Table 2.
Performance comparison of proposed ADH-PPI predictor with 12 existing PPI predictors on benchmark S. cerevisiae dataset, where results of existing PPI predictors are taken from (Yu et al., 2021) paper
| Method | ACC (%) | Recall (%) | Precision (%) | MCC |
|---|---|---|---|---|
| ACC+SVM (Guo et al., 2008a) | 0.8933 ± 2.67 | 0.8993 ± 3.68 | 0.8887 ± 6.16 | N/A |
| Code4+KNN (Guo et al., 2008a) | 0.8615 ± 1.17 | 0.8103 ± 1.74 | 0.9024 ± 1.34 | N/A |
| MCD+SVM (You et al., 2014) | 0.9136 ± 0.36 | 0.9067 ± 0.69 | 0.9194 ± 0.62 | 0.8421 ± 0.0059 |
| MLD+RF (You et al., 2015a) | 0.9472 ± 0.43 | 0.9434 ± 0.49 | 0.9891 ± 0.33 | 0.8599 ± 0.0089 |
| PR-LPQ+RF (You et al., 2015b) | 0.9392 ± 0.36 | 0.9110 ± 0.31 | 0.9645 ± 0.45 | 0.8856 ± 0.0063 |
| MIMI + NMBAC+ RF (Ding et al., 2016) |
0.9501 ± 0.46 | 0.9267 ± 0.50 | 0.9716 ± 0.55 | 0.9010 ± 0.0092 |
| LRA+RF (You et al., 2017) | 0.9414 ± 1.8 | 0.9122 ± 1.6 | 0.9710 ± 2.1 | 0.8896 ± 0.026 |
| DeepPPI (Du et al., 2017) | 0.9443 ± 0.30 | 0.9206 ± 0.36 | 0.9665 ± 0.59 | 0.8897 ± 0.0062 |
| ippi-esml (Jia et al., 2015) | 0.9515 ± 0.25 | 0.9221 ± 0.36 | 0.9797 ± 0.60 | 0.9045 ± 0.0053 |
| WSRC (Kong et al., 2020) | 0.8673 | 0.8993 | NA | 0.7693 |
| DeepFE-PPI (Yao et al., 2019) | 0.9478 | 0.9299 | 0.9645 | 0.8962 |
| GcForest-PPI (Yu et al., 2021) | 0.9544 | 0.9272 | 0.9805 | 0.9102 |
| ADH-PPI | 0.9573 | 0.9394 | 0.9575 | 0.9144 |