKT1 Inositol 1,3,4,5-tetrakisphosphate
3 AKT1 & MAPK3 Arsenic trioxide
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Fig. 11. Red nodes are miRNAs and blue nodes are the highly interaction miRNAs.

Fig. 12. The NFKB1 and TNF gene and their drugs.
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Fig. 13. The PDPK1, AKT1, and MAPK3 gene and their drugs.

of both diseases at early stage. Our findings will pave the way for 
further research into the related pathways that play a role in the de-
velopment and pathophysiology of both diseases. 
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