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ABSTRACT: Parkinson’s disease (PD) is the second most common neurodegenerative
disorder after Alzheimer’s disease (AD), and its pathogenesis remains obscure. Current
treatment approaches mainly including levodopa and dopamine agonists provide
symptomatic relief but fail to halt disease progression, and they are often accompanied by
severe side effects. In this context, natural phytochemicals have received increasing attention
as promising preventive or therapeutic candidates for PD, given their multitarget
pharmaceutical mechanisms of actions and good safety profile. Ginger (Zingiber officinale
Roscoe, Zingiberaceae) is a very popular spice used as a medicinal herb throughout the
world since the ancient years, for a wide range of conditions, including nausea, diabetes,
dyslipidemia, and cancer. Emerging in vivo and in vitro evidence supports the neuroprotective
effects of ginger and its main pharmaceutically active compounds (zingerone, 6-shogaol, and
6-gingerol) in PD, mainly via the regulation of neuroinflammation, oxidative stress, intestinal
permeability, dopamine synaptic transmission, and possibly mitochondrial dysfunction. The
regulation of several transcription factors and signaling pathways, including nuclear factor kappa B (NF-κB), p38 mitogen-activated
protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Ak strain transforming (Akt), extracellular signal-regulated kinase
(ERK) 1/2, and AMP-activated protein kinase (AMPK)/proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) have
been shown to contribute to the protective effects of ginger. Herein, we discuss recent findings on the beneficial role of ginger in PD
as a preventive agent or potential supplement to current treatment strategies, focusing on potential underlying molecular
mechanisms.
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■ INTRODUCTION
Parkinson’s disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s disease (AD),
affecting about 1−2% of the elderly population.1 The
neuropathological hallmarks of PD include the progressive
dopaminergic degeneration of substantia nigra pars compacta
(SNpc) in the midbrain, leading to dopamine reduction in the
striatum, and the presence of Lewy bodies and Lewy neurites
containing accumulations of α-synuclein.2 Clinically, PD is
characterized by bradykinesia, rigidity, and resting tremor
accompanied by nonmotor symptoms involving cognitive
decline, dysautonomia, depression, psychotic manifestations,
rapid eye movement (REM), sleep behavior disorder (RBD),
hyposmia, and gastrointestinal dysfunction, such as dysphagia,
gastroparesis, and intestinal dysmotility.1

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
has been widely used as a neurotoxin in mice for the
generation of in vivo PD models, causing nigrostriatal
dopaminergic neuronal death and reflecting some, but not

all, of the key aspects of PD pathophysiology in humans.2

Additionally, intracerebroventricularly 6-hydroxydopamine (6-
OHDA)-injected rodents are well studied and commonly used
as animal models of PD.2

Except for some rare genetic causes, such as mutations in
SNCA, LRRK2, GBA, PINK1, and Parkin, the vast majority of
PD cases are sporadic.3 Although PD pathogenesis remains
obscure, several mechanisms have been identified to contribute
to its development. An interplay between oxidative stress,
excessive neuroinflammation, abnormal protein accumulation,
mitochondrial impairment, autophagy dysregulation, apoptotic
pathways, and gastrointestinal dysfunction has been recognized
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to result in PD pathophysiology.3 Furthermore, environmental
factors, such as cigarette smoking and coffee consumption have
been shown to reduce the risk of PD, whereas exposure to
pesticides or specific heavy metals such as lead may increase
this risk.3,4 Dietary factors have been also suggested to
influence the risk of PD, with spicy natural products often
being speculated to reduce the risk of PD. However, it remains
unclear the possible connection of spices with the lower
incidence of specific neurodegenerative diseases in Asia, where
their consumption is much higher than that of the western
countries.5

Current gold standard treatment for PD is levodopa, which
provides symptomatic relief but fails to delay disease
progression and is often accompanied by side effects, such as
nausea, dyskinesias and motor fluctuations after long-term
treatment, and impulsive control disorders.1 In this regard,
natural phytochemicals with good safety profiles, which are
implicated in a wide range of cellular mechanisms, have
received increasing attention as promising preventive or
therapeutic candidates for neurodegenerative diseases, includ-
ing PD.6 In addition, plant-derived products may also serve as
ideal candidates for PD prevention and treatment.
Ginger, the rhizome of Zingiber officinale Roscoe, belongs to

the Zingiberaceae family, and it is a popular plant-derived spicy
ingredient having been used especially in Southeast Asia as a
flavoring agent since the ancient times.7 Ginger is available in
three main forms: fresh (green) root ginger, preserved ginger
(in syrup or brine), and dried ginger spice. Dried ginger can be
used as a spice as well as for sequential extraction procedures
with different solvents, including hexane, methanol, and ethyl
acetate.8 The exact composition of ginger extracts depends on
the species of ginger, the degree of maturity of the rhizome, the
climate conditions where the plant was grown, the timing of
harvest, and the preparation method of extraction.9 Extraction
via organic solvents gives oleoresin at yields of 4−7.5% (m/m),
whereas extraction via steam-distillation gives ginger oil.10

Ginger consists of more than 400 different substances,
including lipids, carbohydrates, terpenes, and phenolic
compounds.11 Shogaols, gingerols, zingerone, gingerdione,
capsaicin, paradols, and zerumbone belong to its pungent
constituents, while cumene, camphene, borneol, and zingiberol
belong to the aromatic group.12 Among them, shogaol,

gingerol, and paradols are the most abundant phenolic
compounds of ginger extracts;13 other phenolic compounds
are quercetin, gingerenone-A, and 6-dehydrogingerdione. 6-
Gingerol and 6-shogaol are considered as the main
pharmacologically active components of ginger, regarding
their antioxidant and anti-inflammatory properties.14,15 Ginger-
ol can be easily transformed into shogaol at high temperatures,
and this process is affected by the form of ginger (fresh or
dried) and the type of heat (wet or dry).12 After hydro-
genation, shogaols can be converted to paradols. Zingerone [4-
(4-hydroxy-3-methoxyphenyl)-butan-2-one] can be obtained
from drying or cooking of the rhizome, being also chemically
related to eugenol and vanillin.12 The major terpene
components are α-curcumene, α-farnesene, β-bisabolene,
zingiberene, and β-sesquiphellandrene, which constitute the
main components of ginger essential oils (Figure 1).16 In fresh
ginger, gingerols are the most abundant active constitutes,
while in dry ginger, shogaols are the most abundant
constituents.10

Currently, ginger is widely used throughout the world as a
traditional medicinal herb for various human conditions, such
as nausea and vomiting, diabetes mellitus, dyslipidemia,
asthma, and arthritis.17 Moreover, preclinical evidence has
revealed that ginger may provide therapeutic benefits in
models of anxiety, epilepsy, traumatic brain injury, and brain
ischemia.11,18 Ginger and its compounds have been shown to
exert several pharmaceutical properties, acting in an anti-
inflammatory, antioxidant, anticancer, antiviral, antibacterial,
and antidiabetic manner. Accumulating evidence has shown
the beneficial role of ginger and its extracts in neuro-
degenerative diseases, including AD and PD.
According to the US Food and Drug Administration (FDA),

ginger spice and essential oil are considered food additives,
having been granted the GRAS status (“Generally Recognized
as Safe”).10 Acute toxicity studies in animals have shown no
adverse effects (orally, dose up to 5 gr/kg in rats), and the
median lethal dose (LD50) has been determined to be greater
than 5gr/kg.19 Acute administration of ginger extract (25−100
mg/kg) was not associated with significant alterations in blood
glucose, coagulation, heart rate, and blood pressure in normal
rats.20 However, acute toxicity studies in humans and exact
safety ranges are lacking. With regard to its safety, only a few

Figure 1. Major constituents of ginger.
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studies have investigated ginger toxicity after ingestion.
Although ginger root damage may produce mycotoxins, until
now, no detrimental effects on humans have been reported.21

A clinical study has also demonstrated that oral ginger
administration to patients with coronary artery disease at a
single dose of 10 g was not associated with side effects,22

suggesting that ginger seems to be safe at these doses. Most
common side effects of ginger in human studies are mild
gastrointestinal symptoms including heartburn or reflux,
nausea, diarrhea, and abdominal discomfort, regardless of the
type of study population.23,24 Other less common side effects
are rash, flushing, and bad taste.23 Reduction of aggregation of
platelets and anticoagulant activity may be observed at high
doses (10 g of ginger powder/daily), but no effects on platelet
activity have been noted at doses of less than 4 g/day.22 Ginger
dust inhalation has been associated with immunoglobulin E-
mediated allergic reaction,25 and only at high doses (2000 mg/
kg) has ginger been related to slightly reduced weights of testes
in rats.19 Ginger methanolic and aqueous extracts may enhance
the bioavailability of several pharmaceutical substances, such as
macrolides.10,26

Concerning its bioavailability, after oral intake, the amount
of the active components of ginger that finally enter the
bloodstream is low. Gingerols also undergo sulfate and
glucuronide conjugation that occurs in the intestinal
epithelium, liver, and other tissues.10 Approximately 50% of
oral 6-gingerol for more than 60 h has been detected in the bile
of rat models, and about 12% as 6-gingerol metabolites (ferulic
acid and vanillic acid) have been detected in the urine of the
animals.27 Bioavailability studies in humans are scarce; in this
regard, the pharmacokinetics of 6-, 8-, and 10-gingerol, as well
as 6-shogaol and related metabolites were investigated in
healthy individuals (doses: 100 mg-2 g).28,29 These com-
pounds indicated rapid absorption, since glucuronide metab-
olites were detectable within 1 h, and their elimination half-
lives were 75−120 min depending on the dose.28 All detectable
substances were glucuronide conjugates, whereas no free forms
were detected. Notably, 6-gingerol, 8-gingerol, and 6-shogaol
have been shown to penetrate the blood-brain barrier (BBB)
through passive diffusion, highlighting that these ginger
compounds might exhibit a protective role in the brain.11

Hence, given the generally low toxicity and pleotropic
mechanisms of action, ginger and its compounds represent
promising candidates as neuroprotective agents in PD.
Although some previous articles address the general role of

ginger in human disorders and neurodegenerative dis-
eases,12,29,30 focused literature reviews on the effects of ginger
in PD are lacking. Herein, we discuss recent findings on the
beneficial role of ginger in PD, focusing on potential
underlying molecular mechanisms.

■ EFFECTS OF GINGER IN OXIDATIVE STRESS IN PD
Reactive oxygen species (ROS) and oxidative stress are
critically implicated in PD pathogenesis. Dopaminergic
neurons are very vulnerable to oxygen-derived free radicals.
It has also been demonstrated that PD patients display reduced
levels of endogenous antioxidant factors, including glutathione
(GSH), as well as downregulation of free radical-scavenging
enzymes including superoxide dismutase (SOD), glutathione
peroxidase (GPx), and catalase.31 Levodopa itself may enhance
the production of free radicals and lipid peroxidation in the
brain of animal models of PD.32

Zingerone has well-known antioxidant pharmaceutical
properties in a wide range of pathological conditions. For
instance, zingerone has been shown to protect against
vancomycin-induced hepatotoxicity in rat models by restoring
the activity of the antioxidant enzymes, such as SOD, catalase,
and GPx, and upregulate catalase and SOD in lung fibroblasts
in vitro.33 Zingiber officinale was also associated with improved
cognitive function and neuronal density in the hippocampus of
rat models of focal cerebral ischemia, at least partially via
antioxidant effects.34

Notably, it has been demonstrated that intraperitoneal
zingerone pretreatment was associated with inhibition of 6-
OHDA-induced reduction of dopamine in the striatum of mice
via the enhancement of endogenous antioxidant mechanisms.35

Although zingerone administration did not affect catalase or
glutathione peroxidase activities in the striatum or serum, it
was accompanied by increased superoxide scavenging activity
(SOSA) in the serum of the animals.35 Furthermore, treatment
with a SOD inhibitor (diethyldithiocarbamate) could inhibit
the beneficial effects of zingerone in 6-OHDA-induced
dopamine depletion.35 Therefore, it has been suggested that
the potential neuroprotective role of zingerone in 6-OHDA-
treated mice could be possibly attributed to the enhanced
systematic SOD activity.35

Levodopa-induced dyskinesias and wearing-off periods are
important side effects of long-term levodopa treatment in PD
patients, and levodopa itself may exacerbate oxidative stress. It
has been hypothesized that zingerone, as an antioxidant agent,
might ameliorate levodopa-induced dyskinesias and oxidative
stress in PD. However, oral administration of zingerone was
not able to prevent levodopa-induced abnormal motor
behavior of 6-OHDA-treated mice.36 Notably, coadministra-
tion of zingerone with levodopa has been shown to decrease
the ability of recovery of dopaminergic neurons some weeks
after 6-OHDA-injection.36 Furthermore, zingerone was
associated with reduced catalase activity and oxidized l-
ascorbate.36 Therefore, although pretreatment with zingerone
may act neuroprotectively in 6-OHDA-treated animal models
of PD, it may actually cause detrimental effects when given at
the same time with levodopa after the establishment of brain
damage.
In addition, 6-shogaol [1-(4-hydroxy-methoxyphenyl)-4-

decen-one] has been shown to exert antioxidant effects in
primary microglial cells in vitro.37 In particular, 6-shogaol
pretreatment has been associated with reduced lipopolysac-
charide (LPS)-induced nitric oxide (NO) production and
inducible nitric oxide synthase (iNOS) expression in these
cells.37 Furthermore, a recent study demonstrated that 6-
gingerol significantly inhibited 6-OHDA-induced cell apoptosis
of PC12 cells, which was accompanied by lower levels of the
activated form of stress-activated protein kinase/c-Jun N-
terminal kinase (SAPK/JNK).38 Hence, zingerone, 6-shogaol,
and 6-gingerol may be the main ginger components with
antioxidant properties in PD.

■ POTENTIAL BENEFITS OF GINGER IN
NEUROINFLAMMATION IN PD

Excessive neuroinflammation and aberrant chronic activation
of microglia are critical contributors to PD pathophysiology.
Activated microglia produce and secrete pro-inflammatory
factors, such as tumor necrosis factor alpha (TNF-α), leading
to the activation of cyclooxygenase-2 (COX-2) and increased
expression of iNOS, which leads to toxic levels of NO free
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radicals. Oxidative stress further upregulates TNF-α release,
thereby inducing a vicious cycle.39

Ginger compounds have been demonstrated to exert anti-
inflammatory properties, mimicking the activities of non-
steroidal anti-inflammatory drugs (NSAIDs), but with fewer
side effects.12 Emerging evidence has demonstrated that 6-
shogaol, possesses significant anti-inflammatory properties.
Specifically, 6-shogaol could inhibit apoptosis and restore
motor behavior in rat models of spinal cord injury.40

Moreover, 6-shogaol was shown to reduce LPS-induced NO
release and iNOS expression by microglia in vitro, by
suppressing the production of interleukin-1-beta (IL-1β),
TNF-α, and prostaglandin E (2), as well as by downregulating
COX-2, nuclear factor kappa B (NF-κB), and p38 mitogen-
activated protein kinase (MAPK).37 6-Shogaol was also
demonstrated to reduce the release of pro-inflammatory
cytokines and the levels of iNOS, COX-2, and phospho-NF-
κB in LPS-treated primary rat astrocytes in vitro.41 However, in
vivo evidence has also revealed that 6-shogaol could act
neuroprotectively by suppressing microglia activation in animal
models of transient global ischemia.37 Importantly, 6-shogaol
could also inhibit cognitive decline in animal models of AD by
suppressing amyloid beta-induced microglial activation and
astrogliosis in the hippocampus.42

6-Shogaol has been shown to act neuroprotectively in in
vitro and in vivo models of PD via anti-inflammatory
mechanisms.43 More specifically, 6-shogaol was associated
with increased survival of dopaminergic neurons and lower NO
and TNF-α levels in MPP+-treated primary rat mesencephalic
cultures.43 In MPTP-treated C57/BL mice, 6-shogaol was
shown to improve bradykinesia and motor coordination
deficits, prevent dopaminergic neuronal loss in SNpc and
nigrostriatal innervation in the striatum, suppress activation of
microglia, and reduce the levels of NO, iNOS, TNF-α, and
COX-2 in the SNpc and the striatum of the animals.43

6-Gingerol was also shown to inhibit LPS-induced neuro-
inflammation in LPS-treated C6 astroglioma cells in vitro by
reducing TNF-α, interleukin 6 (IL-6), ROS, NO, and iNOS
levels.44 Furthermore, 6-gingerol could suppress the LPS-
induced cognitive impairment, as well as inhibit the TNF-α
and glial fibrillary acidic protein (GFAP) increase in LPS-
treated rats in vivo.44 This evidence suggests that 6-gingerol
may exert neuroprotective effects in the LPS-induced neuro-
degenerative process, by promoting anti-inflammation and
astrocyte overactivation.44

Hence, 6-shogaol is suggested to exert neuroprotective
effects in in vitro and in vivo models via modulating
inflammatory processes and inhibiting microglial and astrocytic
activation.

■ POSSIBLE IMPACT OF GINGER IN THE
REGULATION OF SYNAPTIC TRANSMISSION IN
PD

Dopamine distribution and signaling are mainly regulated by
dopamine transporter (DAT), which transports dopamine into
the presynaptic region, and vesicular monoamine transporter 2
(VMAT2), which transports dopamine from the cytosol into
synaptic vesicles, facilitating its release in the synaptic cleft.45

VMAT2 also acts neuroprotectively in neurotoxin-induced
neuronal cell death,46 and post-mortem studies have
demonstrated that the function of VMAT2 is reduced in PD
patients.47

It has been demonstrated that zingerone administration was
associated with increased neuronal cell viability in MPTP-
injected animal models of PD and MPP+-treated dopaminergic
neuronal cells in vitro, without affecting inflammatory
responses or oxidative stress but by promoting extracellular
signal-regulated kinase (ERK) activation and VMAT2
expression.46 ERK is implicated in several signaling pathways,
including the upregulation of the transcription factor cAMP
response element-binding protein (CREB). The promoter of
VMAT2 gene can bind to CREB, and ERK inhibition was
associated with reduced activity of VMAT2 promoter.48 Hence,
it could be proposed that zingerone might lead to increased
ERK activation, leading to increased VMAT2 expression in
PD.46

■ ROLE OF GINGER IN GASTROINTESTINAL
PERMEABILITY AND GUT-BRAIN AXIS IN PD

Gastrointestinal dysfunction including constipation is one of
the most common nonmotor symptoms of PD that often
proceed the motor manifestations.49 Accumulating clinical
evidence demonstrates that PD patients display increased
intestinal permeability, also known as gut leakiness, compared
to controls, via the dysregulation of tight junction proteins in
the colon, including occludin and zonula occluden-1 (ZO-
1).50,51 Occludin and ZO-1 are key regulators of intestinal
paracellular permeability between epithelial cells.52 Higher
intestinal permeability has been correlated with increased
intestinal α-synuclein staining, oxidative stress,50 and elevated
levels of pro-inflammatory cytokines, such as TNF-α, IL-1β,
and IL-6 in the colon of PD patients.53 Dopaminergic neurons
within the enteric nervous system have also been shown to be
reduced in the colon of PD patients compared to controls.54

MPTP has been also demonstrated to enhance the production
of pro-inflammatory cytokines by macrophages in the intestine,
leading to enteric dopaminergic neurodegeneration.55

Emerging evidence supports the beneficial effects of ginger
compounds in the integrity of the gastrointestinal system.
Since ancient years, ginger has been extensively used in East
Asia as a home remedy for various gastrointestinal disorders,
such as nausea, dyspepsia, constipation, epigastric discomfort,
and gastric ulcerations.56 Ginger has been associated with
improved gastric motility in patients with functional
dyspepsia57 and nausea relief in several cases, including
chemotherapy-induced nausea in breast cancer patients.58

Ginger and 6-gingerol have been demonstrated to prevent
LPS-induced gut barrier disruption, excessive intestinal
inflammation, and apoptosis in mice by regulating NF-κB
pathway, inhibiting Bcl-2-associated X protein (Bax) gene
expression, downregulating the caspase-3 pathway, and
restoring the expression of zonula ZO-1 and claudin-1
proteins.59 Ginger extracts have been also shown to act in an
anti-inflammatory manner in human colonic epithelial Caco-2
cells by inhibiting NF-κB, leading to decreased levels of IL-6
and IL-8.60 6-Shogaol could also protect against TNF-α-
induced intestinal barrier damage by downregulating phospha-
tidylinositol-3-kinase (PI3K)/Ak strain transforming (Akt) and
NF-κB pathways.61

Interestingly, a recent study demonstrated that oral
administration of ginger and its compound 6-shogaol
prevented the impairment of intestinal integrity and protected
against dopaminergic neuronal loss in the enteric nervous
system of MPTP-treated C57BL/6J mice.14 Specifically, ginger
and 6-shogaol treatment was associated with increased ZO-1
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and occludin levels in the colon of the mouse models of PD,
reflecting the restored gut intestinal barrier.14 The underlying
mechanisms involved the downregulation of iNOS, TNF-α, IL-
1β, and COX-2 by macrophages and the subsequent
suppressed phosphorylation of ERK1/2.14 Moreover, ginger
and 6-shogaol treatment was associated with inhibition of
MPTP-induced apoptosis of dopaminergic neurons in the
enteric nervous system, accompanied by restored Bax to B-cell
lymphoma 2 (Bcl-2) ratio, cytochrome C, cleaved caspase-3,
and heme oxygenase-1 (HO-1), an antioxidative enzyme,
levels.14 These results suggest that ginger compounds may
restore gastrointestinal dysfunction in PD via anti-inflamma-
tory and antiapoptotic mechanisms and may inhibit the
spreading of PD pathology. Since the disruption of gastro-
intestinal integrity is supposed to be one of the initial steps in
the pathophysiological cascade of PD, it could be speculated
that ginger may act neuroprotectively at the early stages of
disease development.
Interferon-gamma (IFN-γ) and TNF-α have been previously

shown to dysregulate tight junction proteins in the epithelial
cells of the intestine by promoting myosin light chain kinase
(MLCK) expression,62 and ERK phosphorylation resulting in
the activation of ETS domain-containing transcription factors
and ETS Like-1 protein (Elk-1), which bind to the promoter of
the MLKC gene.63 Hence, this specific mechanism underlying
the effects of ginger and its compounds in intestinal integrity in
PD should be further investigated.
Gut microbiota is also considered an emerging regulator of

PD pathophysiology. A recent meta-analysis has demonstrated
that PD is associated with enrichment of the genera
Lactobacillus, Bifidobacterium, and Akkermansia and reduction
of bacteria of the Faecalibacterium genus and the Lachnospir-
aceae family, potentially reflecting a pro-inflammatory gut
phenotype.64 Importantly, clinical evidence has shown that

ginger may alter the gut microbiota composition; in particular,
fresh ginger juice in healthy humans was associated with
reduced Prevotella-to-Bacteroides ratio, pro-inflammatory Ru-
minococcus_1 and Ruminococcus_2, whereas there was also a
tendency toward increased Firmicutes-to-Bacteroidetes ratio,
Proteobacteria, and anti-inflammatory Faecalibacterium.65 An
in vivo study indicated that ginger was able to restore the
function of intestinal barrier and gut microbiota in rat models
of antibiotic-associated diarrhea.66 Therefore, it can be
hypothesized that ginger may restore gut microbiota in PD
by promoting a rather anti-inflammatory phenotype.

■ FUTURE PERSPECTIVES
Emerging preclinical evidence highlights the beneficial effects
of ginger and its extracts on PD development, as a preventive
or therapeutic agent (Figure 2). On the basis of the results
described above, earlier administration of ginger may provide
more substantial benefits against the disease compared to its
use at later stages, which could deteriorate degeneration,
noting that right timing is very important. Of note, the
different doses used in each study might be also partially
responsible for the variable pharmacological effects observed.
Although the therapeutic effects and safety of ginger have

been investigated in many clinical trials, in other conditions,
including pregnancy-, postoperative- or chemotherapy-related
nausea and vomiting, metabolic syndrome, colorectal cancer,
irritable bowel syndrome, osteoarthritis, rheumatoid arthritis,
and primary dysmenorrhea, clinical evidence in PD is still
lacking.23,24 In the broader field of neurodegenerative
disorders, two randomized double-blind placebo-controlled
clinical trials in patients with cognitive impairment have
demonstrated that oral ginger administration for three months
was associated with improved scores on neuropsychological
testing.42,67 No severe side effects were mentioned in these two

Figure 2. Potential mechanisms underlying the effects of ginger and its biologically active compounds in Parkinson’s disease. Administration of
ginger and its extracts have reported neuroprotective effect in preclinical models of PD mainly by exerting modulatory effects on neuroinflammation
(suppress microglial activation and expression of inflammatory mediators), oxidative stress (upregulates SOD and downregulates CAT activity),
mitochondrial dysfunction (reduces mitochondrial impairment and upregulates AMPK/PGC1α pathway), dopaminergic neuronal loss, intestinal
permeability (increases intestinal integrity, survival of dopaminergic neurons of enteric plexus, ZO-1, and occludin expression and decreases TNF-
α, IL-1β, COX-2, and iNOS expression), and synaptic transmission (upregulates VMAT2 expression and ERK activation).
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studies, and these promising results open the way for future
clinical trials in patients with PD. The absence of clinical
evidence on the therapeutic efficacy and safety of ginger in
patients with PD is an important limitation for its clinical
translation. However, the available experimental evidence on
the beneficial effects of ginger in PD combined with its
generally good safety profile strongly supports the future
design of relevant clinical studies, aiming to investigate its
efficacy and safety in patients with PD.
Even though significant research efforts have been made

toward the elucidation of the molecular mechanisms under-
lying the effects of ginger on PD, additional pathways should
be further investigated for deeper understanding of the
consequences of its use in humans. Mitochondrial dysfunction
also plays a key role in the pathogenesis of PD. Interestingly,
ginger extracts have been demonstrated to improve mitochon-
drial function and enhance mitochondrial biogenesis by
activating AMP-activated protein kinase (AMPK)/prolifera-
tor-activated receptor gamma coactivator 1 alpha (PGC1α)
signaling pathway in HepG2 cells and in mice.68 6-Gingerol,
but not 6-shogaol, was shown to mainly exert these effects in
this study. In particular, ginger extracts promoted adenosine
triphosphate (ATP) production, mitochondrial respiratory
chain complex I and IV activities, and increased mitochondrial
mass.68 Activated AMPK, a key sensor of cellular energy,
upregulates PGC1α expression, which in turn activates nuclear
respiratory factor 1 (NRF1), a major modulator of
mitochondrial biogenesis.69 AMPK/PGC1α pathway plays an
important role in PD;70 therefore, ginger extracts and 6-
gingerol could specifically improve mitochondrial function in
PD via the activation of the AMPK/PGC1α axis.
As above-mentioned, ginger may inhibit apoptosis of enteric

dopaminergic neurons by restoring cleaved caspase-3 levels. 6-
Gingerol has been demonstrated to inhibit amyloid beta-
induced cellular death by reducing the ratio of Bax/Bcl-2 and
upregulating caspase-3 in in vitro models of AD.71

Furthermore, 6-gingerol has been shown to protect against
cerebral ischemia/reperfusion injury via the inhibition of
apoptosis and through transient receptor potential cation
channel subfamily V member 1 (TRPV1)/Fas Associated
Factor 1 (FAF1) complex dissociation.72 8-Gingerol has also
been shown to inhibit myocardial fibrosis by decreasing
oxidative stress, autophagy, and apoptosis by regulating the
PI3K/Akt/mammalian target of rapamycin (mTOR) signaling
pathway.73 Since PI3/Akt/mTOR axis is critically implicated
in PD,74 this pathway may also underlie the effects of ginger in
apoptosis in PD.
Dysregulation of neurotrophic factors is also significantly

involved in the pathogenesis of neurodegenerative disorders,
including AD and PD. In this context, it has been
demonstrated that 6-shogaol may inhibit reactive oxygen
species production and increase brain-derived neurotrophic
factor (BDNF) levels in H2O2-treated HT22 cells.75 6-Shogaol
could also suppress neuronal apoptosis in H2O2-treated
astrocytes by up-regulating neurotrophic factors, including
BDNF, nerve growth factor (NGF), and the glial cell line-
derived neurotrophic factor (GDNF).76 On the basis of this
evidence, it could be hypothesized that ginger may also
upregulate the expression of these neurotrophic factors in PD.
Epigenetic mechanisms may additionally underlie the effects

of ginger extracts in PD. In this regard, 6-shogaol treatment has
been demonstrated to promote histone H3 acetylation and
inhibit histone deacetylase 1 (HDAC1) expression in LPS-

treated cultured primary rat astrocytes.41 The ability of 6-
shogaol to suppress HDAC was associated with anti-
inflammatory effects, and it was also comparable to that of
MS275 and Trichostatin A, two widely used HDAC
inhibitors.41 HDACs play a critical role in PD development,
and targeting their activity also holds a promising therapeutic
strategy.77 Hence, the role of ginger extracts in epigenetic
regulation in PD should be also investigated.
A study that aimed to investigate the ability of curcumin-like

small molecules to act as α-synuclein ligands has demonstrated
that zingerone displayed limited capacity to bind to α-
synuclein and could not inhibit α-synuclein aggregation,78

suggesting that this ginger compound is possibly unable to
prevent α-synuclein accumulation. On the other hand,
zingerone could increase cell viability in MPP+-treated rat
pheochromocytoma (PC12) cells in vitro,78 further supporting
its possible role in neuroprotection in PD. However, in vivo
evidence is required to test and validate these hypotheses.
Ginger has also been shown to reduce dextran sulfate

sodium (DSS)-induced colitis severity in animal models and
restore the imbalanced intestinal microbiome.79 Since gut
microbiota imbalance has been increasingly recognized as a
critical contributor to PD development, this effect of ginger on
the regulation of gut-brain axis should be explored in future
studies.
Zingerone has been shown to protect against lead-induced

kidney and liver toxicity in rats by upregulating the activity of
several antioxidant enzymes, such as catalase, SOD, and GPx.80

Since lead exposure has been associated with increased risk for
PD in some cases,81 it could be speculated that the preventive
use of ginger extracts might possibly protect against PD in
these cases.
Interestingly, a very recent study demonstrated that the use

of a ginger-cinnamon mixture was associated with inhibition of
intestinal inflammation in vivo, accompanied by reduced levels
of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6.82

Given the beneficial role of cinnamon in animal models of
PD,83 a synergistic therapeutic effect of these two natural
compounds in PD development should be further explored.
However, an important obstacle is the relatively low

bioavailability of ginger compounds that demands the use of
sophisticated approaches, such as micelles, liposomes, nano-
particles, emulsions or solid dispersion, or self-microemulsify-
ing drug delivery systems.29 In this regard, administration of 6-
gingerol in the form of polyethylene glycol-based polymeric
micelles in rat models significantly increased its bioavail-
ability.84 Importantly, 6-gingerol was better distributed in the
brain, suggesting that this specific micelle may be able to enter
the BBB. It has been proposed that micelle components might
act as P-glycoprotein inhibitors via the inhibition of ATPase
activity.29

An interesting computational study demonstrated the
structural requirements of ginger compounds for their
potential binding interactions with pharmaceutical drug targets
against AD.85 This study indicated that H-bonding area,
cyclization of carbon chain, and a double bond between C1 and
C2 as well as between C4 and C5 are crucial for the interaction
with various signaling molecules, including JNK, NOS, COX-1,
and COX-2.85 Given the important role of these molecular
targets in PD pathophysiology, this docking site might also
prove crucial in relation to ginger effects in PD, demanding
future research toward this direction.
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■ CONCLUSION
Accumulating experimental evidence has highlighted the
potentially beneficial effects of ginger and its compounds on
PD development, acting mainly in an anti-inflammatory and
antioxidant manner, but also possibly by preventing
mitochondrial dysfunction, protecting against increased
intestinal permeability, and regulating dopamine synaptic
transmission (Table 1). Although clinical studies are lacking
and at present ginger is obviously not a curative treatment for
PD, it could represent a promising long-term used dietary
supplement for PD prevention. Moreover, it may develop into
a novel remedy for neurodegenerative diseases, after further
investigations on safety, elucidation of the underlying
molecular mechanisms, along with evaluation of the most
appropriate timing, route, and dosage of delivery.
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nitric oxide synthase; JNK, c-Jun N-terminal kinase; LPS,
lipopolysaccharide; MAPK, mitogen-activated protein kinase;
MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MLCK,
myosin light chain kinase; mTOR, mammalian target of
rapamycin; NF-κB, nuclear factor kappa B; NGF, nerve growth
factor; NO, nitric oxide; NSAIDs, nonsteroidal anti-inflamma-
tory drugs; NRF1, nuclear respiratory factor 1; PD, Parkinson’s
disease; PGC1α, proliferator-activated receptor gamma co-
activator 1 alpha; PI3K, phosphatidylinositol-3-kinase; REM,
rapid eye movement; RBD, REM sleep behavior disorder;
ROS, reactive oxygen species; SAPK, stress-activated protein
kinase; SNpc, substantia nigra pars compacta; SOD, super-
oxide dismutase; SOSA, superoxide scavenging activity; TNF-
α, tumor necrosis factor alpha; TRPV1, transient receptor
potential cation channel subfamily V member 1; VMAT2,
vesicular monoamine transporter 2; ZO-1, zonula occluden-1
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