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Background. Volatile organic compounds (VOCs) are produced systemically due to varied physiological states such as 
oxidative stress and are excreted through the lungs. Benchtop and preliminary clinical data suggest that breath testing may be a 
useful diagnostic modality for viral respiratory tract infections.

Methods. Patients with influenza-like illness (ILI) presenting to a single clinic in San Antonio, Texas, from 3/2017 to 3/2019 
submitted a 2-minute breath sample in addition to a nasopharyngeal swab collected for polymerase chain reaction (PCR) assay 
for respiratory pathogens. VOCs were assayed with gas chromatography–mass spectrometry (GC-MS), and data were analyzed 
to identify breath VOC biomarkers that discriminated between ILI patients with and without a polymerase chain reaction 
(PCR) assay that was positive for influenza.

Results. Demographic, clinical, PCR, and breath data were available for 237 episodes of ILI, among which 32 episodes (13.5%) 
were PCR positive for influenza. Twenty candidate VOCs identified patients with influenza with greater than random accuracy. A 
predictive algorithm using 4 candidate biomarkers identified this group with 78% accuracy (74% sensitivity, 70% specificity). Based 
on their mass spectra, most of these biomarkers were n-alkane derivatives, consistent with products of oxidative stress.

Conclusions. A breath test for VOC biomarkers accurately identified ILI patients with PCR-proven influenza. These findings 
bolster those of others that a rapid, accurate, universal point-of-care influenza diagnostic test based on assay of exhaled-breath 
VOCs may be feasible. The next step will be a study of patients with ILI using a simplified method of breath collection that 
would facilitate translation for use in clinical practice.

Keywords. breath test; diagnosis; influenza; polymerase chain reaction PCR; respiratory tract infection; volatile organic 
compound VOC.

Seasonal influenza is a common respiratory illness resulting in up 
to 41 million cases, 700 000 hospitalizations, and 50 000 deaths per 
year in the United States, with direct and indirect costs of about 
$87 billion [1, 2]. The economic and clinical burdens of influenza 
will worsen in the future as novel strains of the virus emerge: it is 
estimated that, in the United States, a “medium-level” pandemic 
would infect from 15% to 35% of the population, kill up to 207 
000 people, and generate associated costs of up to $167 billion [3].

The ongoing coronavirus disease 2019 (COVID-19) pan
demic caused by severe acute respiratory syndrome coronavi
rus 2 (SARS-CoV-2) further illustrates the threat posed by 
novel respiratory viruses. COVID-19 resulted in >800 000 
deaths in the United States in 2020–2021, with an estimated to
tal cost of >$16 trillion [4]. Globally, by 2024, COVID-19 is 
projected to result in a gross domestic product (GDP) 3% below 

a no-COVID scenario [5]. These costs far exceed those associ
ated with conventional recessions—they are akin to those asso
ciated with global climate change.

The severity and duration of influenza can be reduced by ear
ly detection and treatment of individual patients. Diagnostic 
approaches that can rapidly and accurately detect newly emerg
ing variants are required to facilitate prompt implementation of 
containment and mitigation strategies [6, 7]. Unfortunately, 
laboratory testing for influenza has historically been of ques
tionable value.

Presently, there are 57 US Food and Drug Administration 
(FDA)–cleared molecular assays (rapid molecular and nucleic 
acid amplification tests [NATs]) and antigen detection tests 
(rapid influenza diagnostic tests [RIDTs] and immunofluores
cence assays) available for influenza diagnosis [8]. NATs, poly
merase chain reaction (PCR) in particular, are often considered 
the gold standard for influenza diagnosis. While many 
of the limitations of these tests (primarily logistical concerns 
including transportation and batching of samples resulting in 
long turnaround times) have been overcome by current gener
ation platforms, their relatively high cost and the need to devel
op new reagents for novel strains are persistent concerns [9].
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RIDTs are antigen-based tests developed for rapid diagnosis 
of influenza at the point of care (POC) in the community. 
While the simplicity (many are Clinical Laboratory 
Improvement Amendments waived) and speed (completed in 
<30 minutes) of RIDTs are attractive, their low sensitivity for 
detecting seasonal influenza (62.3% in 1 large meta-analysis) 
significantly limits their usefulness [6]. RIDT performance dur
ing the influenza A(H1N1)pdm09 pandemic of 2009–2010 was 
even poorer (10%–40% in 1 large study), prompting the US 
Centers for Disease Control and Prevention (CDC) to advise 
physicians not to discontinue antiviral therapy despite a nega
tive RIDT result [10].

The COVID-19 pandemic has underscored the urgent need 
for rapid, accurate tests for established and novel respiratory 
pathogens [4, 5]. Of note, by one estimate, a single additional 
COVID-19 screening test per 100 people was associated with 
an 8% reduction in mortality risk [11]. Delays in the develop
ment, distribution, and availability of accurate NATs and 
RIDTs led to a significant increase in the morbidity, mortality, 
and cost associated with the last 2 novel respiratory virus out
breaks in the United States [12, 13]. Assay of exhaled breath for 
volatile organic compounds (VOCs) via gas chromatography– 
mass spectrometry (GC-MS) is an emerging diagnostic modal
ity with characteristics that might allow it to fill the respiratory 
virus diagnostics gap.

Many VOCs have a high vapor pressure at body temperature, 
and they are readily excreted through the lungs and may be de
tected in the breath. VOCs are produced systemically in hu
mans as a result of varied physiological states and are 
excreted in the lungs [14]. These biomarkers of oxidative 
stress correlate with systemic inflammation. Current technolo
gy allows for detection of >2000 different VOCs in low concen
trations, mostly in parts per billion or parts per trillion, in 
exhaled breath via laboratory-based GC-MS [14]. Portable, 
tabletop gas chromatographs employing surface acoustic 
wave detection (GC-SAW) can detect up to 60 different 
VOCs in exhaled breath in as little as 10 minutes. These instru
ments have been studied as point-of-care breath tests to iden
tify VOC biomarkers in pulmonary tuberculosis and breast 
cancer [15, 16].

A group at the University of California at Davis undertook a 
series of elegant in vitro experiments examining the VOCs pro
duced in cell culture by 3 influenza virus subtypes [17] and by 
human rhinovirus (HRV) [18]. The patterns of VOCs elaborat
ed by infected cells were unique for each influenza virus sub
type. Despite these differences, a conserved group of VOCs 
was produced following infection with all 3 influenza strains, 
raising the possibility that both a universal test and an etiolog
ical test may be feasible. The use of 2 control arms in the HRV 
study (uninfected control cells and cells treated with heat-killed 
HRV and polyinosinic-polycytidylic acid double-stranded 
RNA [poly(I:C)], a Toll-like receptor 3 [TLR3] agonist) allowed 

them to demonstrate that the production of VOCs observed 
early in HRV infection is not due to inflammation, but to active 
viral replication.

While cancer detection has been the predominant focus of 
breath testing clinical research, there have been a number en
couraging studies of its potential application to infectious dis
eases. Before the arrival of SARS-CoV-2, tuberculosis (TB) 
was the most extensively studied infectious disease with respect 
to breath analysis [15, 19–21]. Mycobacterium tuberculosis 
(MTB) produces VOCs as byproducts of its metabolic process
es. Analysis of the exhaled breath of patients with active pulmo
nary TB reveals the presence of both such MTB-specific VOCs 
and VOCs reflecting the increased oxidative stress caused by se
rious systemic infection in the human host. At least 9 clinical 
studies and 1 meta-analysis have suggested that breath VOCs 
can accurately distinguish between those with and without 
SARS-CoV-2 infection [22–31].

Two clinical studies have examined the effect of receipt of 
live attenuated influenza vaccine (LAIV) on the VOCs in ex
haled breath in humans by collecting breath samples before 
and after vaccination [32, 33]. In both, LAIV caused measur
able changes in the abundances of breath VOCs, 
suggesting that breath testing may be a plausible means for di
agnosing influenza infection. In the second study, breath VOC 
biomarkers of oxidative stress identified postvaccination sub
jects with 82% accuracy on day 2, rising to 95% accuracy on 
day 14.

Given in vitro cell culture data and the observation that sub
clinical infection with LAIV caused measurable changes in the 
abundances of breath VOCs, symptomatic, naturally occurring 
influenza infection would be expected to cause similar or more 
pronounced changes. This study was undertaken to test the hy
pothesis that breath VOC biomarkers could identify influenza 
infection among those presenting with ILI.

METHODS

Human Subjects

Patients with ILI presenting to the Troop Medical Clinic 
(TMC) on Joint Base San Antonio (JBSA)–Fort Sam 
Houston, Texas, between 3/2017 and 3/2019 were asked to par
ticipate in the Acute Respiratory Infection Consortium (ARIC) 
Natural History study [34]. ARIC is a multisite study designed 
to explore the epidemiology, etiology, and clinical manifesta
tions of ILI among Military Health System (MHS) beneficiaries. 
The TMC serves military trainees who have completed 
basic training and who are undergoing technical training for 
future service in the MHS. These personnel tend to be young 
(median age, 25 years) and healthy. ILI was defined as fever 
(temperature ≥100.4°F) and at least 1 respiratory symptom 
(sore throat, cough, sputum production, shortness of breath, 
or chest pain).
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Study Procedures

After obtaining informed consent, patient data were recorded 
via a standard questionnaire including the influenza patient- 
reported outcome (FLU-PRO) instrument [35], and samples 
were collected: nasopharyngeal (NP) swab (Nylon-flocked; 
Copan Diagnostics, Corona, CA, USA) and breath sample. 
The method of breath collection has been previously described 
[36]. Briefly, the participant wore a nose clip and breathed nor
mally through a disposable valved mouthpiece and bacterial fil
ter into the breath collection apparatus (BCA) for 2 minutes 
[37]. VOCs in 1 L of alveolar breath were collected in graphi
tized carbon black in stainless steel thermal desorption tubes 
(Carbotrap; Supelco, Inc., Bellefonte, PA, USA). Samples 
were sealed and transported in TDS3 storage containers 
(Supelco, Inc., Bellefonte, PA, USA). Samples were stored at 
room temperature and shipped approximately monthly in 
batches to Menssana Research, Inc. (Fort Lee, NJ, USA). At 
Menssana, samples were stored at −20°C before analysis.

Molecular Methods

NP swabs were placed immediately into viral transport media, 
stored at −80°C, and shipped on dry ice to the Naval Health 
Research Center (San Diego, CA, USA). All specimens were 
tested for influenza by the CDC human influenza virus real- 
time reverse transcription polymerase chain reaction 
(rtRT-PCR) assay [38]. Assay for influenza B lineage was not 
performed. An aliquot was also tested by multiplex assay for 
presence of other viral respiratory pathogens using the 
Respiratory Viral Panel Target-Enriched Multiplex PCR 
(TEM-PCR; Diatherix Laboratories, LLC, Huntsville, AL, 
USA) [39] for samples collected between 3/2017 and 12/2018 
and the BioFire FilmArray Respiratory Panel (FilmArray; 
BioFire Diagnostics, Salt Lake City, UT, USA) for samples col
lected between 1/2019 and 3/2019. Both panels have 8 viral 

pathogens in common: adenovirus, coronavirus, human meta
pneumovirus, HRV/enterovirus, influenza A, influenza B, 
parainfluenza, and respiratory syncytial virus.

Breath Sample Analysis

Using automated instrumentation, VOCs were thermally de
sorbed from the sorbent trap, cryogenically concentrated, and 
assayed by GC-MS, as has been described previously [36]. A 
known quantity of an internal standard (bromofluorobenzene) 
was automatically loaded onto all samples to normalize the 
abundance of VOCs and to facilitate alignment of 
chromatograms.

Statistical Analysis

The methods have been described previously [40]. In summary, 
chromatograms were processed with metabolomic analysis 
software (XCMS in R) to normalize peak retention times 
to the bromofluorobenzene internal standard in each chro
matogram [41]. The aligned data were binned into a series of 
5-second retention time segments (RTS). Multiple Monte 
Carlo simulations were used to select the RTS that identified 
participants in whom influenza was detected with greater 
than random accuracy while minimizing the risk of including 
random identifiers of disease. The average random behavior 
of each RTS was determined by randomly assigning partici
pants to the “disease” or “disease-free” group and performing 
40 estimates of the concordance statistic (C-statistic) or area 
under the curve (AUC) of the receiver operating characteristics 
(ROC) curve. The RTS that exhibited greater diagnostic accu
racy with correct assignment than with multiple random as
signments identified the apparent biomarkers of influenza 
infection. These apparent biomarkers of influenza infection 
were entered into a multivariate predictive algorithm using 
multivariate weighted digital analysis (WDA) to determine 
the sensitivity and specificity of the breath test and displayed 
in an ROC curve [42]. The accuracy of the breath test was 
defined as the C-statistic, or AUC of the ROC. The major 
VOC in each RTS was tentatively identified by matching its 
mass spectral signature to a library of mass spectra (NIST 2.0, 
Gaithersburg, MD, USA).

The same approach was used to select RTS that might allow 
for discrimination between other subsets of participants: influ
enza detected vs no virus detected, influenza detected vs any 
other virus detected, and any virus detected vs no virus detect
ed. If candidate RTS were identified via Monte Carlo simula
tions, these candidate biomarkers were entered into a 
multivariate predictive algorithm using multivariate WDA.

RESULTS

Demographic, clinical, PCR, and breath data were available for 
237 episodes of ILI among 235 unique patients (2 patients 

Table 1. Viral Detection by PCR During 237 Episodes of ILI

Any 94

Human rhinovirus/enterovirus 38

Influenza A (no subtype = 5, H3 = 19, H1 = 3) 27

Coronavirus (NL63 = 4, OC43 = 2, 229E = 1, HKU1 = 1) 8

Human metapneumovirus 5

Parainfluenza (Type 1/3 = 3, Type 4 = 1) 4

Influenza A/H3 + human rhinovirus/enterovirus 2

Human rhinovirus/enterovirus + human metapneumovirus 2

Human rhinovirus/enterovirus + parainfluenza (Type 1/3 = 1, Type 4 = 1) 2

Influenza B 2

Respiratory syncytial virus 2

Influenza A/no subtype + human rhinovirus/enterovirus 1

Human metapneumovirus + respiratory syncytial virus 1

None 143

Total 237

Abbreviations: H1, hemagglutinin 1 subtype; H3, hemagglutinin 3 subtype; ILI, influenza-like 
illness; PCR, polymerase chain reaction.
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presented twice with ILI during the study period). Influenza 
was detected alone or in combination with another virus in 
32 episodes and other respiratory viruses in 62 (Table 1). The 
median age of participants (interquartile range) was 21 (19– 
23) years, and 69% were male. There were no differences in 
age, gender, education level, race, smoking status, or military 
affiliation (branch of service) between the influenza-positive 
and -negative groups (Table 2). Likewise, there was no differ
ence in days of limited activity, days of missed work, or symp
toms at presentation between the groups (Table 3).

Monte Carlo analysis of breath biomarkers (Figure 1A) iden
tified 20 breath VOC biomarkers that distinguished between 
influenza-positive (n = 32) and -negative (n = 205) cases with 
greater than random accuracy. The chemical structures of the 
top 5 biomarker VOCs were tentatively identified from their 
mass spectra (Table 4). The majority of these were either 
straight-chain n-alkane hydrocarbons (eg, heptane) or their 
methylated derivatives (eg, hexane-3-methyl), which are con
sistent with products of oxidative stress. When these VOCs 

were entered into a WDA multivariate algorithm, the accuracy 
of the predictive model reached a plateau with 4 (Figure 1B). 
The accuracy of the 4-VOC predictive model was 78%. With 
a cutoff point at the “shoulder” of the ROC curve, the test 
had 74% sensitivity and 70% specificity (Figure 1C).

Analyses comparing the influenza-positive group with other 
groups yielded similar results (Table 5). The accuracy of a 
5-VOC model comparing the influenza-positive group with 
the group with any other virus detected was 75% (Figure 2A), 
while the accuracy of a 3-VOC model comparing the influenza- 
positive group with the group with no virus detected was 83% 
(Figure 2B). By contrast, Monte Carlo analysis did not identify 
any VOCs, which significantly distinguished between the group 
with any virus detected and that with no virus detected.

DISCUSSION

In this clinical study of patients presenting with ILI, breath 
VOC biomarkers accurately identified those with 
PCR-proven influenza infection and distinguished them from 
those who were infected with other viruses or in whom no virus 
was detected. These data corroborate and expand upon those 
from other recent studies of patients with influenza and with 
SARS-CoV-2.

A prospective observational study performed at a single ter
tiary care medical center in Bayreuth, Germany, before the 
COVID-19 pandemic, enrolled 24 participants: 20 admitted 
for ILI (14 positive for influenza by PCR) and 4 asymptomatic 
health care workers [43]. In a procedure that took <5 minutes 
for each participant, nasal breath aspirated for 10 seconds dur
ing normal respiration was directly analyzed by multicapillary 
column coupled ion mobility spectrometry (MCC-IMS). 

Table 2. Characteristics of Participants With and Without Influenza 
During 237 Episodes of ILI

…

Influenza (n = 32), 
Median (IQR) or No. 

(%)
No Influenza (n = 205), 

Median (IQR) or No. (%)
P 

Value

Age, y 21 (19–23.5) 21 (19–24) .71

Gender … … .68

Male 24 (75) 139 (67.8)

Female 8 (25) 65 (31.7)

Missing 0 (0) 1 (0.5)

Race … … .72

Black 2 (6.2) 28 (13.7)

Hispanic 6 (18.8) 40 (19.5)

Unknown/ 
other

4 (12.5) 22 (10.7)

White 20 (62.5) 115 (56.1)

Military 
affiliation

… … .62

Army 23 (71.8) 128 (62.4)

Navy 6 (18.8) 56 (27.3)

Air Force 3 (9.4) 21 (10.3)

Smoking 
status

… … .2

Current 2 (6.2) 4 (1.9)

Former 4 (12.5) 19 (9.3)

Never 26 (81.3) 182 (88.8)

Vaccinated 32 (100) 203 (99) .57

Education level … … .39

High school 21 (65.6) 154 (75.1)

Associate’s 
degree

7 (21.9) 33 (16.1)

Bachelor’s 
degree

4 (12.5) 13 (6.4)

Higher degree 0 (0) 5 (2.4)

“Vaccinated” refers to individuals who received influenza vaccine during the current 
influenza season.  

Abbreviations: ILI, influenza-like illness; IQR, interquartile range.

Table 3. Clinical Presentation of Participants With and Without Influenza 
During 237 Episodes of ILI

…

Influenza (n = 32), 
Median (IQR) or No. 

(%)

No Influenza (n = 205), 
Median (IQR) or No. 

(%)
P 

Value

Days of limited 
activity

4 (4–5.5) 4 (3–6) .73

Days of missed 
work

2 (2–3) 3 (2–4) .2

Hospitalization 0 (0) 2 (1) 1

FLU-PRO 
symptom score

… …

Lower respiratory 
tract

3 (2–6.5) 4 (2–5) .92

Upper respiratory 
tract

3 (2–6) 3 (1–5) .51

Gastrointestinal 2 (0–4) 2 (1–5) .35

Systemic 6 (4–10) 6 (4–8) .49

Total 14 (10–27) 16 (11–21) .91

Abbreviations: FLU-PRO = influenza patient-reported outcome instrument; ILI, influenza-like 
illness; IQR, interquartile range.
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Figure 1. ILI with influenza infection vs ILI without influenza infection. A, Monte Carlo analysis of breath VOC biomarkers. Multiple Monte Carlo simulations were employed 
to identify chromatogram segments that distinguished participants with influenza from those without with greater than random accuracy. The average random behavior of 
each chromatogram segment was determined by randomly assigning subjects to the “influenza” or “no influenza” group and performing 40 estimates of the C-statistic (AUC of 
the ROC curve). For any given value of the C-statistic, it was then possible to identify the chromatogram segments that exhibited greater diagnostic accuracy with correct 
assignment than with multiple random assignments. This figure shows that the random assignment curve fell to 0 where the C-statistic ∼0.7. However, about 20 chromato
gram segments exhibited greater than random diagnostic accuracy, thereby fulfilling the requirements of true biomarkers. These segments were entered into the multivariate 
predictive algorithm. B, Effect of number of VOCs in the algorithm on predictive accuracy. This graph displays variation in AUC of the ROC curve as a function of the number of 
biomarkers in the algorithm. The algorithm achieved maximal predictive accuracy (∼78%) with 4 biomarkers (chromatogram segments) in the model, and addition of more 
biomarkers to the algorithm did not significantly improve its performance. C, ROC curve. This curve displays the sensitivity (true-positives) vs 1-specificity (true-negatives) of 
the breath test utilizing the algorithm with 4 biomarkers. Test accuracy was 78% (ie, the C-statistic, or AUC of the ROC curve). With a cutoff point at the “shoulder” of the ROC 
curve, the test had ∼74% sensitivity and ∼70% specificity. Abbreviations: AUC, area under the curve; ILI, influenza-like illness; ROC, receiver operating characteristic; VOCs, 
volatile organic compounds.
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Cluster analysis of chromatographic data followed by multivar
iate analysis utilizing proprietary software allowed develop
ment of an algorithm comprised of 4 VOCs that 
distinguished influenza-positive from -negative participants 
with 100% sensitivity and specificity. The identified VOCs 
were not reported.

At least 9 clinical studies (6 of which were reviewed in a re
cent meta-analysis [31]) have suggested that breath VOCs can 
accurately distinguish between those with and without 
SARS-CoV-2 infection. In 3 of the studies, participants 
breathed directly into the aperture of an instrument containing 
a nanomaterial-based hybrid sensor “electronic nose” (e-nose) 
for varying amounts of time [22–24]. E-noses base the analysis 
on an array of sensors, which are not fully selective and thus 
provide a certain multiplicity of detection, as each is sensitive 
to a different substance but responds to other compounds as 
well. The information on the sample is obtained by comparing 
the signals of several sensors. Because of this cross-specificity 

and cross-selectivity, sample analysis using an e-nose is not 
based on recognizing the individual VOCs, but rather on de
tecting a particular chemical signature. Each of the 3 studies 
utilized a different e-nose.

Four of these studies examined exhaled breath collected into 
bags [25–27] or a syringe [28]. One study examined exhaled 
breath transferred directly from the end of the endotracheal 
tube to the analytical equipment [29]. The final study examined 
exhaled breath condensate (EBC) [30]. Varied techniques were 
used to analyze these samples: GC-MS [26], GC time-of-flight 
mass spectrometry (GC-ToFMS) [25, 30], GC ion mobility 
spectrometry (GC-IMS) [28], proton transfer reaction 
ToFMS (PTR-ToFMS) [29], and Fourier transform infrared 
(FTIR) spectroscopy [27]. Pooled sensitivity and specificity 
for VOC vs PCR for the 6 studies included in the meta-analysis 
were 98.2% (97.5% CI, 93.1%–99.6%) and 74.3% (97.5% CI, 
66.4%–80.9%), respectively [31].

The influenza and SARS-CoV-2 studies to date are best con
sidered preliminary or exploratory. In general, they have been 
limited by small sample size, lack of a comparator group 
(healthy controls), and widely varied methodologies. 
Translation of breath testing research results into clinical prac
tice has perhaps been most limited by this lack of standardiza
tion: It is hard to directly compare or replicate results [44–46]. 
Studies have utilized a variety of samples: exhaled oral breath, 
exhaled nasal breath, EBC, air from the ventilator circuit, and 
headspace air above culture media. Likewise, the method of 
breath sample collection has differed considerably: sorbent 
trap, polyvinyl fluoride (Tedlar) bag, polyethylene terephthal
ate (Mylar) bag, and direct interface to lab equipment, among 
others. Furthermore, the equipment used to analyze samples 
has included a wide array of spectrometers and e-noses. 
Lastly, candidate VOC biomarkers are not reported in a uni
form fashion (eg, some are reported by product ion mass 
only, and some are not reported at all).

These observations suggest several useful next steps for the 
field of breath testing: first, development of standardized proto
cols for uniform and repeatable breath sampling; second, stud
ies of large groups of healthy volunteers to explore the 
consistency of breath composition seen under different condi
tions and to more fully characterize the human volatilome; 
third, reporting of candidate VOC biomarkers with as much 
detail as is possible—the ability of research groups in different 
geographic locations and using different equipment to identify 
the same biomarkers in the exhaled breath of diverse patient 
populations with the same infection would significantly further 
the case for breath testing as a diagnostic modality. Indeed, 
such reporting would largely remove variability introduced 
by use of different laboratory equipment.

The finding that no VOC biomarkers discriminated between 
ILI patients in whom any virus was detected by PCR vs those in 
whom no virus was detected may suggest that the latter were 

Table 4. Tentative Identification of VOC Biomarkers of Influenza Infection

VOC Number AUC Fit VOC Identification

1 0.75 879 (R)-(-)-2-Amino-1-Propanol

… … 859 Hydroxyurea

… … 848 Topotecan

2 0.74 725 2-Butanamine, N-Nitro-

… … 701 1-Propanamine, N, 2-Dimethyl-N-Nitro-

… … 650 Isothiourea, 2-(2-Octylsulfonyl)Ethyl-

3 0.73 747 Hexanal, 3-Methyl-

… … 669 Butane, 1-(Ethenyloxy)-3-Methyl

… … 643 Pentane, 1-(Ethenyloxy)-

4 0.73 973 Heptane

… … 948 Hexane, 3-Methyl-

… … 906 Pentane, 2,3-Dimethyl-

5 0.73 917 (1R)-26,6-Trimethylbicyclo[3.1.1]Hept-2

… … 907 Alpha-Pinene

… … 901 Trans-Beta-Ocimene

The list displays the 5 major breath biomarkers of influenza infection, each with its top 3 
tentative identifications. AUC indicates a biomarker’s accuracy when it was employed 
alone. “Fit” is a numerical value assigned by the NIST computer-based library as an 
indicator of “goodness of fit” of the mass spectrum of a breath VOC compared with 
similar mass spectra in the library. Fit values range from 0 (no fit) to 1000 (perfect fit). 
Values >700 or >800 are generally considered “good” to “very good” fits. However, 
these identifications may only be considered tentative. A number of the tentative VOC 
identifications comprised either straight-chain n-alkane hydrocarbons (eg, heptane) or 
their methylated derivatives (eg, hexane-3-methyl). These VOCs are all consistent with 
products of oxidative stress. Abbreviations: AUC, area under the curve; NIST, National 
Institute of Standards and Technology; VOC, volatile organic compound.

Table 5. Summary of Breath Biomarker Findings

Index Group Comparator Group AUC

ILI with influenza (n = 32) ILI without influenza (n = 205) 0.78

ILI with influenza (n = 32) ILI with no virus detected (n = 143) 0.75

ILI with influenza (n = 32) ILI with any other virus detected (n = 62) 0.83

ILI with any virus detected  
(n = 94)

ILI with no virus detected (n = 143) NS

Abbreviations: AUC, area under the curve; ILI, influenza-like illness; NS, not significant.
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Figure 2. ROC curves for ILI with influenza infection vs ILI with no virus detected and ILI with influenza infection vs ILI with any other virus detected. Abbreviations: AUC, 
area under the curve; ILI, influenza-like illness; ROC, receiver operating characteristic.
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either infected by a virus not included in the multiplex PCR or 
that the PCR was falsely negative. Specifically, the absence of a 
difference in VOCs in the exhaled breath of these 2 groups sug
gests that all patients had increased levels of oxidative stress. 
The study design (no baseline sample when participants were 
asymptomatic and no control group) does not, however, allow 
for a definite conclusion. Another limitation of the study is the 
relatively small and homogeneous population, which limits its 
generalizability.

Overall, these findings bolster those of others that assay of 
breath VOCs might allow for both a universal test (presence 
of any viral respiratory tract infection) and an etiological test 
(identification of the causative virus and its subtype). The 
next step will be a study of patients with ILI using a simplified 
method of breath collection (single breath exhaled into a poly
ethylene terephthalate bag). This method would facilitate trans
lation into clinical practice because samples could be collected 
outside of medical settings to include self-collection at home.

Acknowledgments
Disclaimers. This study, IDCRP-045, was conducted by the Infectious 

Disease Clinical Research Program (IDCRP), a Department of Defense 
(DoD) program executed by the Uniformed Services University of the 
Health Sciences (USUHS) through a federal assistance agreement with 
The Henry M. Jackson Foundation for the Advancement of Military 
Medicine, Inc. (HJF).

Financial support. This work was supported by federal funds from the 
National Institute of Allergy and Infectious Diseases, National Institutes 
of Health (NIH), under Inter-Agency Agreement (12012-001-07000); the 
Defense Health Program; and the Department of the Air Force, 59th 
Medical Wing/Science and Technology Branch.

The contents of this publication are the sole responsibility of the authors 
and do not necessarily reflect the views, opinions, or policies of the 
Department of Veterans Affairs, the Uniformed Services University of 
the Health Sciences (USUHS), the Henry M. Jackson Foundation for the 
Advancement of Military Medicine, Inc., the Department of Defense 
(DoD), the Departments of the Army, Navy, or Air Force, Brooke Army 
Medical Center, or the US Government. Mention of trade names, commer
cial products, or organizations does not imply endorsement by the US 
Government.

Potential conflicts of interest. M.P. is President and Chief Executive 
Officer (CEO) of Menssana Research, Inc. All other authors report no po
tential conflicts. All authors have submitted the ICMJE Form for Disclosure 
of Potential Conflicts of Interest. Conflicts that the editors consider relevant 
to the content of the manuscript have been disclosed.

Patient consent. All participants provided written informed consent. 
Procedures followed were in accordance with the ethical standards of the 
Helsinki Declaration (1964, amended most recently in 2008) of the 
World Medical Association. The investigators adhered to policies for the 
protection of human subjects as prescribed in 45CFR46. The study was ap
proved by the Infectious Disease Institutional Review Board (IRB) at the 
USUHS, Bethesda, Maryland, and at the Brooke Army Medical Center, 
San Antonio, Texas.

ClinicalTrials.gov identifier. NCT01021098.

References
1. Centers for Disease Control and Prevention. Disease burden of flu. Available at: 

https://www.cdc.gov/flu/about/burden/index.html. Accessed January 1, 2022.
2. Molinari NM. The annual impact of seasonal influenza in the US: measuring dis

ease burden and costs. Vaccine 2007; 25:5086–96.

3. Cross M. Influenza pandemic: challenges in preparedness and response. 
Government Accountability Office (GAO) 2005. Available at: https://www.hsdl. 
org/?view&did=454016. Accessed January 16, 2022.

4. Cutler DM. The COVID-19 pandemic and the $16 trillion virus. JAMA 2020; 324: 
1495–6.

5. Yeyati EL, Filippini F. Social and economic impact of COVID-19. Brookings Global 
Working Paper #158, June 2021. Available at: https://www.brookings.edu/research/ 
social-and-economic-impact-of-covid-19. Accessed January 16, 2022.

6. Vemula SV, Zhao J, Liu J, Wang X, Biswas S, Hewlett I. Current approaches for 
diagnosis of influenza infections in humans. Viruses 2016; 8:96.

7. Centers for Disease Control and Prevention. National strategy for pandemic influenza. 
Homeland Security Council 2005. Available at: https://www.cdc.gov/flu/pandemic- 
resources/pdf/pandemic-influenza-implementation.pdf. Accessed January 16, 2022.

8. Centers for Disease Control and Prevention. Overview of influenza testing meth
ods. Available at: https://www.cdc.gov/flu/professionals/diagnosis/overview- 
testing-methods.htm. Accessed April 11, 2022.

9. Wang R, Sheng ZM, Taubenberger JK. Detection of novel (swine origin) H1N1 
influenza A virus by quantitative real-time reverse transcriptase-PCR. J Clin 
Microbiol 2009; 47:2675–77.

10. Centers for Disease Control and Prevention. Evaluation of rapid influenza diag
nostic tests for detection of novel influenza A (H1N1) virus—United States, 2009. 
MMWR Morb Mortal Wkly Rep 2009; 58:826–9.

11. Liang LL, Tseng CH, Ho HJ, Wu CY. COVID-19 mortality is negatively associated 
with test number and government effectiveness. Sci Rep 2020; 10:12567.

12. Department of Health and Human Services. An HHS retrospective on the 2009 
H1N1 influenza pandemic to advance all hazards preparedness. Revised June 15, 
2012. Available at: https://www.phe.gov/Preparedness/mcm/h1n1-retrospective/ 
Documents/h1n1-retrospective.pdf. Accessed August 7, 2022.

13. Schneider EC. Failing the test—the tragic data gap undermining the US pandemic 
response. N Engl J Med 2020; 383:299–302.

14. Phillips M, Cataneo RN, Chaturvedi A, et al. Detection of an extended human vol
atome with comprehensive two-dimensional gas chromatography time of flight 
mass spectrometry. PLoS One 2013; 8:e75274.

15. Phillips M, Basa-Dalay V, Blais J, et al. Point-of-care breath test for biomarkers of 
active pulmonary tuberculosis. Tuberculosis 2012; 92:314–20.

16. Phillips M, Cataneo RN, Cruz-Ramos JA, et al. Prediction of breast cancer risk 
with volatile biomarkers in breath. Breast Cancer Res Treat 2018; 170:343–50.

17. Aksenov AA, Sandrock CE, Zhao W, et al. Cellular scent of influenza virus infec
tion. Chembiochem 2014; 15:1040–8.

18. Schivo M, Aksenov AA, Linderholm AL, et al. Volatile emanations from in vitro 
airway cells infected with human rhinovirus. J Breath Res 2014; 8:037110.

19. Schito M, Migliori GB, Fletcher HA, et al. Perspectives on advances in tuberculo
sis diagnostics, drugs and vaccines. Clin Infect Dis 2015; 61(Suppl 3):S102–18.

20. Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuber
culosis in the breath. Tuberculosis 2007; 87:44–52.

21. Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmo
nary tuberculosis. Tuberculosis 2010; 90:145–51.

22. Wintjens AGWE, Hintzen KFH, Engelen SME, et al. Applying the electronic nose 
for pre-operative SARS-CoV-2 screening. Surg Endosc 2020; 35:6671–8.

23. De Vries R, Vigeveno RM, Mulder S, et al. Ruling out SARS-CoV-2 infection us
ing exhaled breath analysis by electronic nose in a public health setting. medRxiv 
2021.02.14.21251712 [Preprint]. February 16, 2021. Available at: https://doi.org/ 
10.1101/2021.02.14.21251712. Accessed October 7, 2022.

24. Shan B, Broza YY, Li W, et al. Multiplexed nanomaterial-based sensor array for 
detection of COVID-19 in exhaled breath. ACS Nano 2020; 14:12125–32.

25. Berna AZ, Akaho EH, Harris RM, Congdon M, Korn E. Reproducible breath me
tabolite changes in children with SARS-CoV-2 infection. ACS Infect Dis 2021; 7: 
2596–603.

26. Ibrahim W, Cordell RL, Wilde MJ, et al. Diagnosis of COVID-19 by exhaled 
breath analysis using gas chromatography-mass spectrometry. ERJ Open Res 
2021; 7:00139-2021.

27. Shlomo IB, Frankenthal H, Laor A, Greenhut AK. Detection of SARS-CoV-2 in
fection by exhaled breath spectral analysis: introducing a ready-to-use 
point-of-care mass screening method. EClinicalMedicine 2022; 45:101308.

28. Ruszkiewicz DM, Sanders D, O’Brien R, et al. Diagnosis of COVID-19 by analysis 
of breath with gas chromatography-ion mobility spectrometry—a feasibility 
study. EClinicalMedicine 2020; 29:100609.

29. Grassin-Delyle S, Roquencourt C, Moine P, et al. Metabolomics of exhaled breath 
in critically ill COVID-19 patients: a pilot study. EBioMedicine 2021; 63:103154.

30. Barberis E, Amede E, Khoso S, et al. Metabolomics diagnosis of COVID-19 from 
exhaled breath condensate. Metabolites 2021; 11:847.

31. Subali AD, Wiyono L, Yusuf M, Zaky MFA. The potential of volatile organic 
compounds-based breath analysis for COVID-19 screening: a systematic review 
& meta-analysis. Diagn Microbiol Infect Dis 2022; 102:115589.

8 • OFID • Danaher et al

https://www.cdc.gov/flu/about/burden/index.html
https://www.hsdl.org/?view&amp;did=454016
https://www.hsdl.org/?view&amp;did=454016
https://www.brookings.edu/research/social-and-economic-impact-of-covid-19
https://www.brookings.edu/research/social-and-economic-impact-of-covid-19
https://www.cdc.gov/flu/pandemic-resources/pdf/pandemic-influenza-implementation.pdf
https://www.cdc.gov/flu/pandemic-resources/pdf/pandemic-influenza-implementation.pdf
https://www.cdc.gov/flu/professionals/diagnosis/overview-testing-methods.htm
https://www.cdc.gov/flu/professionals/diagnosis/overview-testing-methods.htm
https://www.phe.gov/Preparedness/mcm/h1n1-retrospective/Documents/h1n1-retrospective.pdf
https://www.phe.gov/Preparedness/mcm/h1n1-retrospective/Documents/h1n1-retrospective.pdf
https://doi.org/10.1101/2021.02.14.21251712
https://doi.org/10.1101/2021.02.14.21251712


32. Mashir A, Paschke KM, van Duin D, et al. Effect of the influenza A (H1N1) live 
attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in ex
haled breath. J Breath Res 2011; 5:037107.

33. Phillips M, Cataneo RN, Chaturvedi A, et al. Effect of influenza vaccination on 
oxidative stress products in breath. J Breath Res 2010; 4:026001.

34. Coles C, Millar EV, Ottolini MG. The Acute Respiratory Infection Consortium: a 
multi-site, multi-disciplinary clinical research network in the Department of 
Defense. Mil Med 2019; 184:44–50.

35. Powers JH, Bacci ED, Leidy NK, et al. Performance of the inFLUenza patient- 
reported outcome (FLU-PRO) diary in patients with influenza-like illness (ILI). 
PLoS One 2018; 13:e0194180.

36. Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Naidu A, Rahbari-Oskoui 
F. Effect of age on the breath methylated alkane contour, a display of apparent 
new markers of oxidative stress. J Lab Clin Med 2000; 136:243–9.

37. Menssana Research. Menssana systems: breath collection apparatus. Available at: 
http://menssanaresearch.com/systems_BCA_Menssana.html. Accessed August 
12, 2022.

38. Shu B, Wu KH, Emery S, et al. Design and performance of the CDC real-time re
verse transcriptase PCR swine flu panel for detection of 2009 a (H1N1) pandemic 
influenza virus. J Clin Microbiol 2011; 49:2614–9.

39. Bouvier M, Chen WJ, Arnold JC, et al. Species-specific clinical characteristics of 
human coronavirus infection among otherwise healthy adolescents and adults. 
Influenza Other Respir Viruses 2018; 12:299–303.

40. Phillips M, Bauer TL, Cataneo RN, et al. Blinded validation of breath biomarkers 
of lung cancer, a potential ancillary to chest CT screening. PLoS One 2015; 10: 
e0142484.

41. Gowda H, Ivanisevic J, Johnson CH, et al. Interactive XCMS online: simplifying 
advanced metabolomic data processing and subsequent statistical analyses. Anal 
Chem 2014; 86:6931–9.

42. Phillips M, Altorki N, Austin JH, et al. Detection of lung cancer using weighted 
digital analysis of breath biomarkers. Clin Chim Acta 2008; 393:76–84.

43. Steppert C, Steppert I, Bollinger T, Sterlacci W. Rapid non-invasive detection of 
influenza-A-infection by multicapillary column coupled ion mobility spectrome
try. J Breath Res 2020; 15:011001.

44. Jia Z, Patra A, Kutty VK, Venkatesan T. Critical review of volatile organic com
pound analysis in breath and in vitro cell culture for detection of lung cancer. 
Metabolites 2019; 9:52.

45. Risby TH. Critical issues for breath analysis. J Breath Res 2008; 2:030302.
46. Beauchamp JD, Pleil JD. Simply breath-taking? Developing a strategy for consis

tent breath sampling. J Breath Res 2013; 7:042001.

Breath Biomarkers of Influenza • OFID • 9

http://menssanaresearch.com/systems_BCA_Menssana.html

	Breath Biomarkers of Influenza Infection
	METHODS
	Human Subjects
	Study Procedures
	Molecular Methods
	Breath Sample Analysis
	Statistical Analysis

	RESULTS
	DISCUSSION
	Acknowledgments
	References


