Skip to main content
. 2022 Oct 18;11:e77373. doi: 10.7554/eLife.77373

Table 1. Hyper-parameters, OBB, ROC-AUC, and confusion matrix of the trained random forests model.

Donor
(no. of data points)
ntree mtry OOB (%) ROC-AUC TP FP FN TN
All donors –
full FoV (36)
100 2 16.67 0.944 16 2 4 14

ntree, number of trees; mtry, number of variables selected for the best split at each node; OBB, out-of-bag error; ROC-AUC, area under receiver operating characteristics curve; TP, true positive; FP, false positive; FN, false negative; TN, true negative.