Skip to main content
. 2022 Oct 3;12(16):6931–6954. doi: 10.7150/thno.77949

Table 7.

Applications of artificial intelligence in biomarker-based pancreatic cancer diagnosis

Reference Sample Size Data Source Algorithm Aim Best result
Chen et al. 173 28 samples* DNA-PAINT (exosomes) LDA Cancer detection Accuracy (100%)
Zheng et al. 174 220 cases** MALDI-TOF-MS (exosomes) ANN Cancer discrimination AUC (0.86)
Ko et al. 175 28 mice + 34 cases ExoTENPO chip (exosomes) LDA PC diagnosis Accuracy (100%)
Gao et al. 176 199 cases SELDI-TOF-MS (proteomes) SVM, KNN, ANN PC diagnosis AUC (0.971), Sensitivity (96.67%), Specificity (100%)
Yu et al. 177 100 serum samples SELDI-proteinchip DT PC prediction Sensitivity (88.9%), Specificity (74.1%)
Yang et al. 178 913 serum samples Multiple serum tumor markers ANN, LR PC diagnosis AUC (0.905), Accuracy (83.53%), Sensitivity (90.86%), Specificity (67.50%)
Qiao et al. 179 136 cases CT images+ serum tumor markers 2D-3D CNN Image segmentation; PC vs CP For image segmentation: DSC (84.32%);
For PC vs CP: Accuracy (87.63%), Sensitivity (94.57%), Specificity (93.25%), PPV (84.57%), NPV (90.34%)
Cristiano et al. 77 34 cases Cell-free DNA GBM Cancer detection AUC (0.86), Accuracy (67%), Specificity (71%)
Alizadeh Savareh et al. 180 671 cases GEO database (circulating microRNA) PSO-ANN-NCA PC diagnosis Accuracy (93%), Sensitivity (93%), Specificity (92%)
Yu et al. 181 501 cases exLR SVM PDAC detection AUC (0.960), Accuracy (90.43%), Sensitivity (93.39%), Specificity (85.07%)
Almeida et al. 182 648 samples Gene expression microarray ANN PDAC prediction F1-score (0.86), Accuracy (89.66%), Sensitivity (87.6%), Specificity (83.1%)
Yang et al. 197 204 cases Liquid biopsy KNN, SVM, LDA, LR, and Naive Bayes PC diagnosis and staging For diagnosis: AUC (0.95), Accuracy (92%), Sensitivity (88%), Specificity (95%);
For staging: Accuracy (84%), Sensitivity (78%), Specificity (88%)
Sinkala et al. 198 185 cases TCGA database (proteins, mRNAs, miRNAs, and DNA methylation patterns) NCA, SVM, DT, LR, ET, KNN PC subtypes differentiation Accuracy (98.7% for mRNA-based KNN classifier;
97.8% for the DNA methylation-based SVM classifier)
Zhang et al. 199 1183 cases*** LDI-MS SVM Pan-cancer diagnosis and classification For PC: Accuracy (100%)

*Including 9 healthy samples, 10 breast cancer samples, 9 PC samples;

**Including 79 breast cancer cases, 57 PC cases, 84 healthy controls;

***Including 97 PC cases.

Abbreviations: ANN: artificial neural network; AUC: area under the curve; CNN: convolutional neural network; CP: chronic pancreatitis; DT: decision tree; DNA-PAINT: DNA points accumulation for imaging in nanoscale topography; ET: ensemble tree; exLR: extracellular vesicles long RNA; GBM: gradient tree boosting; KNN: k-nearest neighbor; LDA: liner discriminate analysis; LDI-MS: laser desorption/ionization mass spectrometry; LR: logistic regression; MALDI-TOF-MS: matrix-assisted laser desorption/ionization time-of-flight MS; MLP: multilayer perceptron; NCA: neighborhood component analysis; PC: pancreatic cancer; PDAC: pancreatic ductal adenocarcinoma; PPV: positive predict value; SELDI-TOF-MS: surface-enhanced laser desorption/ionization time-offlight mass spectrometry; SVM: support vector machine.