Table 1.
Comparison of performance between our model and other machine learning algorithms.
| Classifier | Accuracy | Precision | Recall | F-measure | AUC |
|---|---|---|---|---|---|
| SVM | 0.7654 | 0.4931 | 0.3037 | 0.3759 | 0.6045 |
| RF | 0.7252 | 0.4295 | 0.5527 | 0.4833 | 0.6651 |
| DT | 0.7134 | 0.3809 | 0.3713 | 0.3760 | 0.5942 |
| Adaboost | 0.7409 | 0.4347 | 0.3797 | 0.4054 | 0.6150 |
| Zeng et al. (2019) | 0.7055 | 0.3802 | 0.4219 | 0.3999 | 0.6067 |
| BiLSTM | 0.7369 | 0.4803 | 0.5742 | 0.5231 | 0.6829 |