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Abstract

Microbiota are a malleable part of ecosystems, including the human ecosystem. Microorganisms
not only affect the chemistry of their specific niche, such as the human gut but also the chemistry
of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics
is one of the key technologies to detect and identify the small molecules produced by the human
microbiome, and to understand the functional role of these microbial metabolites. This Review
aims to provide a foundational introduction to common forms of untargeted mass spectrometry
and the types of data that can be obtained in the context of microbiome analysis. Data analysis
remains an obstacle, therefore, the emphasis is placed on data analysis approaches and integrative
analysis, including the integration of microbiome sequencing data.
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of untargeted mass spectrometry and the types of data that can be obtained in the context of
microbiome analysis.

Introduction

Some of the key findings from early investigations of the human microbiome were
thathealthy individuals carry different microbiota and that the composition of microbial
communities is different across body sitesl. Humans are composed of more microbial cells
than human cells (estimated to be ~1.3 times the number of human cells)?, and perturbing
the human-associated microbiota is postulated, and in some cases has been demonstrated,
to have substantial health implications3-5. This is also true for animals, insects, plants, and
environments such as terrestrial (for example, soil), aqueous (for example, ocean) and built
environments (for example, houses or offices)5-8.

Most microbiome projects start with an inventory of organisms and/or genes using DNA

or RNA sequencing methods (analysis of microbial community composition), and such
efforts will continue to have an important role in the field. There is also an ever-increasing
emphasis in the microbiome field towards a mechanistic understanding of how chemical
environments shape microbial communities and a deeper interest in the function of the
microbial-derived molecules on ecosystems. Whereas sequencing provides insights into the
microorganism that are present and the metabolic capacity, metabolomics is a direct readout
of the function of a system. The metabolome is considered the closest representation of
phenotype and, therefore, metabolomics can provide insights into the cellular processes in
response to some stimuli or interactions. Theoretically, a metabolomics experiment detects
all small molecules, more specifically, chemicals with molecular weights of <2000 Da;
however, in practice, it is a partial picture limited by the extent to which molecules can

be extracted, ionized and detected. The tools to study the metabolome are not limited

to endogenous molecules, which represent only a subset of all chemicals in a biological
system, but they can also detect exogenous substances (for example, xenobiotics). Mass
spectrometry (MS) is often used for metabolomics analysis, especially because of its good
sensitivity and its capacity to detect and quantify a large diversity of molecules in complex
biological samples 9 10 (Box 1). Data analysis remains challenging; however, in the past few
years there has been a vast increase in the development of tools to analyze MS metabolomics
data, including improvements in feature extraction, annotation and data analysis to improve
biological contextualization, including the integration with other omics data.

Many advances in the analysis of microbiome MS data are coming from investigators

that are developing or applying computational approaches to better interpret their sequence
datall. Such laboratories are introducing to the mass spectrometry community ecological
concepts such as alpha diversity [G] and beta diversity [G]12 13 and other terms such as
rarefaction [G], Procrustes analysis [G]14, mmvec [G]1®, and principal coordinates analysis
[G] (PcoA). In addition, MS and microbiome analysis infrastructures are in the early

stages of being linked to leverage the understanding of the molecular underpinnings of
the microbiomel6.17.18, 19,20,11, 21,22,23.

Nat Rev Microbiol. Author manuscript; available in PMC 2022 October 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bauermeister et al.

Page 3

In general, it has not been established when one should use one approach over another

or how to synergistically use multiple approaches, different methods usually provide
complementary results. This Review does not aim to provide a comprehensive account

of metabolomics, computational tools for MS data analysis, metabolomics analysis of the
microbiome or statistical methods as this is beyond the intended scope of this single review
article (readers are referred to reviews on these topics® 24-26), This Review aims to provide
a starting point for readers who are entering the field of microbial- and microbiome-related
mass spectrometry. The annotation of metabolites and attribution to a specific producer or
producers, as well as the correlation of microbial metabolites with phenotypes, are of key
interest in this field and, therefore, will be emphasized. The approaches presented in this
review are summarized in Table 1.

Detecting microbial metabolites

MS-based approaches have enabled the analysis of an immense amount of chemicals with
diverse structures. MS has been used for detecting metabolites, or even quantifying them,
from different types of samples, from solids (for example, directly from the surfaces)?”: 28 to
volatiles that the microbiome releases (for example, from the environment or a wet dog)2°
(Fig. 1). One important strategy is the biotyping, which is currently used in clinics for
microbial identification. This is accomplished by MS! [G] profiling of ribosomal proteins
(mass-to-charge ratio (/m/2) 2000-15000) of bacterial colonies by matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) MS. The resulting data are searched
against a library of MS? patterns obtained from well-characterized clinically relevant
microorganisms to identify the taxon of the clinical culture30. This biotyping strategy has
been adapted in a research setting to perform chemotyping of environmental microorganisms
by collecting data in the lower m/z region; the region in which the metabolites are detected
(m/z 200-2000) (Fig. 1a). This mass range shows many specialized metabolites or peptides
that enable chemotyping of individual strains3l: 32, Signals below /7/z 200 are often
excluded due to matrix interference in spite of many microbial metabolites being present

in this m/zrange.

MSZ-based microbial analysis can be performed in a spatial manner (imaging) by

different MS-techniques, including MALDI, REIMS, DESI, and nanoDESI, which was
reviewed?”: 28, MS imaging (MSI) can be used to understand the metabolic exchange of two
or more microorganisms, from a simple microbial culture to a histological slice, in two or
three dimensions33 34, It can be combined with fluorescence in situ hybridization (FISH)

to observe the distributions of microorganisms3® and applied to understand the molecular
distributions of a living host via 3D cartography36 (Fig. 1b). In 3D cartography, samples

are taken, analyzed by MS, and the data are mapped onto the 3D surface or volume37-39,
Tools such as ili40, METASPACE*L, Scils [https://scils.de/] and MSiReader*Z can be used
for visualization of the data. MS-based imaging in combination with other data types such as
metagenomics, 16S inventories or transcriptomics can be used to establish the relationships
of the spatial patterns of molecules to microbial communities.

One challenge for untargeted MS, specifically methods that only acquire MS? data, is the
annotation (identification) of the signals observed in the data. Annotation is commonly
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performed using a combination of exact mass, isotope patterns, retention times (if chemical
separation performed), collisional cross section, or structural information provided by
MS/MS [G] (also known as tandem MS or MS"). Commonly, expert MS users perform
identification by analyzing one spectrum at a time; however, this is impracticable at the
untargeted MS scale. One way to interpret MS/MS at a large scale is to compare the
MS/MS spectra to reference MS/MS of known compounds?®: 43 (Supplementary Box 1).
This process is akin to matching a short sequence to a sequence in DNA, RNA, protein
knowledgebases or repositories that already has an annotation or function assigned to that
specific sequence. In the case of liquid chromatography [G] (LC)-MS (Fig. 1c) data can

be collected via data-dependent acquisition, which functions by acquiring a survey scan
after which the intact ions (also known as charged molecules) are isolated, often based on
signal intensity, and subsequently fragmented, and the MS/MS spectrum is collected. This
process occurs repeatedly during the duration of the experiment. Following the acquisition,
the MS/MS spectra are searched against an MS/MS spectral reference library.

One specific noteworthy case is gas chromatography [G] (GC) coupled to an MS with

an electron ionization (EI) source* 45 (Box 1). To obtain MS/MS spectra from GC-

EI-MS data, the data have to be deconvoluted (Fig. 1d). There are many packages

to deconvolute, and representative examples include AMDIS*6, MS-DIAL47, XCMS#8,
MZmine*9/ADAP30, and GNPS [https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp]
which enables deconvolution online using MSHub6. Once deconvolution is accomplished,
the ~1.2 million public and commercial libraries can be searched via spectral similarity
searches 9. As there is usually no precursor mass information with EI-MS, multiple matches
to the spectral libraries are common. In principle, a Kovats index, a form or retention

time comparison, could be used to help narrow down candidates. Unfortunately, only a

few percent of the reference libraries have this value available. Most GC-MS instruments
are low-mass resolution instruments, although high-resolution instruments are becoming
available. In principle, a high resolution GC-MS instrument should provide improved
annotations, but the lack of high resolution MS/MS libraries means that this improved

data quality cannot yet be readily leveraged. The metabolomics community has come up
with different levels of annotation confidence: four levels for the metabolomics standards
initiative [G] (MSI1)®1, and five levels for Schymanski [G]°2. In general, GC-MS spectral
matching is a level 3, or molecular family level match, as the co-injection of an authentic
standard, ideally with labeled isotopes, is necessary to get to a level 1 annotation (both for
MSI and for Schymanski)®L: 52, 2D GC-MS is another GC-MS technology that is becoming
more widely available, and it refers to additional chromatographic separations that improves
the distinction between similar molecules prior to MS analysis.

There is also a growing interest to monitor the microbiome at the individual cell level
and the flux of metabolites. Mass spectrometry can be used to monitor the microbiome
in both of those dimensions. Dynamics of metabolism can be monitored using unsteady-
state flux balance analysis (UFBA), which measures the flux balance in dynamic systems
such as the microbiome®3. Flux is modeled using isotopically labeled reagents and is
generally reserved for non-human studies®*. There is also more and more interest in
single-cell analysis. Single-cell metabolomics analysis has been possible for cultured
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microorganisms®® 56 but there is an emerging interest to apply single-cell methods in
microbiome-based investigations. So far this has been largely limited to sequencing-

and imaging-based technologies but single-cell metabolomics could provide an important
complementary view®7: 58,

Overall, MS has shown to have a great potential in providing answers for important
questions raised about microorganisms in microbiomes. The interpretation of untargeted
MS experiments needs to be treated with care as the results are affected by the collection,
extraction, and sample preparation protocols in addition to the data acquisition and data
analysis tools® 25, There are numerous challenges (Box 1). All these options are reasons
why untargeted MS and the interpretation of the data are not trivial® 25, As an alternative
or complementary approach to MS analysis, X-ray crystallography, ultra-violet, infrared or
nuclear magnetic resonance (NMR) spectroscopy can be used. Each of these techniques have
pros and cons, the discussion of which is outside the scope of this review. For example,
NMR, despite having lesser sensitivity then MS, presents unique strengths in metabolomics
and is thus a great complementary technique (reviewed in Ref. 59).

Microbial metabolite annotation

An initial step to tease apart the complexity of interactions in microbiomes is the annotation
of detectable metabolites. In the past few years, many new algorithms and computational
tools for improving this step in MS-based metabolomics have been introduced. MS/MS is
frequently used (in conjunction with MS? data) as it provides more structural information.
The levels of confidence concerning the annotation are variable with the highest level of
identification being a direct comparison to chemical standards, or via the isolation and
complete structural characterization (MSI level 151 or Schymanski level [G] 1°2). In this
section, we present some of the computational tools that can assist in metabolite annotation
when chemical standards are not available (Fig. 2), along with a brief discussion of their
characteristics, pros and cons, and the contextualization of how they can be used for
investigations of microbial metabolites. It should be noted that although these tools speed up
the process and can guide annotation, the results should be interpreted with caution. These
advanced annotation tools can be invaluable in microbiome studies, and when used properly,
errors are minimized.

Spectral libraries.

Spectral library search (Fig. 2a), mentioned above, is the most common method used for
annotation of known compounds. Each experimental MS/MS spectrum is compared to
reference spectra of known compounds stored in MS/MS spectral libraries, such as GNPS
spectral libraries!8, MassBank (Japan, EU and North America)®%, NIST®1, and METLINS2
and many others. The availability of chemical standards limits the scope of spectral libraries
and is the reason that the majority of MS/MS spectra in these databases are from synthetic
and commercially available chemicals. One key limit of a spectral library matching approach
for studying microbial molecules is that most microbial molecules are not commercially
available and thus are not well represented in spectral libraries. To address this limitation,
GNPS8 enables contributions to its MS/MS spectral library directly from the community
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and data acquired from samples in addition to chemical standards. Due to a large community
effort, the amount of MS/MS reference spectra for microbial molecules is growing rapidly.
For known molecules only to be produced by microorganisms the library expanded from
~200 reference spectra in 2014 to thousands in 2021 in the GNPS infrastructure of the
~25,000 known microbial metabolites. Although the current MS/MS reference spectra only
cover a fraction of microbial molecules, untargeted metabolomics can provide direction in
studying which microorganism or microorganisms produce metabolites of interest.

It is crucial to realize that more than one annotation is often possible when comparing data
to spectral libraries, such as for GC-EI-MS, as there is generally no precursor mass to filter
the library with, and thus many related molecules match. High (mass) resolution combats
multiple matches based on the exclusion of particular molecular formulae and isotopic
patterns, hence TOF, Orbitrap and FT-ICR mass spectrometers are preferred analyzers for
many metabolomics applications. Further, the extent to which a precursor ion fragments and
the number of product ions that match reduces the possible number of spectral matches.
Although not in all cases, it is commonplace that MS/MS spectral matching meets the
requirements for an identification level 2 according to the 2007 standards initiative®L. At
the same time, lipids or fatty acids annotation are limited to level 3 given the number of
regio- and stereoisomers. The goal of spectral matching is to narrow down the candidate
molecules represented by the MS/MS signal. Thus, when one has spectral matches against
the library, additional knowledge about the sample or orthogonal measurements such as co-
migration with a chemical standard is needed to increase the confidence of the annotation.
To complement the manual interpretation of spectral library matching accuracy, methods of
controlling false discovery rate (FDR) for spectral matching are actively being developed
but are not yet widely utilized in metabolomics®3: 84, unlike in proteomics, for instance,
where FDR methods based on the target-decoy strategy is already well-established®3: 65, A
study proposed empirical Bayes and target-decoy based methods to estimate the FDR in
metabolomics®3: 64, Assessing the FDR based on the target-decoy strategy for 70 public
metabolomics data sets, it was observed that the scoring thresholds have to be adjusted for
each dataset because there is a strong dependency on the number of fragmented ions in an
MS/MS spectrum.

The MSI levels [G]°! (as well as the Schymanski)®2 are not failsafe, and often annotations
fall between levels. For example, an MS/MS spectral match to cis-2,3-hexenoic acid, the
MS/MS spectrum within the context of a typical collision-induced dissociation (CID)-based
untargeted MS experiment can differentiate neither the stereoisomers (cis- versus trans-)
nor the position of the double bonds, and, therefore, considered a molecular family match
or MSI level 3. Even with a standard with the correct /7/zand matching retention time,

one cannot rule out that other isomers do not have the same retention time. Level 1
annotation for this chemical requires additional orthogonal approaches and/or co-migration
with authentic standards.

On average, using reference libraries, only 2-20% of MS/MS spectra are annotated in

an untargeted MS experiment®6. 67 One strategy of expanding the utility of spectral
libraries, and increasing the number of candidate annotations, is through leveraging the
modified cosine score as used in molecular networking [G]16, variable dereplication38, or
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hybrid searches®8. In molecular networking (Fig. 1c), MS/MS spectra are aligned, in a
process that is very similar to finding related genetic sequences by alignment. The spectral
alignment in these instances is defined by using a modified cosine score, and variants

with structural modifications can be detected (Fig. 2b). When visualized as networks, one
can infer structural similarity. And just like sequence alignments enable the discovery of
mutations and alternative splice forms, spectral alignment enables the discovery of analogs
of molecules that match MS/MS reference libraries. When combined with metadata from
a study (for example, germ-free versus microbiome-colonized, or healthy versus disease) it
is possible to discover specific molecules associated with phenotypes37: 38. 69 which can
be a powerful strategy for microbiome investigations. Molecular networking is one such
approach for analyzing LC-MS/MS data and has been used to understand the chemistry

of microorganisms and microbial communities. Recently, molecular networking via GNPS
has been developed for analyzing GC-MS7 data which was successfully applied in an
investigation of quorum sensing during fungal-bacterial interactions’C. The remaining data
that cannot be annotated by direct matches or similarity matches need alternative methods
for annotating, and /n sifico annotation platforms are continuously improving.

In silico tools to improve metabolite annotation.

Several /n silico annotation tools [G] have been developed to overcome the limitations of
spectral library searches. Reference spectral libraries are incomplete compared to molecular
structure databases, such as Pubchem. Combinatorial fragmentation methods (Fig. 2c), such
as MetFrag’! and Competitive Fragmentation Modeling (CFM-ID)72, explain the fragment
peaks in a given MS/MS spectrum based on substructures [G] generated by disconnecting
the bonds from the known structures. Fingerprint prediction methods (Fig. 2d), such

as SIRIUS473 and ZODIACT4, leverage fingerprints based on fragmentation trees for
experimental spectra using machine learning [G] trained fingerprints from known structures.
Hydrogen rearrangement rules during bond cleavages in low-energy fragmentation are used
in tools, such as MS-Finder®. In all cases, /n silico approaches, create a list of candidate
structural matches from the MS data using structural databases. As with spectral matching,
it is rare to obtain a unique match within acceptable scoring cutoff values, multiple matches
should be cautiously trusted and interpreted.

In silicotools have been integrated into molecular networking via network annotation
propagation (NAP)76 (Fig. 2e). NAP compares the structural candidates that are assigned

to a specific MS/MS spectrum (node in the molecular network) and then, following the
assumption that connected nodes in molecular networking correspond to similar molecular
structures, NAP re-ranks the structures when a neighboring node has a related structure in
the molecular network. An alternative strategy of using networking to propagate annotations,
especially when some structural knowledge resulting in a more defined scope of candidate
molecules is available to the user, is through either prediction of candidate-related molecules
that might be present in the sample or using biotransformation logic to predict candidate
molecules’’: 78,

The above /n silico approaches use structure databases; however, MS data can be linked with
biosynthetic logic that is responsible for their production. MiBIG (minimum information
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about a biosynthetic gene cluster (BGC)) is currently the only repository, known to the
authors, that links natural product structures directly to microbial gene clusters’®. During
the writing of this Review, a method that uses multiple link-scoring functions to link gene
clusters, molecules and mass spectral data was reported®0.

It is worth mentioning that BGC-based analysis is largely limited to protozoan microbiota
and does not apply to viral or phage as they, generally, do not encode for many genes

that make or modify metabolites. For some classes of bacterial molecules, it is easier to
establish a link between BGC and metabolites than others8l: 82, The analysis of bacterial
genome databases revealed that approximately 70% of gene clusters that encode bacterial
molecules contain some domain to produce nonribosomal peptides (NRPs) or ribosomally
synthesized and post-translationally modified peptides (RiPPs)82. Although new methods
continue to be developed for NRP and RiPP discovery within genomic and MS data,

they are among the easiest to find even though NRPs and RiPPs can be extensively
post-translationally modified or include hundreds of different amino acids generated by
dedicated biosynthetic machineries and decorated appendages (fatty acids, halogenations,
oxidations, cyclizations, among other). DEREPLICATORS3 (Fig. 2f) was designed to find
such molecules. DEREPLICATOR constructs fragmentation graphs from natural product
libraries such as “dictionary of natural products’ and AntiMarin to statistically compare the
experimental spectra. DEREPLICATOR+ (Ref. 83) expands this approach to non-peptidic
molecules, whereas VarQuest84 was developed to work independently from molecular
networking to also enable the annotation of candidate structural analogs. Other tools that
provide structural insight into detected MS/MS spectra by leveraging biosynthetic logic are
Pep2Path®>, Glycogenomics®l, iSNAP®8, RiPPquest8”, NRPquest®®, and DeepRIPP8°. Each
of these can be used to discover microbial metabolites from MS/MS data by leveraging
genome sequence data. There are also metabolic models that leverage genomics data to
discover microbial metabolism and will be discussed below.

As the annotations that result from /n silico tools are computational matches, the confidence
of the annotation is not the same level of the spectral matching, there is no level of accuracy
proposed for in silico matches and the interpretation of the data has to be carefully checked.
Some of these tools are based on the disconnection of chemical bonds to predict the

spectra or the fragmentation; however, there are many fragmentation pathways based on
rearrangements of parts of the chemical structure, which cannot yet be easily predicted.
Moreover, future machine-learning approaches in combination with ever growing spectral
reference libraries will improve the overall understanding of fragmentation pathways. Most
often /n silico annotations should be considered to be at the molecular family level or level
3 according to the metabolomics standards initiative>!; however, even the assignment at

the family level still needs additional validation, which can be achieved through manual
inspection of the data as well as the inspection of substructure assignments. The other
opportunity is that there are databases rapidly evolving that are dedicated to microbial
metabolites, one of them is NPAtlas®®, or databases that are based on text mining strategies
that construct many loose associations®! but also have the ability to mine data from
emerging metabolomics databases with strategies that enable the search for mass spectral
features across the entire database, such as MASST92, Thus, there is a need for the
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development of improved microbial structural databases and metabolomics search engines
related to the microbiome.

Substructure assignment.

The recognition of molecular substructures, such as glycosyl moieties or carboxyl

groups, can provide relevant biochemical information to understand processes occurring

in microbiome ecology. Although often it is not possible to completely assign a

structure, it may be possible to recognize parts of molecules in fragmentation spectra
through understanding specific fragments and/or neutral losses. These substructures can

be annotated by MS2LDA through the recognition of the co-occurrence of patterns in
MS/MS data % (Fig. 2g). MolNetEnhancer % (Fig. 2h) combines outputs from MS2LDA,
NAP, DEREPLICATOR and molecular networking, along with the automated chemical
classification from ClassyFire [G]%®, to assign structural features to chemical classes.
Canopus?® and Qemistree®’ are also tools for chemical classification. The former uses
neural networks [G] to improve the annotation of spectra that are not in the library, whereas
the latter organizes and classifies MS data in a tree. Both tools can be combined with
metadata to overlay biological or microbiome context to the chemical patterns observed.
Multistage MS” spectral trees can also be used to assign substructures by recognition of
hierarchical fragmentation patterns (for example, MAGMA)® to characterize a molecular
structure and get insights into the fragmentation pathway; such spectral trees are the
foundation for substructure analysis with the commercial tool, such as mzCloud®®. All of
these tools together can provide invaluable information about the chemical content from an
MS data set and have only recently been starting to be applied to investigate the chemistry of
the microbiomel90,

Making connections

The previous sections focus on the annotation of the specific molecules associated with an
untargeted MS data set; however, many microbiome investigations aim to understand the
global relationships of the molecules that are generated by microorganisms. To date, just
few tools are available for this purpose (Fig. 3). Most of them are difficult to understand,
requiring knowledge of very complex algorithms and statistical concepts. In this section,
we present and discuss how some of these tools can be applied to study microbial
interactions in microbiomes. Although it is still challenging to connect metabolites to
specific microorganisms, molecular networking has been used to draw comparisons between
samples and reference datasets, including data from isolated microbial cultures38: 69, A
representative example is shown in Fig. 3a, in which lung samples from patients with cystic
fibrosis were collected and split into two parts, one directly analyzed by LC-MS/MS and
the other part was streaked onto Petri dishes for microbial isolation, and then both were
analyzed by the same LC-MS/MS method. Molecular networking of both datasets enabled
the discovery of metabolites in the host data that were produced by microorganisms even
when cultured microorganisms produce slightly different versions of the molecules (for
example, different fatty acids available that are used in the biosynthesis). Furthermore,

as metabolites in culture are often slightly different (for example, different alkyl chain
lengths due to promiscuous acyl-CoA loadings), molecular networking can contribute to
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finding connections between metabolites and microorganisms. The strategy enabled the
association of Pseudomonas aeruginosa with end-stage cystic fibrosis disease by connecting
the bacteria with the following metabolites: quinolones (2-heptyl-4-quinolone (HHQ),
2-nonyl-4-quinolone (NHQ) and 2-nonyl-4-quinolone-N-oxide (NQNO))89. Molecular
networking can highlight molecules that are uniquely produced by microorganisms. It is
much more complex to tease apart shared primary metabolite attribution, as such shared
metabolites can be both produced by the host or the microorganisms (or come from diet
directly). In such cases, feeding studies with labeled substrates and careful quantitation will
need to be performed. Currently, no metabolomics methods exist that enables researchers
to readily understand microbial contributions of shared metabolism that produce the same
metabolite; however, high spatial resolution flux analysis®l may hold the key to separating
each respective contribution. If a reliable low-cost method was available, it would be
transformational for the functional understanding of the microbiome.

Spotting data trends.

Spotting patterns in untargeted MS data is challenging given the number of variables
detected, thus multivariate analysis is immensely helpful. There are tens to hundreds

of different methods to uncover data trends, including many unsupervised multivariate
statistical methods (for example clustering analyses, PCoA192, and PCA102, principal
component analysis)) and supervised multivariate statistical methods (for example, partial
least squares regression discriminant analysis (PLS-DA)193). PCA is widely used in
metabolomics and creates uncorrelated variables to maximize variances in the datal%?; it

is usually used to understand the chemical similarity of samples holistically and interpreted
with metadata (post-computation) to reveal the rationale for the separation of samples.
Further, the PCA loadings, interpreted as vector quantities, indicate the variables which
contribute to the separation. Similarly, PCoA can be used to analyze untargeted MS

data with different distance metrics than that of the Euclidean distance used in PCA102,
Contrasting unsupervised multivariate methods, supervised multivariate methods of data
analysis, such as PLS-DA03  use class labels (metadata) in calculations, viz. healthy versus
unhealthy. Although supervised methods are useful in extracting the variables that contribute
to the separation, they are fallible (overfitting is a primary concern) and all important
variables (chemicals or microorganisms) should be evaluated carefully.

Further, PCA can be combined with linear regression (for example, to model the relationship
between independent and dependent variables), which is called principal component
regression. Linear component regression can be applied to define features (principal
components) that are modified in response to a particular phenotypel04 105 Principal
component regression was used to accurately predict the microbial response to changing
nutrients 105 (Fig. 3c). The microbial response was evaluated by metabolomic analyses of
the culture of isolated microorganisms, in which the consumption or production of specific
substrates related to the abundance dynamics was observed. In this example, the integration
of the data by principal component regression enabled the prediction of bacterial behavior.
The combination of these experiments provides evidence of plant-microbial interactions, in
which the plant regulates the molecular composition of its rhizosphere to manipulate the
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microbial community for its own benefit. It is likely that this approach can be leveraged to
study other microorganism-host systems.

It should be noted that all omics data not only contain immediate response to specific
evaluated challenges or effects, but also inform a multitude of other factors, such as age,
sex, diet, medications, lifestyle, genetic background, among others. Chemicals derived from
such factors can often be obtained from untargeted metabolomics, and the discovery of such
potential confounders that can be reused as metadata to a microbiome project is currently
underutilized. A well-curated metadata can be leveraged to correct errors. Additional
methods such as regression analysis can also be used to identify and perhaps remove the
confounders106, There are other resources that are emerging and are becoming available that
enable researchers to discover metabolites from diets, exposome or other sources®’: 107, 108
However, they have not been used to link microbial metabolism or to leverage microbiome
linkages, and these are good opportunities to provide additional context to microbiome
studies.

Connecting metabolites and microorganism.

Although commonly of interest, drawing connections from chemical-chemical,
microorganism—microorganism or chemical-microorganism interactions remains immensely
challenging. Correlation analyses, in general, are statistical methods to evaluate and

predict possible connections between two or more variables that can be either quantitative
or categorical. Pearson199, Spearman!10 and Kendall'1! correlations generate correlation
coefficients that measure the strength of the relationship, which can vary from -1 to

+1, representing a perfect negative or positive correlation, respectively. These correlation
methods can be integrated with molecular networks for visualizationl12, and are commonly
performed in microbiome studies to find, for instance, which metabolite is positively or
negatively related to a specific microorganism or event. These methods tend to work well
with infrequent observations (for example, an observation in less than 5% of the samples)
but are also very prone to incorrect correlations, especially when false discovery rate

is not controlled!® 113, Data compositionality (that is; data that are naturally described

as proportions or probabilities or with a constant or irrelevant sum) is problematic for
correlation methods as accuracy of correlation methods strongly depend on the on the
variance of the data. Data are compositionalll4 in sequencing techniques, and although MS
data are not inherently compositional, certain normalization, standardization or transforms
can introduce compositionality. It cannot be overstated, that these connections are merely
associations (correlations) and do not indicate causation. An understanding of causation
requires further experimentation, analysis and interpretation. For integration analysis, the
reader should be aware of the nuances associated with each of the technologies, regarding
sample acquisition and processing; please see Box 1 for metabolomics and these reviews for
genomics!15 116,

Data analysis tools based on co-occurrence (that is, co-occurrence networks) focus on

the frequency of a specific feature occurring between different datasets!1’. Microorganism—
metabolite vectors (mmvec)1® (Fig. 3d) uses the probability of co-occurrence instead of
correlation methods, in which the presence of a specific metabolite is conditioned to the
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observation of a particular microorganism in a microbiome. As it is based on neural
networks, this approach tends to work best with large data sets. In mmvec, and neural
networks in general, the learning rate is an important parameter to be adjusted as it is
responsible for determining how fast the model adapts to the datasets entered. In this
context, Songbird (Fig. 3e) introduces ‘reference frames’, to overcome false-positive rates
when comparing relative abundances18. The idea is similar to a well-known concept in
physics, in which the velocity of one object can be measured relative to another moving
object. In this sense, the microbial population can be measured as a reference frame

to another microbial population and can also be applied to chemical-to-microorganism
relationships. Thus, strategies are emerging to infer microbial-metabolite relationships
regarding both the absolute and relative abundances!%. It is crucial for the field to continue
to develop new correlation approaches. It is also likely that there are specific data collection
and processing circumstances where one works better than others, but such guidelines are
not yet clearly delineated, even for the existing approaches.

Procrustes analysis (Fig. 3b) is one method by which to integrate different data types and
visualize paired -omics data based on the correlations (canonical correlation) between their
loadings*. In other words, this method shapes the distribution of two or more datasets

or matrices with different representations of the same system (for example, genomics,
proteomics, exposomics or metabolomics). When the microbiome data and untargeted MS
data, represented as separate points, are more similar, they are closer to one another and
reflect a stronger correlation. There are now a few examples when Procrustes have been used
to understand the relationship of the metabolome to microbiome sequencing datal19-121,

As sequencing has become more affordable, more emphasis is being placed on obtaining
functional insights. 16SrRNA and often, shallow shotgun sequencing, fail to point to

the functional metabolome or fail to identify the functional biosynthons. In such cases
metabolomics analysis can be a complementary approach or even provide the sole data

on function122: 123, Even though is difficult to connect function from 16S inventories, the
community has developed other approaches to overcome such limitations. One of them

is PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved
states)124 125 \hich predicts the functional composition of a metagenome using marker
gene data and a database of reference genomes. Another approach is Mummichog26 which
predicts the functional activity of a metabolite by organization of metabolic networks and
pathways. These prediction tools can be used to give additional support to the connections
drawn.

Pathway analysis.

Reconstruction of the metabolome and pathways based on genomic information12?, such

as KEGG!28, WikiPathways!2® and MetaCyc!0, iis one way to predict the molecules that
might be present in metabolomics experiments. This approach has been expanded to predict
the causality of microbial community dynamics. Following an observation in ecology, the
cause of a specific ecological phenomenon is established. This concept was integrated into
the algorithms used in the reverse metabolic ecology?3! (Fig. 3f) approach, in which the
metabolic profile of a community (the biochemical environment) is inferred from genomic
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or metagenomic data, and the metabolic information is leveraged to predict the ecological
phenomenon. Different relationships can be observed in a community or microbiome, such
as competition for the same nutrient or synergism. In the case of nutrient dependency, such
as essential amino acids, lipids or vitamins, one organism tends to co-occur with another
(that is, one species depends on some nutrient provided by other species). Based on these
concepts, the first step in reverse metabolic ecology is to define the ‘seed set framework’
(the characterizations of the biochemical composition of an organism’s habitat based

on its genome), in which seeds mean metabolites considered important for relationships
(that is, competition or synergism)132. Subsequently, the method calculates the interface

or connections between the seed set and the organisms in the environment133. 134 The
metabolic network is represented as a directed graph in which nodes denote metabolites
and directed edges connect substrates to products. Therefore, reverse metabolic ecology uses
genomic or metagenomic data and metabolic information to raise hypotheses about possible
microbial interactions in a given microbiome. This approach was used to find the most
promising prebiotic combinations aiming to promote the development of the infant immune
system?31,

Additional methods based on genomic or metagenomic datal3® recognize biosynthetic gene
clusters [G] (BGCs) or use machine-learning predictions of metabolites that are most

likely to be produced in a given microbial community. MelonnPan 13 (Fig. 3g), for
example, is an algorithm developed to predict the metabolites produced by the microbial
community based on metabolomic scoring of a combination of genetic sequencing along
with biological knowledge. This can then be leveraged to predict the response of a metabolic
profile, but also suggests what data need to be collected to validate the predictions. Even
though the predicted metabolic profiles still do not present high levels of similarity to

the empirically measured metabolomel36, such predictions can be very useful to guide

MS analysis as there are many different types of experiments that are possible (due

to the many combinations of sample preparation, separation, and detection strategies).
Strategies such as metabolic pathway-based approaches37 can be used to link metabolites
to biochemical pathways (largely consisting of primary metabolites) and gain insight into
the function of microbial communities38: 139, But the production of many specialized
metabolites, secondary metabolites or natural products are generally not mapped out

on biochemical schemas. Metabolites can be connected to BGCs by pathway activity

level scoring (PALS)140 that ranks changing metabolite sets over different experimental
conditions. The valuable knowledge on metabolic pathways enabled the annotation of
metabolite origins via networks (AMON)141 which annotates which metabolite is produced
by microorganisms in a microbiome; the ingenuity pathway analysis (IPA)142, which
elucidates underlying relationships of metabolites and differentially expressed proteins; and
model-based integration of metabolite observations and species abundances (MIMOSA)143,
twhich unravel ecological links with metabolic changes. Enrichment strategies based on
biochemical knowledge enable the interpretation of the metabolic regulation from the
metabolomics dataset by recognizing sets of connected metabolites. These methods are
usually applied to primary metabolites, such as sugar and lipids, but fail for compounds
that comprise multiple structural components in a single structure. However, tools such as
ChemRich can overcome some of these limitations44, once it recognizes these molecules in
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a non-overlapping way by chemical similarity (spectral similarity networks) instead of fixed
definitions of metabolic pathways. One key opportunity for improving metabolic models is
to also model microbial molecules that are not part of common and/or primary metabolites.
A bottleneck for the inclusion of such metabolites as part of metabolic reconstructions is
that they are generally not yet part of existing biochemical pathway maps. It is therefore
rare that metabolic models, including those used to understand metabolic flux®3, consider
specialized metabolites, but this is an important consideration, as such natural products are
often produced in very large quantities and must therefore dictate large portions of flux.

Perspective

It is remarkable to think that we are surrounded by an entirely invisible ecosystem (at least
to the naked eye) that can be shaped and is shaping us. The magnitude and grandeur of
these microbial communities have been revealed by the advancement of more affordable
and faster sequencing. However, there is much to learn, for example each microbial
genome encodes for the ability to generate hundreds if not thousands of molecules.
Further, a functional understanding of most of such molecules is strikingly absent from
our knowledge, although insights into the host-microbiota interactions are emerging (see
some representative examples in Box 2). We learned that a single chemical can substantially
influence the microbiome (Box 2; Supplementary Box 2) when penicillin, vancomycin and
many other drugs4® 146 were introduced in the 20th and 21st centuries. However, a much
deeper understanding is required to predictably control the microbiome that the scientific
community aspires to achieve.

Therefore, it is imperative that a large inventory of microbial-derived metabolites and their
functions is established. Further, this includes the understanding of their interconnectivity as
well as database and knowledgebase resources of how microorganisms process different
metabolites, including natural products, medications47-149 and not only the active
ingredients), and available nutrients1®0-152_ The interaction of chemicals with ecosystems,
and how chemicals influence drivers of ecosystems such as pH, salinity, temperature,
oxygen, natural defenses should be investigated'53-155, A major obstacle to advancement
in these areas is the lack of machine-readable data and information in centralized resources.
The sequencing field has adopted data sharing and data repositories, whereas the MS field
lags behind, but can benefit from learned lessons. The first steps towards the transition from
snapshots of microbial or chemical inventories to contextualized and deep understanding of
function, effect, and meaning are near.

How do we advance? We must improve our understanding of the chemistry of individual
organisms at a functional level, the chemistry of the microbial interactions with other
microorganisms and host cell types, the effect of chemical exposures to the microbiome,
and more. MS, specifically untargeted metabolomics, and sequencing are naturally
complementary, and the wealth of information, when used in combination, is largely
untapped. It will not be one laboratory that will solve these puzzles, but it will require the
community to share knowledge, as well as systematic and reproducible analysis pipelines
and collaborations.
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Alpha diversity

A metric that summarizes how many taxonomic groups or unique molecular features
(species richness) and the evenness or balance of those microorganisms (species diversity) or
molecular features that can be detected in the sample

Beta diversity

This is the ratio between the diversity of molecules or organisms in the entire data

set divided by the diversity of the specific sample. This metric represents the diversity
of microbial communities across different environments, also referred to compositional
heterogeneity

Rarefaction

It is a strategy whereby the summed number of unique data points (for example, OTU’s in
microbiome data or MS/MS in mass spectrometry) are inventoried with each sample that
is added to the sample set. It is often used to standardize the samples of different sizes
and determine whether a sample has been sequenced enough in order to represent its true
diversity

Procrustes analysis
A statistical model based on canonical correlation to shape the distribution of two or more
groups of features from different omics datasets

mmvec
A simple one-layer neural networking strategy using bi-loglinear multinominal regression to
predict the probability for co-occurrence relative to metadata

Mst
Precursor mass of the intact molecular ion

MSMS
Also known as MS2, The fragment ion spectrum

Molecular networking

A computational algorithm that organizes fragmentation spectra into a dataset by spectral
similarities from which structural similarity is inferred. It is a neutral mass difference
network obtained via spectral alignment
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M etabolomics Standards I nitiative (M SI)

A formal definition of metabolite annotation and identification of the metabolomics
standard initiative. It comprises four levels: Level 1 represent the identified metabolites;
level 2 represents the putatively annotated compounds; level 3 — represents the putatively
characterized chemical classes or molecular family; level 4 represents unknown but real
mass spectrometry signal

Schymanski

A system for metabolites annotation. Level 1 represents the confirmed structure; Level 2
represents the probable structure; Level 3 represents the tentative candidate of compound
class; Level 4 and 5 correspond to an unequivocal molecular formula assignment, and exact
mass of interest that still lacks molecular formula assignment

Substructures
A small part or a functional group in a chemical entity

ClassyFire
A hierarchical chemical classification of chemical entities

Principal Coordinates Analysis (PCoA)
Unsupervised multivariate analysis used to calculate the interrelationships of a data set, and
is often used to reduce the dimensionality of large data sets

Machinelearning
Application of artificial intelligence that is able to learn, adapt and improve their accuracy
over time without being explicitly programmed

Neural networks
A set of algorithms designed to recognize patterns and used to classify entities or make
predictions. Modeled around the concept of neurons

Biosynthetic gene clusters (BGCs)
Group of two or more genes in a particular genome that together encode a biosynthetic
pathway

Gas chromatography
A technique to separate compounds in a complex sample which occurs between a stationary
phase and a gaseous mobile phase, usually an inert gas such as helium

Liquid chromatography

A technique to separate two or more compounds present in a sample by exploiting the
affinity balance between a stationary phase placed inside the chromatographic column and a
mobile phase that flows through

In silico annotation tools
Computational methods to improve compound annotation by exploring other approaches
besides spectral libraries, such as machine learning
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Box 1
The basics of mass spectrometry

Mass spectrometry (MS) is an analytical technique to measure molecules (metabolomics
focus on small molecules), detected as ions. In cases in which the investigator already
knows what molecules they want to look at ahead of time or potentially observe, a
targeted MS approach should be used. Targeting specific molecules improves sensitivity
and specificity as one can directly tune the workflow and instrument for the detection of
those specific molecules (for example, short-chain fatty acids or specific bile acids) and
will have improved guantitative abilities. However, targeted workflows limit the potential
for the discovery of unexpected molecules!19. Untargeted MS, the focus of this Review,
enables discovery at the cost of more difficult data analysis. MS detects chemicals by
measuring the ionized form as their mass-to-charge ratio (/7/2) and relative abundance
or abundances (MS?). By acquiring data with high-resolution mass spectrometers such
as TOF, Orbitrap or FTICR, the elemental composition can be calculated. The elemental
composition in combination with an experiment called tandem MS, can be used to
further reduce the possible molecular formula. In this tandem MS experiment (also
described as MS/MS or MS?2), energy is imparted via multiple collisions with an inert
gas (for example, nitrogen or helium), which causes the ion to break apart'®. This form
of tandem MS is called collision-induced dissociation (CID). The fragments (that is,
product ions) which result from the ionized molecule breaking apart are measured (MS/
MS). This results in interpretable fragmentation patterns that are related to the chemical
structure56. Although the details are much more complex, one of the simplest ways

to think about this type of fragmentation is that the isolated molecule is heated until it
falls apart. There are other forms of fragmentation do not use thermal activation, such as
electron capture dissociation or electron impact!®8. In gas chromatography MS (GC-MS),
used for detection of volatile molecules or non-volatile molecules that can become
volatile using derivatization strategies, the electron impact (El) ionization source allows
neutral molecules to be ionized using an electron beam, and instantaneously fragment
them as they enter the instrument** 4. The result of any of these methods is fragmented
molecular ions. The resulting fragmentation spectrum, the measurement of the m/z of
the broken pieces of the ion of the molecule is equivalent to a short sequence read in
terms of what can be achieved with subsequent data analysis. As microbiome samples
are inherently complex, it is often necessary to separate molecules before the sample is
introduced into the mass spectrometer, techniques such as liquid chromatography (LC),
GC1%9, and increasingly ion mobility (IMS)160, have been applied. Particularly, IMS
has received much attention over the past decade to tackle the challenge of separating
unresolved or co-eluting isomers and isobars'6%. However, the software to leverage IMS
data for microbiome studies are limited. This generates a wealth of different ways to
produce ions and measure microbial molecules via mass spectrometry.

In general, some preprocessing of the metabolomics data is performed before statistical
and annotation analysis, including some steps such as removing noise, recognizing
adducts, and finding and quantifying features'61. This is a very challenging step in
metabolomics and will inevitably include the detection of false, split or missing features.
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Software such as MZmine*9, MS-DIAL#?, MShub>°, openMS162 and XCMS163 can be
used for such data preprocessing. The metabolites in untargeted metabolomics can be
compared in relative quantitative fashion due to the large diversity of physico-chemical
properties present in such biological samples, whereas for absolute quantification other
steps should be taken, including evaluation of extraction yields, ionization profile and
peak shape; ion suppression and matrix effects can have an impact the quantification164,
When true and accurate quantities are desired for target molecules then 13C, 15N
isotopically labeled internal standards and a targeted MS platform could be performed.
For most scenarios such labeled compounds are not available for all the molecules
detected in an untargeted metabolomics experiment. Most compounds are detected as
more than one ion form (for example, in-source fragments, different adducts such

as protons, sodium or multimers)165: 166 and might present different fragmentation
patterns. Those ions can be found with tools such as RamClust 166 (particularly for

data independent analysis), or CAMERA85 that perform MS? based peak shape analysis
and rule-based discovery of co-migrating species. To recognize some of those ion forms,
ion identity molecular networking leverages both peak shape analysis and molecular
networking!67. Some compounds, such as sugars, cannot be easily ionized and may need
derivatization before they can be detected68. Other compounds, such as less polar or
non-polar compounds, need specific ionization sources to be ionized, such as atmospheric
pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI).
lonization does not occur equally for chemicals, and hence the use of internal standards
is important in metabolomics. When it is not possible to use such internal standards as
is the case for most microbial metabolites, the co-elution of chemicals can influence)
the ionization of each other (for example, suppress through competition of the “‘charge’,
complicating accurate quantification169, For example, peptides generally fragment in
predictable patterns using relatively low energies (for example, “b-y’ fragmentation

by CID). By contrast, some polyketides and alkaloids need higher levels of energy

to induce fragmentation, and frequently generate fewer peaks in their fragmentation
spectra, which can be challenging to interpret. All these issues can also be optimized

by choosing the correct ionization source, solvent choices, sample or chromatography
additives, instrument settings and parameters. This would contribute to inter-laboratory
reproducibility of the data. In addition to metabolomics analysis, the quality of the

data can substantially influence data analysis. Poor quality spectra, high noise level,
contaminants, stability of the molecules, baseline drifts, among other issues, can lead to
data misinterpretation or prevent a discovery. In some of these cases, filtering steps can
improve the data analysis, but the proper use of background and quality controls and
adoption of reproducible analysis workflows is essential to avoid removing important
features.
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Box 2
How do microbial metabolites shape the hosthealth and behavior?

Several human diseases and conditions are associated with microbial dysbiosis, which
can even impact human behavior and the proper functioning of organs. For instance,
bacteria from the human gut can exert effects on the host immune system, from systemic
autoimmunity170 to the evolution of cancerl, It is also known that external cues such
as diet can influence the gut microbiome, and a shift in the microbiome may be related
to metabolic syndromes, such as type 2 diabetes and nonalcoholic fatty liver diseasel’2.
Dysbiosis has also been observed to affect other environments, such as the soil, important
for agriculture and production of food; the ocean, which affects biodiversity; and in

the insects community; among several others examples not further specified here. Some
examples from different organisms and environments are discussed that highlight the
efforts in studying microbial-derived molecules and their role in microbiomes and
hosthealth and behavior. Staphylococcus hominis has an important role in maintaining
the equilibrium of the human skin microbiome. The commensal produces the metabolite
Sh-hogocidin-p, which inhibits the growth of S. aureus. Dysbiosis of the skin microbiota
(that is, a decreased abundance of S. #ominis and thus increased abundance of S. aureus)
can contribute to atopic dermatitis 173 (see the figure, part a). In addition, several studies
report on the possible link between the gut microbiota and symptoms of nervous systems
diseases, such as autism disorder 3. In a mouse model of autism spectrum disorder
(ASD) it was shown that treatment with probiotics containing Bacteroides fragilis
restored barrier integrity, decreased serum levels of the metabolite 4-ethylphenyl sulfate
(4EPS) and modulated behaviour (see the figure, part b, top panel)1’4. The same group3
transplanted gut microbiota from individuals with ASD into mice and reported that the
offspring presented autism-like behavior (see the figure part b, bottom pane), further
suggesting a role of the gut microbiota in the development of neurological disorders.

In social insects, Streptomyces spp. colonize the cuticles of ants and produce
cyphomycin, a compound that protects the ants’ fungal garden against fungal pathogens
175 see the figure, part c). In the rhizosphere, Pseudomonas sp. SH-C52 produces
thannamycin to protect the sugar beet from fungal pathogens © (see the figure, part d).

In the marine environment, an interesting example is the ascidian L/ssoclinum patella, in
which the colonizing bacteria produce compounds that may protect the host. In return,
the ascidian provides essential nutrients for bacterial survival 8 (see the figure, part €).
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Fig. 1. Mass spectrometry metabolomics approaches for studying the microbiome.
a) MS! acquired by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-

MS) enables bacterial taxon identification. The range of ribosomal proteins (3—-15 kDa) is
used to search for a match in spectral libraries, and the hierarchical clustering generated
with these data strongly correlates with 16S rRNA. The range between 0,2-2 kDa shows
specialized metabolites (molecular association network)3 32, b) Illustrative examples

of imaging MS. Interactions between microorganisms can be observed by co-culture
experiments (top panel). Spatial distribution of hexuronic acid in the gut of different mice
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can be investigated (middle panel). The examples shown are from germ-free (GT) mice,
mice mono-colonized with Bacteroides thetaiotaomicron (Bf), and mice bi-colonized with Bt
and Bifidobacterium longum (B/). and molecular cartography can reveal the 3D distribution
of specific ions in humans, mice and plants (bottom panel). ¢) Microbial metabolites can

be analyzed by liquid chromatography—tandem MS (LC-MS/MS)56. The precursor mass is
selected in MS! to be fragmented, generating the MS/MS spectra. Thousands of MS/MS
spectra are generated in an untargeted analysis, which can be organized by molecular
networking by spectral similarities. Spectral similarity is represented by cosine score (cos),
the higher the cosine the higher the similarity. D is the mass difference between two nodes
(precursor ions) d) Microbial small metabolites analyzed by electron ionization (EI-MS).
Deconvolution is essential to separate spectra from co-eluting compounds. The spectra can
be searched for a match in spectral libraries to annotate known compounds. Images in part b
adapted from Ref 36,
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Fig. 2. Computational toolsfor metabolite annotation, substructure assessment and chemical
classification.

a) Tandem mass spectrometry (MS/MS) spectra can be searched against the MS/MS spectral
library (for example, GNPS [https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp]) and
matched based on the number of product ion matches and cosine score. b) Variable
dereplication (GNPS) allows the search of structurally related metabolites (analogs) with
similar MS/MS spectral data by employing the cosine similarity method. c) MetFrag’! is a
combinatorial fragmentation method that focuses on the explanation of the fragment peaks

@ Anthracyclinones

i
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from an MS/MS spectrum based on substructures generated by disconnecting the bonds
of the structures from structure databases. d) SIRIUS473 and ZODIAC# use fingerprint
prediction, a fragmentation tree method to predict fingerprints (substructure properties),
to score possible structures by fingerprint similarity. €) Network annotation propagation
(NAP) integrates variable dereplication and combinatorial fragmentation for annotation of
analogs in molecular networks. f) DEREPLICATOR annotates nonribosomal peptides and
ribosomally synthesized and post-translationally modified peptides based on hypothetical
spectral fragments generated from peptide natural product (PNP) structures present in
structural databases, considering the false discovery rate (FDR). In addition, this tool

can be used to annotate analogs by variable dereplication and also to calculate statistical
significance computing false discovery rates [G]. g) MS2LDA recognizes substructures
and their co-occurrence in an MS/MS dataset h) MolNetEnhancer uses such substructure
information, along with ClassyFire algorithm, to classify the chemical groups present in the
dataset.
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Fig. 3: Data analysistoolsto uncover microbiome-derived molecules.
a) Molecular networks can attribute the producer of specific metabolites detected in

microbiome, from cultured systems or reference databases. b) Procrustes analysis allows
integration of omics data based on canonical correlation. The results are summarized in a
low-dimensional space representation known as principal components (PC1, PC2 and PC3)
¢) Principal component regression (PCR) is a statistical method based on regression analysis
and principal component (analysis. In the example, metabolomics and metagenomics

data were integrated to investigate the microbial response to plant growth. d) mmvec
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uses co-occurrence probabilities to predict microorganism—metabolite interactions from
metabolomic data and is visualized with a biplot. The results are shown in three-dimension
space and the illustration shows two principal components (PC1 and PC2). €) Songbird
introduced ‘reference frames’ by using ratios to compute the abundance of compositional
data overcoming common pitfalls in comparing relative abundances across samples. f)
Ecological interactions, such as competition or synergistic (for example, symbiosis), can
be predicted by reverse metabolic ecology. Seeds are known as specific metabolites used
to evaluate the interaction. g) MelonnPan is a machine learning method, trained with
metabolomics and metagenomics data, aiming to predict the metabolome of microbial
communities, including those metabolites usually not observed by common analytical
techniques.
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