Skip to main content
. 2022 Sep 21;25(10):105169. doi: 10.1016/j.isci.2022.105169

Table 2.

Performance comparison of proposed ADH-PPI predictor with 12 existing PPI predictors on benchmark S. cerevisiae dataset, where results of existing PPI predictors are taken from (Yu et al., 2021) paper

Method ACC (%) Recall (%) Precision (%) MCC
ACC+SVM (Guo et al., 2008a) 0.8933 ± 2.67 0.8993 ± 3.68 0.8887 ± 6.16 N/A
Code4+KNN (Guo et al., 2008a) 0.8615 ± 1.17 0.8103 ± 1.74 0.9024 ± 1.34 N/A
MCD+SVM (You et al., 2014) 0.9136 ± 0.36 0.9067 ± 0.69 0.9194 ± 0.62 0.8421 ± 0.0059
MLD+RF (You et al., 2015a) 0.9472 ± 0.43 0.9434 ± 0.49 0.9891 ± 0.33 0.8599 ± 0.0089
PR-LPQ+RF (You et al., 2015b) 0.9392 ± 0.36 0.9110 ± 0.31 0.9645 ± 0.45 0.8856 ± 0.0063
MIMI + NMBAC+
RF (Ding et al., 2016)
0.9501 ± 0.46 0.9267 ± 0.50 0.9716 ± 0.55 0.9010 ± 0.0092
LRA+RF (You et al., 2017) 0.9414 ± 1.8 0.9122 ± 1.6 0.9710 ± 2.1 0.8896 ± 0.026
DeepPPI (Du et al., 2017) 0.9443 ± 0.30 0.9206 ± 0.36 0.9665 ± 0.59 0.8897 ± 0.0062
ippi-esml (Jia et al., 2015) 0.9515 ± 0.25 0.9221 ± 0.36 0.9797 ± 0.60 0.9045 ± 0.0053
WSRC (Kong et al., 2020) 0.8673 0.8993 NA 0.7693
DeepFE-PPI (Yao et al., 2019) 0.9478 0.9299 0.9645 0.8962
GcForest-PPI (Yu et al., 2021) 0.9544 0.9272 0.9805 0.9102
ADH-PPI 0.9573 0.9394 0.9575 0.9144