Skip to main content
. 2022 Oct 17;12:17106. doi: 10.1038/s41598-022-20674-x

Table 2.

Classification performance in ADNI held-out set and an external validation set.

ADNI held-out
(n = 90 individuals, 297 scans)
NACC external validation
(n = 1522 individuals, 2025 scans )
Deep learning model
Area under ROC curve
ROI-volume/thickness
Area under ROC curve
Deep learning model
Area under ROC curve
ROI-volume/thickness
Area under ROC curve
Cognitively Normal (CN)

87.59

(95% CI: 87.13–88.05)

84.45

(95% CI: 84.19–84.71)

85.12

(95% CI: 85.26–84.98)

80.77

(95% CI: 80.55–80.99)

Mild Cognitive Impairment (MCI)

62.59

(95% CI: 62.01–63.17)

56.95

(95% CI: 56.27–57.63)

62.45

(95% CI: 62.82–62.08)

57.88

(95% CI: 57.53–58.23)

Alzheimer’s Disease Dementia (AD)

89.21

(95% CI: 88.88–89.54)

85.57

(95% CI: 85.16–85.98)

89.21

(95% CI: 88.99–89.43)

81.03

(95% CI: 80.84–81.21)

Area under ROC curve for classification performance based on the deep learning model vs the ROI-volume/thickness model, for ADNI held-out set and NACC external validation set. Deep learning model outperforms ROI-volume/thickness-based model in all classes.