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Abstract

Microbiota are a malleable part of ecosystems, including the human ecosystem. Microorganisms 

not only affect the chemistry of their specific niche, such as the human gut but also the chemistry 

of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics 

is one of the key technologies to detect and identify the small molecules produced by the human 

microbiome, and to understand the functional role of these microbial metabolites. This Review 

aims to provide a foundational introduction to common forms of untargeted mass spectrometry 

and the types of data that can be obtained in the context of microbiome analysis. Data analysis 

remains an obstacle, therefore, the emphasis is placed on data analysis approaches and integrative 

analysis, including the integration of microbiome sequencing data.
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of untargeted mass spectrometry and the types of data that can be obtained in the context of 

microbiome analysis.

Introduction

Some of the key findings from early investigations of the human microbiome were 

thathealthy individuals carry different microbiota and that the composition of microbial 

communities is different across body sites1. Humans are composed of more microbial cells 

than human cells (estimated to be ~1.3 times the number of human cells)2, and perturbing 

the human-associated microbiota is postulated, and in some cases has been demonstrated, 

to have substantial health implications3–5. This is also true for animals, insects, plants, and 

environments such as terrestrial (for example, soil), aqueous (for example, ocean) and built 

environments (for example, houses or offices)6–8.

Most microbiome projects start with an inventory of organisms and/or genes using DNA 

or RNA sequencing methods (analysis of microbial community composition), and such 

efforts will continue to have an important role in the field. There is also an ever-increasing 

emphasis in the microbiome field towards a mechanistic understanding of how chemical 

environments shape microbial communities and a deeper interest in the function of the 

microbial-derived molecules on ecosystems. Whereas sequencing provides insights into the 

microorganism that are present and the metabolic capacity, metabolomics is a direct readout 

of the function of a system. The metabolome is considered the closest representation of 

phenotype and, therefore, metabolomics can provide insights into the cellular processes in 

response to some stimuli or interactions. Theoretically, a metabolomics experiment detects 

all small molecules, more specifically, chemicals with molecular weights of <2000 Da; 

however, in practice, it is a partial picture limited by the extent to which molecules can 

be extracted, ionized and detected. The tools to study the metabolome are not limited 

to endogenous molecules, which represent only a subset of all chemicals in a biological 

system, but they can also detect exogenous substances (for example, xenobiotics). Mass 

spectrometry (MS) is often used for metabolomics analysis, especially because of its good 

sensitivity and its capacity to detect and quantify a large diversity of molecules in complex 

biological samples 9, 10 (Box 1). Data analysis remains challenging; however, in the past few 

years there has been a vast increase in the development of tools to analyze MS metabolomics 

data, including improvements in feature extraction, annotation and data analysis to improve 

biological contextualization, including the integration with other omics data.

Many advances in the analysis of microbiome MS data are coming from investigators 

that are developing or applying computational approaches to better interpret their sequence 

data11. Such laboratories are introducing to the mass spectrometry community ecological 

concepts such as alpha diversity [G] and beta diversity [G]12, 13 and other terms such as 

rarefaction [G], Procrustes analysis [G]14, mmvec [G]15, and principal coordinates analysis 

[G] (PcoA). In addition, MS and microbiome analysis infrastructures are in the early 

stages of being linked to leverage the understanding of the molecular underpinnings of 

the microbiome16,17,18, 19,20,11, 21,22,23.
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In general, it has not been established when one should use one approach over another 

or how to synergistically use multiple approaches, different methods usually provide 

complementary results. This Review does not aim to provide a comprehensive account 

of metabolomics, computational tools for MS data analysis, metabolomics analysis of the 

microbiome or statistical methods as this is beyond the intended scope of this single review 

article (readers are referred to reviews on these topics9, 24–26). This Review aims to provide 

a starting point for readers who are entering the field of microbial- and microbiome-related 

mass spectrometry. The annotation of metabolites and attribution to a specific producer or 

producers, as well as the correlation of microbial metabolites with phenotypes, are of key 

interest in this field and, therefore, will be emphasized. The approaches presented in this 

review are summarized in Table 1.

Detecting microbial metabolites

MS-based approaches have enabled the analysis of an immense amount of chemicals with 

diverse structures. MS has been used for detecting metabolites, or even quantifying them, 

from different types of samples, from solids (for example, directly from the surfaces)27, 28 to 

volatiles that the microbiome releases (for example, from the environment or a wet dog)29 

(Fig. 1). One important strategy is the biotyping, which is currently used in clinics for 

microbial identification. This is accomplished by MS1 [G] profiling of ribosomal proteins 

(mass-to-charge ratio (m/z) 2000–15000) of bacterial colonies by matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) MS. The resulting data are searched 

against a library of MS1 patterns obtained from well-characterized clinically relevant 

microorganisms to identify the taxon of the clinical culture30. This biotyping strategy has 

been adapted in a research setting to perform chemotyping of environmental microorganisms 

by collecting data in the lower m/z region; the region in which the metabolites are detected 

(m/z 200–2000) (Fig. 1a). This mass range shows many specialized metabolites or peptides 

that enable chemotyping of individual strains31, 32. Signals below m/z 200 are often 

excluded due to matrix interference in spite of many microbial metabolites being present 

in this m/z range.

MS1-based microbial analysis can be performed in a spatial manner (imaging) by 

different MS-techniques, including MALDI, REIMS, DESI, and nanoDESI, which was 

reviewed27, 28. MS imaging (MSI) can be used to understand the metabolic exchange of two 

or more microorganisms, from a simple microbial culture to a histological slice, in two or 

three dimensions33, 34. It can be combined with fluorescence in situ hybridization (FISH) 

to observe the distributions of microorganisms35 and applied to understand the molecular 

distributions of a living host via 3D cartography36 (Fig. 1b). In 3D cartography, samples 

are taken, analyzed by MS, and the data are mapped onto the 3D surface or volume37–39. 

Tools such as ìli40, METASPACE41, Scils [https://scils.de/] and MSiReader42 can be used 

for visualization of the data. MS-based imaging in combination with other data types such as 

metagenomics, 16S inventories or transcriptomics can be used to establish the relationships 

of the spatial patterns of molecules to microbial communities.

One challenge for untargeted MS, specifically methods that only acquire MS1 data, is the 

annotation (identification) of the signals observed in the data. Annotation is commonly 
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performed using a combination of exact mass, isotope patterns, retention times (if chemical 

separation performed), collisional cross section, or structural information provided by 

MS/MS [G] (also known as tandem MS or MSn). Commonly, expert MS users perform 

identification by analyzing one spectrum at a time; however, this is impracticable at the 

untargeted MS scale. One way to interpret MS/MS at a large scale is to compare the 

MS/MS spectra to reference MS/MS of known compounds25, 43 (Supplementary Box 1). 

This process is akin to matching a short sequence to a sequence in DNA, RNA, protein 

knowledgebases or repositories that already has an annotation or function assigned to that 

specific sequence. In the case of liquid chromatography [G] (LC)-MS (Fig. 1c) data can 

be collected via data-dependent acquisition, which functions by acquiring a survey scan 

after which the intact ions (also known as charged molecules) are isolated, often based on 

signal intensity, and subsequently fragmented, and the MS/MS spectrum is collected. This 

process occurs repeatedly during the duration of the experiment. Following the acquisition, 

the MS/MS spectra are searched against an MS/MS spectral reference library.

One specific noteworthy case is gas chromatography [G] (GC) coupled to an MS with 

an electron ionization (EI) source44, 45 (Box 1). To obtain MS/MS spectra from GC-

EI-MS data, the data have to be deconvoluted (Fig. 1d). There are many packages 

to deconvolute, and representative examples include AMDIS46, MS-DIAL47, XCMS48, 

MZmine49/ADAP50, and GNPS [https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp] 

which enables deconvolution online using MSHub16. Once deconvolution is accomplished, 

the ~1.2 million public and commercial libraries can be searched via spectral similarity 

searches 9. As there is usually no precursor mass information with EI-MS, multiple matches 

to the spectral libraries are common. In principle, a Kovats index, a form or retention 

time comparison, could be used to help narrow down candidates. Unfortunately, only a 

few percent of the reference libraries have this value available. Most GC-MS instruments 

are low-mass resolution instruments, although high-resolution instruments are becoming 

available. In principle, a high resolution GC-MS instrument should provide improved 

annotations, but the lack of high resolution MS/MS libraries means that this improved 

data quality cannot yet be readily leveraged. The metabolomics community has come up 

with different levels of annotation confidence: four levels for the metabolomics standards 

initiative [G] (MSI)51, and five levels for Schymanski [G]52. In general, GC-MS spectral 

matching is a level 3, or molecular family level match, as the co-injection of an authentic 

standard, ideally with labeled isotopes, is necessary to get to a level 1 annotation (both for 

MSI and for Schymanski)51, 52. 2D GC-MS is another GC-MS technology that is becoming 

more widely available, and it refers to additional chromatographic separations that improves 

the distinction between similar molecules prior to MS analysis.

There is also a growing interest to monitor the microbiome at the individual cell level 

and the flux of metabolites. Mass spectrometry can be used to monitor the microbiome 

in both of those dimensions. Dynamics of metabolism can be monitored using unsteady-

state flux balance analysis (uFBA), which measures the flux balance in dynamic systems 

such as the microbiome53. Flux is modeled using isotopically labeled reagents and is 

generally reserved for non-human studies54. There is also more and more interest in 

single-cell analysis. Single-cell metabolomics analysis has been possible for cultured 
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microorganisms55, 56 but there is an emerging interest to apply single-cell methods in 

microbiome-based investigations. So far this has been largely limited to sequencing- 

and imaging-based technologies but single-cell metabolomics could provide an important 

complementary view57, 58.

Overall, MS has shown to have a great potential in providing answers for important 

questions raised about microorganisms in microbiomes. The interpretation of untargeted 

MS experiments needs to be treated with care as the results are affected by the collection, 

extraction, and sample preparation protocols in addition to the data acquisition and data 

analysis tools9, 25. There are numerous challenges (Box 1). All these options are reasons 

why untargeted MS and the interpretation of the data are not trivial9, 25. As an alternative 

or complementary approach to MS analysis, X-ray crystallography, ultra-violet, infrared or 

nuclear magnetic resonance (NMR) spectroscopy can be used. Each of these techniques have 

pros and cons, the discussion of which is outside the scope of this review. For example, 

NMR, despite having lesser sensitivity then MS, presents unique strengths in metabolomics 

and is thus a great complementary technique (reviewed in Ref. 59).

Microbial metabolite annotation

An initial step to tease apart the complexity of interactions in microbiomes is the annotation 

of detectable metabolites. In the past few years, many new algorithms and computational 

tools for improving this step in MS-based metabolomics have been introduced. MS/MS is 

frequently used (in conjunction with MS1 data) as it provides more structural information. 

The levels of confidence concerning the annotation are variable with the highest level of 

identification being a direct comparison to chemical standards, or via the isolation and 

complete structural characterization (MSI level 151 or Schymanski level [G] 152). In this 

section, we present some of the computational tools that can assist in metabolite annotation 

when chemical standards are not available (Fig. 2), along with a brief discussion of their 

characteristics, pros and cons, and the contextualization of how they can be used for 

investigations of microbial metabolites. It should be noted that although these tools speed up 

the process and can guide annotation, the results should be interpreted with caution. These 

advanced annotation tools can be invaluable in microbiome studies, and when used properly, 

errors are minimized.

Spectral libraries.

Spectral library search (Fig. 2a), mentioned above, is the most common method used for 

annotation of known compounds. Each experimental MS/MS spectrum is compared to 

reference spectra of known compounds stored in MS/MS spectral libraries, such as GNPS 

spectral libraries16, MassBank (Japan, EU and North America)60, NIST61, and METLIN62 

and many others. The availability of chemical standards limits the scope of spectral libraries 

and is the reason that the majority of MS/MS spectra in these databases are from synthetic 

and commercially available chemicals. One key limit of a spectral library matching approach 

for studying microbial molecules is that most microbial molecules are not commercially 

available and thus are not well represented in spectral libraries. To address this limitation, 

GNPS16 enables contributions to its MS/MS spectral library directly from the community 
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and data acquired from samples in addition to chemical standards. Due to a large community 

effort, the amount of MS/MS reference spectra for microbial molecules is growing rapidly. 

For known molecules only to be produced by microorganisms the library expanded from 

~200 reference spectra in 2014 to thousands in 2021 in the GNPS infrastructure of the 

~25,000 known microbial metabolites. Although the current MS/MS reference spectra only 

cover a fraction of microbial molecules, untargeted metabolomics can provide direction in 

studying which microorganism or microorganisms produce metabolites of interest.

It is crucial to realize that more than one annotation is often possible when comparing data 

to spectral libraries, such as for GC-EI-MS, as there is generally no precursor mass to filter 

the library with, and thus many related molecules match. High (mass) resolution combats 

multiple matches based on the exclusion of particular molecular formulae and isotopic 

patterns, hence TOF, Orbitrap and FT-ICR mass spectrometers are preferred analyzers for 

many metabolomics applications. Further, the extent to which a precursor ion fragments and 

the number of product ions that match reduces the possible number of spectral matches. 

Although not in all cases, it is commonplace that MS/MS spectral matching meets the 

requirements for an identification level 2 according to the 2007 standards initiative51. At 

the same time, lipids or fatty acids annotation are limited to level 3 given the number of 

regio- and stereoisomers. The goal of spectral matching is to narrow down the candidate 

molecules represented by the MS/MS signal. Thus, when one has spectral matches against 

the library, additional knowledge about the sample or orthogonal measurements such as co-

migration with a chemical standard is needed to increase the confidence of the annotation. 

To complement the manual interpretation of spectral library matching accuracy, methods of 

controlling false discovery rate (FDR) for spectral matching are actively being developed 

but are not yet widely utilized in metabolomics63, 64, unlike in proteomics, for instance, 

where FDR methods based on the target-decoy strategy is already well-established63, 65. A 

study proposed empirical Bayes and target-decoy based methods to estimate the FDR in 

metabolomics63, 64. Assessing the FDR based on the target-decoy strategy for 70 public 

metabolomics data sets, it was observed that the scoring thresholds have to be adjusted for 

each dataset because there is a strong dependency on the number of fragmented ions in an 

MS/MS spectrum.

The MSI levels [G]51 (as well as the Schymanski)52 are not failsafe, and often annotations 

fall between levels. For example, an MS/MS spectral match to cis-2,3-hexenoic acid, the 

MS/MS spectrum within the context of a typical collision-induced dissociation (CID)-based 

untargeted MS experiment can differentiate neither the stereoisomers (cis- versus trans-) 

nor the position of the double bonds, and, therefore, considered a molecular family match 

or MSI level 3. Even with a standard with the correct m/z and matching retention time, 

one cannot rule out that other isomers do not have the same retention time. Level 1 

annotation for this chemical requires additional orthogonal approaches and/or co-migration 

with authentic standards.

On average, using reference libraries, only 2–20% of MS/MS spectra are annotated in 

an untargeted MS experiment66, 67. One strategy of expanding the utility of spectral 

libraries, and increasing the number of candidate annotations, is through leveraging the 

modified cosine score as used in molecular networking [G]16, variable dereplication38, or 
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hybrid searches68. In molecular networking (Fig. 1c), MS/MS spectra are aligned, in a 

process that is very similar to finding related genetic sequences by alignment. The spectral 

alignment in these instances is defined by using a modified cosine score, and variants 

with structural modifications can be detected (Fig. 2b). When visualized as networks, one 

can infer structural similarity. And just like sequence alignments enable the discovery of 

mutations and alternative splice forms, spectral alignment enables the discovery of analogs 

of molecules that match MS/MS reference libraries. When combined with metadata from 

a study (for example, germ-free versus microbiome-colonized, or healthy versus disease) it 

is possible to discover specific molecules associated with phenotypes37, 38, 69, which can 

be a powerful strategy for microbiome investigations. Molecular networking is one such 

approach for analyzing LC-MS/MS data and has been used to understand the chemistry 

of microorganisms and microbial communities. Recently, molecular networking via GNPS 

has been developed for analyzing GC-MS17 data which was successfully applied in an 

investigation of quorum sensing during fungal–bacterial interactions70. The remaining data 

that cannot be annotated by direct matches or similarity matches need alternative methods 

for annotating, and in silico annotation platforms are continuously improving.

In silico tools to improve metabolite annotation.

Several in silico annotation tools [G] have been developed to overcome the limitations of 

spectral library searches. Reference spectral libraries are incomplete compared to molecular 

structure databases, such as Pubchem. Combinatorial fragmentation methods (Fig. 2c), such 

as MetFrag71 and Competitive Fragmentation Modeling (CFM-ID)72, explain the fragment 

peaks in a given MS/MS spectrum based on substructures [G] generated by disconnecting 

the bonds from the known structures. Fingerprint prediction methods (Fig. 2d), such 

as SIRIUS473 and ZODIAC74, leverage fingerprints based on fragmentation trees for 

experimental spectra using machine learning [G] trained fingerprints from known structures. 

Hydrogen rearrangement rules during bond cleavages in low-energy fragmentation are used 

in tools, such as MS-Finder75. In all cases, in silico approaches, create a list of candidate 

structural matches from the MS data using structural databases. As with spectral matching, 

it is rare to obtain a unique match within acceptable scoring cutoff values, multiple matches 

should be cautiously trusted and interpreted.

In silico tools have been integrated into molecular networking via network annotation 

propagation (NAP)76 (Fig. 2e). NAP compares the structural candidates that are assigned 

to a specific MS/MS spectrum (node in the molecular network) and then, following the 

assumption that connected nodes in molecular networking correspond to similar molecular 

structures, NAP re-ranks the structures when a neighboring node has a related structure in 

the molecular network. An alternative strategy of using networking to propagate annotations, 

especially when some structural knowledge resulting in a more defined scope of candidate 

molecules is available to the user, is through either prediction of candidate-related molecules 

that might be present in the sample or using biotransformation logic to predict candidate 

molecules77, 78.

The above in silico approaches use structure databases; however, MS data can be linked with 

biosynthetic logic that is responsible for their production. MiBIG (minimum information 
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about a biosynthetic gene cluster (BGC)) is currently the only repository, known to the 

authors, that links natural product structures directly to microbial gene clusters79. During 

the writing of this Review, a method that uses multiple link-scoring functions to link gene 

clusters, molecules and mass spectral data was reported80.

It is worth mentioning that BGC-based analysis is largely limited to protozoan microbiota 

and does not apply to viral or phage as they, generally, do not encode for many genes 

that make or modify metabolites. For some classes of bacterial molecules, it is easier to 

establish a link between BGC and metabolites than others81, 82. The analysis of bacterial 

genome databases revealed that approximately 70% of gene clusters that encode bacterial 

molecules contain some domain to produce nonribosomal peptides (NRPs) or ribosomally 

synthesized and post-translationally modified peptides (RiPPs)82. Although new methods 

continue to be developed for NRP and RiPP discovery within genomic and MS data, 

they are among the easiest to find even though NRPs and RiPPs can be extensively 

post-translationally modified or include hundreds of different amino acids generated by 

dedicated biosynthetic machineries and decorated appendages (fatty acids, halogenations, 

oxidations, cyclizations, among other). DEREPLICATOR83 (Fig. 2f) was designed to find 

such molecules. DEREPLICATOR constructs fragmentation graphs from natural product 

libraries such as ‘dictionary of natural products’ and AntiMarin to statistically compare the 

experimental spectra. DEREPLICATOR+ (Ref. 83) expands this approach to non-peptidic 

molecules, whereas VarQuest84 was developed to work independently from molecular 

networking to also enable the annotation of candidate structural analogs. Other tools that 

provide structural insight into detected MS/MS spectra by leveraging biosynthetic logic are 

Pep2Path85, Glycogenomics81, iSNAP86, RiPPquest87, NRPquest88, and DeepRIPP89. Each 

of these can be used to discover microbial metabolites from MS/MS data by leveraging 

genome sequence data. There are also metabolic models that leverage genomics data to 

discover microbial metabolism and will be discussed below.

As the annotations that result from in silico tools are computational matches, the confidence 

of the annotation is not the same level of the spectral matching, there is no level of accuracy 

proposed for in silico matches and the interpretation of the data has to be carefully checked. 

Some of these tools are based on the disconnection of chemical bonds to predict the 

spectra or the fragmentation; however, there are many fragmentation pathways based on 

rearrangements of parts of the chemical structure, which cannot yet be easily predicted. 

Moreover, future machine-learning approaches in combination with ever growing spectral 

reference libraries will improve the overall understanding of fragmentation pathways. Most 

often in silico annotations should be considered to be at the molecular family level or level 

3 according to the metabolomics standards initiative51; however, even the assignment at 

the family level still needs additional validation, which can be achieved through manual 

inspection of the data as well as the inspection of substructure assignments. The other 

opportunity is that there are databases rapidly evolving that are dedicated to microbial 

metabolites, one of them is NPAtlas90, or databases that are based on text mining strategies 

that construct many loose associations91 but also have the ability to mine data from 

emerging metabolomics databases with strategies that enable the search for mass spectral 

features across the entire database, such as MASST92, Thus, there is a need for the 
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development of improved microbial structural databases and metabolomics search engines 

related to the microbiome.

Substructure assignment.

The recognition of molecular substructures, such as glycosyl moieties or carboxyl 

groups, can provide relevant biochemical information to understand processes occurring 

in microbiome ecology. Although often it is not possible to completely assign a 

structure, it may be possible to recognize parts of molecules in fragmentation spectra 

through understanding specific fragments and/or neutral losses. These substructures can 

be annotated by MS2LDA through the recognition of the co-occurrence of patterns in 

MS/MS data 93 (Fig. 2g). MolNetEnhancer 94 (Fig. 2h) combines outputs from MS2LDA, 

NAP, DEREPLICATOR and molecular networking, along with the automated chemical 

classification from ClassyFire [G]95, to assign structural features to chemical classes. 

Canopus96 and Qemistree97 are also tools for chemical classification. The former uses 

neural networks [G] to improve the annotation of spectra that are not in the library, whereas 

the latter organizes and classifies MS data in a tree. Both tools can be combined with 

metadata to overlay biological or microbiome context to the chemical patterns observed. 

Multistage MSn spectral trees can also be used to assign substructures by recognition of 

hierarchical fragmentation patterns (for example, MAGMA)98 to characterize a molecular 

structure and get insights into the fragmentation pathway; such spectral trees are the 

foundation for substructure analysis with the commercial tool, such as mzCloud99. All of 

these tools together can provide invaluable information about the chemical content from an 

MS data set and have only recently been starting to be applied to investigate the chemistry of 

the microbiome100.

Making connections

The previous sections focus on the annotation of the specific molecules associated with an 

untargeted MS data set; however, many microbiome investigations aim to understand the 

global relationships of the molecules that are generated by microorganisms. To date, just 

few tools are available for this purpose (Fig. 3). Most of them are difficult to understand, 

requiring knowledge of very complex algorithms and statistical concepts. In this section, 

we present and discuss how some of these tools can be applied to study microbial 

interactions in microbiomes. Although it is still challenging to connect metabolites to 

specific microorganisms, molecular networking has been used to draw comparisons between 

samples and reference datasets, including data from isolated microbial cultures38, 69. A 

representative example is shown in Fig. 3a, in which lung samples from patients with cystic 

fibrosis were collected and split into two parts, one directly analyzed by LC-MS/MS and 

the other part was streaked onto Petri dishes for microbial isolation, and then both were 

analyzed by the same LC-MS/MS method. Molecular networking of both datasets enabled 

the discovery of metabolites in the host data that were produced by microorganisms even 

when cultured microorganisms produce slightly different versions of the molecules (for 

example, different fatty acids available that are used in the biosynthesis). Furthermore, 

as metabolites in culture are often slightly different (for example, different alkyl chain 

lengths due to promiscuous acyl-CoA loadings), molecular networking can contribute to 
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finding connections between metabolites and microorganisms. The strategy enabled the 

association of Pseudomonas aeruginosa with end-stage cystic fibrosis disease by connecting 

the bacteria with the following metabolites: quinolones (2-heptyl-4-quinolone (HHQ), 

2-nonyl-4-quinolone (NHQ) and 2-nonyl-4-quinolone-N-oxide (NQNO))69. Molecular 

networking can highlight molecules that are uniquely produced by microorganisms. It is 

much more complex to tease apart shared primary metabolite attribution, as such shared 

metabolites can be both produced by the host or the microorganisms (or come from diet 

directly). In such cases, feeding studies with labeled substrates and careful quantitation will 

need to be performed. Currently, no metabolomics methods exist that enables researchers 

to readily understand microbial contributions of shared metabolism that produce the same 

metabolite; however, high spatial resolution flux analysis101 may hold the key to separating 

each respective contribution. If a reliable low-cost method was available, it would be 

transformational for the functional understanding of the microbiome.

Spotting data trends.

Spotting patterns in untargeted MS data is challenging given the number of variables 

detected, thus multivariate analysis is immensely helpful. There are tens to hundreds 

of different methods to uncover data trends, including many unsupervised multivariate 

statistical methods (for example clustering analyses, PCoA102, and PCA102, principal 

component analysis)) and supervised multivariate statistical methods (for example, partial 

least squares regression discriminant analysis (PLS-DA)103). PCA is widely used in 

metabolomics and creates uncorrelated variables to maximize variances in the data102; it 

is usually used to understand the chemical similarity of samples holistically and interpreted 

with metadata (post-computation) to reveal the rationale for the separation of samples. 

Further, the PCA loadings, interpreted as vector quantities, indicate the variables which 

contribute to the separation. Similarly, PCoA can be used to analyze untargeted MS 

data with different distance metrics than that of the Euclidean distance used in PCA102. 

Contrasting unsupervised multivariate methods, supervised multivariate methods of data 

analysis, such as PLS-DA103, use class labels (metadata) in calculations, viz. healthy versus 

unhealthy. Although supervised methods are useful in extracting the variables that contribute 

to the separation, they are fallible (overfitting is a primary concern) and all important 

variables (chemicals or microorganisms) should be evaluated carefully.

Further, PCA can be combined with linear regression (for example, to model the relationship 

between independent and dependent variables), which is called principal component 

regression. Linear component regression can be applied to define features (principal 

components) that are modified in response to a particular phenotype104, 105. Principal 

component regression was used to accurately predict the microbial response to changing 

nutrients 105 (Fig. 3c). The microbial response was evaluated by metabolomic analyses of 

the culture of isolated microorganisms, in which the consumption or production of specific 

substrates related to the abundance dynamics was observed. In this example, the integration 

of the data by principal component regression enabled the prediction of bacterial behavior. 

The combination of these experiments provides evidence of plant–microbial interactions, in 

which the plant regulates the molecular composition of its rhizosphere to manipulate the 
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microbial community for its own benefit. It is likely that this approach can be leveraged to 

study other microorganism–host systems.

It should be noted that all omics data not only contain immediate response to specific 

evaluated challenges or effects, but also inform a multitude of other factors, such as age, 

sex, diet, medications, lifestyle, genetic background, among others. Chemicals derived from 

such factors can often be obtained from untargeted metabolomics, and the discovery of such 

potential confounders that can be reused as metadata to a microbiome project is currently 

underutilized. A well-curated metadata can be leveraged to correct errors. Additional 

methods such as regression analysis can also be used to identify and perhaps remove the 

confounders106. There are other resources that are emerging and are becoming available that 

enable researchers to discover metabolites from diets, exposome or other sources67, 107, 108. 

However, they have not been used to link microbial metabolism or to leverage microbiome 

linkages, and these are good opportunities to provide additional context to microbiome 

studies.

Connecting metabolites and microorganism.

Although commonly of interest, drawing connections from chemical–chemical, 

microorganism–microorganism or chemical–microorganism interactions remains immensely 

challenging. Correlation analyses, in general, are statistical methods to evaluate and 

predict possible connections between two or more variables that can be either quantitative 

or categorical. Pearson109, Spearman110 and Kendall111 correlations generate correlation 

coefficients that measure the strength of the relationship, which can vary from −1 to 

+1, representing a perfect negative or positive correlation, respectively. These correlation 

methods can be integrated with molecular networks for visualization112, and are commonly 

performed in microbiome studies to find, for instance, which metabolite is positively or 

negatively related to a specific microorganism or event. These methods tend to work well 

with infrequent observations (for example, an observation in less than 5% of the samples) 

but are also very prone to incorrect correlations, especially when false discovery rate 

is not controlled15, 113. Data compositionality (that is; data that are naturally described 

as proportions or probabilities or with a constant or irrelevant sum) is problematic for 

correlation methods as accuracy of correlation methods strongly depend on the on the 

variance of the data. Data are compositional114 in sequencing techniques, and although MS 

data are not inherently compositional, certain normalization, standardization or transforms 

can introduce compositionality. It cannot be overstated, that these connections are merely 

associations (correlations) and do not indicate causation. An understanding of causation 

requires further experimentation, analysis and interpretation. For integration analysis, the 

reader should be aware of the nuances associated with each of the technologies, regarding 

sample acquisition and processing; please see Box 1 for metabolomics and these reviews for 

genomics115, 116.

Data analysis tools based on co-occurrence (that is, co-occurrence networks) focus on 

the frequency of a specific feature occurring between different datasets117. Microorganism–

metabolite vectors (mmvec)15 (Fig. 3d) uses the probability of co-occurrence instead of 

correlation methods, in which the presence of a specific metabolite is conditioned to the 
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observation of a particular microorganism in a microbiome. As it is based on neural 

networks, this approach tends to work best with large data sets. In mmvec, and neural 

networks in general, the learning rate is an important parameter to be adjusted as it is 

responsible for determining how fast the model adapts to the datasets entered. In this 

context, Songbird (Fig. 3e) introduces ‘reference frames’, to overcome false-positive rates 

when comparing relative abundances118. The idea is similar to a well-known concept in 

physics, in which the velocity of one object can be measured relative to another moving 

object. In this sense, the microbial population can be measured as a reference frame 

to another microbial population and can also be applied to chemical-to-microorganism 

relationships. Thus, strategies are emerging to infer microbial-metabolite relationships 

regarding both the absolute and relative abundances106. It is crucial for the field to continue 

to develop new correlation approaches. It is also likely that there are specific data collection 

and processing circumstances where one works better than others, but such guidelines are 

not yet clearly delineated, even for the existing approaches.

Procrustes analysis (Fig. 3b) is one method by which to integrate different data types and 

visualize paired -omics data based on the correlations (canonical correlation) between their 

loadings14. In other words, this method shapes the distribution of two or more datasets 

or matrices with different representations of the same system (for example, genomics, 

proteomics, exposomics or metabolomics). When the microbiome data and untargeted MS 

data, represented as separate points, are more similar, they are closer to one another and 

reflect a stronger correlation. There are now a few examples when Procrustes have been used 

to understand the relationship of the metabolome to microbiome sequencing data119–121.

As sequencing has become more affordable, more emphasis is being placed on obtaining 

functional insights. 16SrRNA and often, shallow shotgun sequencing, fail to point to 

the functional metabolome or fail to identify the functional biosynthons. In such cases 

metabolomics analysis can be a complementary approach or even provide the sole data 

on function122, 123. Even though is difficult to connect function from 16S inventories, the 

community has developed other approaches to overcome such limitations. One of them 

is PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved 

states)124, 125, which predicts the functional composition of a metagenome using marker 

gene data and a database of reference genomes. Another approach is Mummichog126 which 

predicts the functional activity of a metabolite by organization of metabolic networks and 

pathways. These prediction tools can be used to give additional support to the connections 

drawn.

Pathway analysis.

Reconstruction of the metabolome and pathways based on genomic information127, such 

as KEGG128, WikiPathways129 and MetaCyc130, iis one way to predict the molecules that 

might be present in metabolomics experiments. This approach has been expanded to predict 

the causality of microbial community dynamics. Following an observation in ecology, the 

cause of a specific ecological phenomenon is established. This concept was integrated into 

the algorithms used in the reverse metabolic ecology131 (Fig. 3f) approach, in which the 

metabolic profile of a community (the biochemical environment) is inferred from genomic 
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or metagenomic data, and the metabolic information is leveraged to predict the ecological 

phenomenon. Different relationships can be observed in a community or microbiome, such 

as competition for the same nutrient or synergism. In the case of nutrient dependency, such 

as essential amino acids, lipids or vitamins, one organism tends to co-occur with another 

(that is, one species depends on some nutrient provided by other species). Based on these 

concepts, the first step in reverse metabolic ecology is to define the ‘seed set framework’ 

(the characterizations of the biochemical composition of an organism’s habitat based 

on its genome), in which seeds mean metabolites considered important for relationships 

(that is, competition or synergism)132. Subsequently, the method calculates the interface 

or connections between the seed set and the organisms in the environment133, 134. The 

metabolic network is represented as a directed graph in which nodes denote metabolites 

and directed edges connect substrates to products. Therefore, reverse metabolic ecology uses 

genomic or metagenomic data and metabolic information to raise hypotheses about possible 

microbial interactions in a given microbiome. This approach was used to find the most 

promising prebiotic combinations aiming to promote the development of the infant immune 

system131.

Additional methods based on genomic or metagenomic data135 recognize biosynthetic gene 

clusters [G] (BGCs) or use machine-learning predictions of metabolites that are most 

likely to be produced in a given microbial community. MelonnPan 135 (Fig. 3g), for 

example, is an algorithm developed to predict the metabolites produced by the microbial 

community based on metabolomic scoring of a combination of genetic sequencing along 

with biological knowledge. This can then be leveraged to predict the response of a metabolic 

profile, but also suggests what data need to be collected to validate the predictions. Even 

though the predicted metabolic profiles still do not present high levels of similarity to 

the empirically measured metabolome136, such predictions can be very useful to guide 

MS analysis as there are many different types of experiments that are possible (due 

to the many combinations of sample preparation, separation, and detection strategies). 

Strategies such as metabolic pathway-based approaches137 can be used to link metabolites 

to biochemical pathways (largely consisting of primary metabolites) and gain insight into 

the function of microbial communities138, 139. But the production of many specialized 

metabolites, secondary metabolites or natural products are generally not mapped out 

on biochemical schemas. Metabolites can be connected to BGCs by pathway activity 

level scoring (PALS)140 that ranks changing metabolite sets over different experimental 

conditions. The valuable knowledge on metabolic pathways enabled the annotation of 

metabolite origins via networks (AMON)141, which annotates which metabolite is produced 

by microorganisms in a microbiome; the ingenuity pathway analysis (IPA)142, which 

elucidates underlying relationships of metabolites and differentially expressed proteins; and 

model-based integration of metabolite observations and species abundances (MIMOSA)143, 

twhich unravel ecological links with metabolic changes. Enrichment strategies based on 

biochemical knowledge enable the interpretation of the metabolic regulation from the 

metabolomics dataset by recognizing sets of connected metabolites. These methods are 

usually applied to primary metabolites, such as sugar and lipids, but fail for compounds 

that comprise multiple structural components in a single structure. However, tools such as 

ChemRich can overcome some of these limitations144, once it recognizes these molecules in 
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a non-overlapping way by chemical similarity (spectral similarity networks) instead of fixed 

definitions of metabolic pathways. One key opportunity for improving metabolic models is 

to also model microbial molecules that are not part of common and/or primary metabolites. 

A bottleneck for the inclusion of such metabolites as part of metabolic reconstructions is 

that they are generally not yet part of existing biochemical pathway maps. It is therefore 

rare that metabolic models, including those used to understand metabolic flux53, consider 

specialized metabolites, but this is an important consideration, as such natural products are 

often produced in very large quantities and must therefore dictate large portions of flux.

Perspective

It is remarkable to think that we are surrounded by an entirely invisible ecosystem (at least 

to the naked eye) that can be shaped and is shaping us. The magnitude and grandeur of 

these microbial communities have been revealed by the advancement of more affordable 

and faster sequencing. However, there is much to learn, for example each microbial 

genome encodes for the ability to generate hundreds if not thousands of molecules. 

Further, a functional understanding of most of such molecules is strikingly absent from 

our knowledge, although insights into the host–microbiota interactions are emerging (see 

some representative examples in Box 2). We learned that a single chemical can substantially 

influence the microbiome (Box 2; Supplementary Box 2) when penicillin, vancomycin and 

many other drugs145, 146 were introduced in the 20th and 21st centuries. However, a much 

deeper understanding is required to predictably control the microbiome that the scientific 

community aspires to achieve.

Therefore, it is imperative that a large inventory of microbial-derived metabolites and their 

functions is established. Further, this includes the understanding of their interconnectivity as 

well as database and knowledgebase resources of how microorganisms process different 

metabolites, including natural products, medications147–149 and not only the active 

ingredients), and available nutrients150–152. The interaction of chemicals with ecosystems, 

and how chemicals influence drivers of ecosystems such as pH, salinity, temperature, 

oxygen, natural defenses should be investigated153–155. A major obstacle to advancement 

in these areas is the lack of machine-readable data and information in centralized resources. 

The sequencing field has adopted data sharing and data repositories, whereas the MS field 

lags behind, but can benefit from learned lessons. The first steps towards the transition from 

snapshots of microbial or chemical inventories to contextualized and deep understanding of 

function, effect, and meaning are near.

How do we advance? We must improve our understanding of the chemistry of individual 

organisms at a functional level, the chemistry of the microbial interactions with other 

microorganisms and host cell types, the effect of chemical exposures to the microbiome, 

and more. MS, specifically untargeted metabolomics, and sequencing are naturally 

complementary, and the wealth of information, when used in combination, is largely 

untapped. It will not be one laboratory that will solve these puzzles, but it will require the 

community to share knowledge, as well as systematic and reproducible analysis pipelines 

and collaborations.
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Glossary:

Alpha diversity
A metric that summarizes how many taxonomic groups or unique molecular features 

(species richness) and the evenness or balance of those microorganisms (species diversity) or 

molecular features that can be detected in the sample

Beta diversity
This is the ratio between the diversity of molecules or organisms in the entire data 

set divided by the diversity of the specific sample. This metric represents the diversity 

of microbial communities across different environments, also referred to compositional 

heterogeneity

Rarefaction
It is a strategy whereby the summed number of unique data points (for example, OTU’s in 

microbiome data or MS/MS in mass spectrometry) are inventoried with each sample that 

is added to the sample set. It is often used to standardize the samples of different sizes 

and determine whether a sample has been sequenced enough in order to represent its true 

diversity

Procrustes analysis
A statistical model based on canonical correlation to shape the distribution of two or more 

groups of features from different omics datasets

mmvec
A simple one-layer neural networking strategy using bi-loglinear multinominal regression to 

predict the probability for co-occurrence relative to metadata

MS1

Precursor mass of the intact molecular ion

MS/MS
Also known as MS2. The fragment ion spectrum

Molecular networking
A computational algorithm that organizes fragmentation spectra into a dataset by spectral 

similarities from which structural similarity is inferred. It is a neutral mass difference 

network obtained via spectral alignment
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Metabolomics Standards Initiative (MSI)
A formal definition of metabolite annotation and identification of the metabolomics 

standard initiative. It comprises four levels: Level 1 represent the identified metabolites; 

level 2 represents the putatively annotated compounds; level 3 – represents the putatively 

characterized chemical classes or molecular family; level 4 represents unknown but real 

mass spectrometry signal

Schymanski
A system for metabolites annotation. Level 1 represents the confirmed structure; Level 2 

represents the probable structure; Level 3 represents the tentative candidate of compound 

class; Level 4 and 5 correspond to an unequivocal molecular formula assignment, and exact 

mass of interest that still lacks molecular formula assignment

Substructures
A small part or a functional group in a chemical entity

ClassyFire
A hierarchical chemical classification of chemical entities

Principal Coordinates Analysis (PCoA)
Unsupervised multivariate analysis used to calculate the interrelationships of a data set, and 

is often used to reduce the dimensionality of large data sets

Machine learning
Application of artificial intelligence that is able to learn, adapt and improve their accuracy 

over time without being explicitly programmed

Neural networks
A set of algorithms designed to recognize patterns and used to classify entities or make 

predictions. Modeled around the concept of neurons

Biosynthetic gene clusters (BGCs)
Group of two or more genes in a particular genome that together encode a biosynthetic 

pathway

Gas chromatography
A technique to separate compounds in a complex sample which occurs between a stationary 

phase and a gaseous mobile phase, usually an inert gas such as helium

Liquid chromatography
A technique to separate two or more compounds present in a sample by exploiting the 

affinity balance between a stationary phase placed inside the chromatographic column and a 

mobile phase that flows through

In silico annotation tools
Computational methods to improve compound annotation by exploring other approaches 

besides spectral libraries, such as machine learning
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False discovery rates
A method to calculate the proportion of events that falsely seem to be significant
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Box 1

The basics of mass spectrometry

Mass spectrometry (MS) is an analytical technique to measure molecules (metabolomics 

focus on small molecules), detected as ions. In cases in which the investigator already 

knows what molecules they want to look at ahead of time or potentially observe, a 

targeted MS approach should be used. Targeting specific molecules improves sensitivity 

and specificity as one can directly tune the workflow and instrument for the detection of 

those specific molecules (for example, short-chain fatty acids or specific bile acids) and 

will have improved quantitative abilities. However, targeted workflows limit the potential 

for the discovery of unexpected molecules119. Untargeted MS, the focus of this Review, 

enables discovery at the cost of more difficult data analysis. MS detects chemicals by 

measuring the ionized form as their mass-to-charge ratio (m/z) and relative abundance 

or abundances (MS1). By acquiring data with high-resolution mass spectrometers such 

as TOF, Orbitrap or FTICR, the elemental composition can be calculated. The elemental 

composition in combination with an experiment called tandem MS, can be used to 

further reduce the possible molecular formula. In this tandem MS experiment (also 

described as MS/MS or MS2), energy is imparted via multiple collisions with an inert 

gas (for example, nitrogen or helium), which causes the ion to break apart157. This form 

of tandem MS is called collision-induced dissociation (CID). The fragments (that is, 

product ions) which result from the ionized molecule breaking apart are measured (MS/

MS). This results in interpretable fragmentation patterns that are related to the chemical 

structure156. Although the details are much more complex, one of the simplest ways 

to think about this type of fragmentation is that the isolated molecule is heated until it 

falls apart. There are other forms of fragmentation do not use thermal activation, such as 

electron capture dissociation or electron impact158. In gas chromatography MS (GC-MS), 

used for detection of volatile molecules or non-volatile molecules that can become 

volatile using derivatization strategies, the electron impact (EI) ionization source allows 

neutral molecules to be ionized using an electron beam, and instantaneously fragment 

them as they enter the instrument44, 45. The result of any of these methods is fragmented 

molecular ions. The resulting fragmentation spectrum, the measurement of the m/z of 

the broken pieces of the ion of the molecule is equivalent to a short sequence read in 

terms of what can be achieved with subsequent data analysis. As microbiome samples 

are inherently complex, it is often necessary to separate molecules before the sample is 

introduced into the mass spectrometer, techniques such as liquid chromatography (LC), 

GC159, and increasingly ion mobility (IMS)160, have been applied. Particularly, IMS 

has received much attention over the past decade to tackle the challenge of separating 

unresolved or co-eluting isomers and isobars160. However, the software to leverage IMS 

data for microbiome studies are limited. This generates a wealth of different ways to 

produce ions and measure microbial molecules via mass spectrometry.

In general, some preprocessing of the metabolomics data is performed before statistical 

and annotation analysis, including some steps such as removing noise, recognizing 

adducts, and finding and quantifying features161. This is a very challenging step in 

metabolomics and will inevitably include the detection of false, split or missing features. 
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Software such as MZmine49, MS-DIAL47, MShub159, openMS162 and XCMS163 can be 

used for such data preprocessing. The metabolites in untargeted metabolomics can be 

compared in relative quantitative fashion due to the large diversity of physico-chemical 

properties present in such biological samples, whereas for absolute quantification other 

steps should be taken, including evaluation of extraction yields, ionization profile and 

peak shape; ion suppression and matrix effects can have an impact the quantification164. 

When true and accurate quantities are desired for target molecules then 13C, 15N 

isotopically labeled internal standards and a targeted MS platform could be performed. 

For most scenarios such labeled compounds are not available for all the molecules 

detected in an untargeted metabolomics experiment. Most compounds are detected as 

more than one ion form (for example, in-source fragments, different adducts such 

as protons, sodium or multimers)165, 166, and might present different fragmentation 

patterns. Those ions can be found with tools such as RamClust 166 (particularly for 

data independent analysis), or CAMERA165, that perform MS1 based peak shape analysis 

and rule-based discovery of co-migrating species. To recognize some of those ion forms, 

ion identity molecular networking leverages both peak shape analysis and molecular 

networking167. Some compounds, such as sugars, cannot be easily ionized and may need 

derivatization before they can be detected168. Other compounds, such as less polar or 

non-polar compounds, need specific ionization sources to be ionized, such as atmospheric 

pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). 

Ionization does not occur equally for chemicals, and hence the use of internal standards 

is important in metabolomics. When it is not possible to use such internal standards as 

is the case for most microbial metabolites, the co-elution of chemicals can influence) 

the ionization of each other (for example, suppress through competition of the ‘charge’, 

complicating accurate quantification169. For example, peptides generally fragment in 

predictable patterns using relatively low energies (for example, ‘b-y’ fragmentation 

by CID). By contrast, some polyketides and alkaloids need higher levels of energy 

to induce fragmentation, and frequently generate fewer peaks in their fragmentation 

spectra, which can be challenging to interpret. All these issues can also be optimized 

by choosing the correct ionization source, solvent choices, sample or chromatography 

additives, instrument settings and parameters. This would contribute to inter-laboratory 

reproducibility of the data. In addition to metabolomics analysis, the quality of the 

data can substantially influence data analysis. Poor quality spectra, high noise level, 

contaminants, stability of the molecules, baseline drifts, among other issues, can lead to 

data misinterpretation or prevent a discovery. In some of these cases, filtering steps can 

improve the data analysis, but the proper use of background and quality controls and 

adoption of reproducible analysis workflows is essential to avoid removing important 

features.
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Box 2

How do microbial metabolites shape the hosthealth and behavior?

Several human diseases and conditions are associated with microbial dysbiosis, which 

can even impact human behavior and the proper functioning of organs. For instance, 

bacteria from the human gut can exert effects on the host immune system, from systemic 

autoimmunity170 to the evolution of cancer171. It is also known that external cues such 

as diet can influence the gut microbiome, and a shift in the microbiome may be related 

to metabolic syndromes, such as type 2 diabetes and nonalcoholic fatty liver disease172. 

Dysbiosis has also been observed to affect other environments, such as the soil, important 

for agriculture and production of food; the ocean, which affects biodiversity; and in 

the insects community; among several others examples not further specified here. Some 

examples from different organisms and environments are discussed that highlight the 

efforts in studying microbial-derived molecules and their role in microbiomes and 

hosthealth and behavior. Staphylococcus hominis has an important role in maintaining 

the equilibrium of the human skin microbiome. The commensal produces the metabolite 

Sh-hogocidin-β, which inhibits the growth of S. aureus. Dysbiosis of the skin microbiota 

(that is, a decreased abundance of S. hominis and thus increased abundance of S. aureus) 

can contribute to atopic dermatitis 173 (see the figure, part a). In addition, several studies 

report on the possible link between the gut microbiota and symptoms of nervous systems 

diseases, such as autism disorder 3. In a mouse model of autism spectrum disorder 

(ASD) it was shown that treatment with probiotics containing Bacteroides fragilis 
restored barrier integrity, decreased serum levels of the metabolite 4-ethylphenyl sulfate 

(4EPS) and modulated behaviour (see the figure, part b, top panel)174. The same group3 

transplanted gut microbiota from individuals with ASD into mice and reported that the 

offspring presented autism-like behavior (see the figure part b, bottom pane), further 

suggesting a role of the gut microbiota in the development of neurological disorders.

In social insects, Streptomyces spp. colonize the cuticles of ants and produce 

cyphomycin, a compound that protects the ants’ fungal garden against fungal pathogens 
175 see the figure, part c). In the rhizosphere, Pseudomonas sp. SH-C52 produces 

thannamycin to protect the sugar beet from fungal pathogens 6 (see the figure, part d). 

In the marine environment, an interesting example is the ascidian Lissoclinum patella, in 

which the colonizing bacteria produce compounds that may protect the host. In return, 

the ascidian provides essential nutrients for bacterial survival 8 (see the figure, part e).
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Fig. 1: Mass spectrometry metabolomics approaches for studying the microbiome.
a) MS1 acquired by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-

MS) enables bacterial taxon identification. The range of ribosomal proteins (3–15 kDa) is 

used to search for a match in spectral libraries, and the hierarchical clustering generated 

with these data strongly correlates with 16S rRNA. The range between 0,2–2 kDa shows 

specialized metabolites (molecular association network)31, 32. b) Illustrative examples 

of imaging MS. Interactions between microorganisms can be observed by co-culture 

experiments (top panel). Spatial distribution of hexuronic acid in the gut of different mice 
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can be investigated (middle panel). The examples shown are from germ-free (GT) mice, 

mice mono-colonized with Bacteroides thetaiotaomicron (Bt), and mice bi-colonized with Bt 
and Bifidobacterium longum (Bl). and molecular cartography can reveal the 3D distribution 

of specific ions in humans, mice and plants (bottom panel). c) Microbial metabolites can 

be analyzed by liquid chromatography–tandem MS (LC-MS/MS)156. The precursor mass is 

selected in MS1 to be fragmented, generating the MS/MS spectra. Thousands of MS/MS 

spectra are generated in an untargeted analysis, which can be organized by molecular 

networking by spectral similarities. Spectral similarity is represented by cosine score (cos), 

the higher the cosine the higher the similarity. D is the mass difference between two nodes 

(precursor ions) d) Microbial small metabolites analyzed by electron ionization (EI-MS). 

Deconvolution is essential to separate spectra from co-eluting compounds. The spectra can 

be searched for a match in spectral libraries to annotate known compounds. Images in part b 

adapted from Ref 36.
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Fig. 2: Computational tools for metabolite annotation, substructure assessment and chemical 
classification.
a) Tandem mass spectrometry (MS/MS) spectra can be searched against the MS/MS spectral 

library (for example, GNPS [https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp]) and 

matched based on the number of product ion matches and cosine score. b) Variable 

dereplication (GNPS) allows the search of structurally related metabolites (analogs) with 

similar MS/MS spectral data by employing the cosine similarity method. c) MetFrag71 is a 

combinatorial fragmentation method that focuses on the explanation of the fragment peaks 
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from an MS/MS spectrum based on substructures generated by disconnecting the bonds 

of the structures from structure databases. d) SIRIUS473 and ZODIAC74 use fingerprint 

prediction, a fragmentation tree method to predict fingerprints (substructure properties), 

to score possible structures by fingerprint similarity. e) Network annotation propagation 

(NAP) integrates variable dereplication and combinatorial fragmentation for annotation of 

analogs in molecular networks. f) DEREPLICATOR annotates nonribosomal peptides and 

ribosomally synthesized and post-translationally modified peptides based on hypothetical 

spectral fragments generated from peptide natural product (PNP) structures present in 

structural databases, considering the false discovery rate (FDR). In addition, this tool 

can be used to annotate analogs by variable dereplication and also to calculate statistical 

significance computing false discovery rates [G]. g) MS2LDA recognizes substructures 

and their co-occurrence in an MS/MS dataset h) MolNetEnhancer uses such substructure 

information, along with ClassyFire algorithm, to classify the chemical groups present in the 

dataset.
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Fig. 3: Data analysis tools to uncover microbiome-derived molecules.
a) Molecular networks can attribute the producer of specific metabolites detected in 

microbiome, from cultured systems or reference databases. b) Procrustes analysis allows 

integration of omics data based on canonical correlation. The results are summarized in a 

low-dimensional space representation known as principal components (PC1, PC2 and PC3) 

c) Principal component regression (PCR) is a statistical method based on regression analysis 

and principal component (analysis. In the example, metabolomics and metagenomics 

data were integrated to investigate the microbial response to plant growth. d) mmvec 
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uses co-occurrence probabilities to predict microorganism–metabolite interactions from 

metabolomic data and is visualized with a biplot. The results are shown in three-dimension 

space and the illustration shows two principal components (PC1 and PC2). e) Songbird 

introduced ‘reference frames’ by using ratios to compute the abundance of compositional 

data overcoming common pitfalls in comparing relative abundances across samples. f) 
Ecological interactions, such as competition or synergistic (for example, symbiosis), can 

be predicted by reverse metabolic ecology. Seeds are known as specific metabolites used 

to evaluate the interaction. g) MelonnPan is a machine learning method, trained with 

metabolomics and metagenomics data, aiming to predict the metabolome of microbial 

communities, including those metabolites usually not observed by common analytical 

techniques.
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